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An array-based genotyping approach has been the standard practice for genome-wide
association studies (GWASs); however, as sequencing costs plummet over the past years,
ultra low-coverage whole-genome sequencing (ulcWGS <0.5× coverage) has emerged as
a promising alternative that provides superior genomic coverage with substantial reduction
of genotyping cost. To evaluate the potential utility of ulcWGS, we performed a whole-
genome sequencing (WGS) of 72 European individuals to a target coverage of 0.4× and
compared its performance with the widely used Infinium Global Screening Multi-Disease
Array (GSA-MD). We showed that the number of variants captured by ulcWGS is
comparable with imputed GSA-MD platform, particularly for low-frequency (95.5%) and
common variants (99.9%), with high imputation R2 accuracy (mean 0.93 for SNPs and
0.86 for indels). Using deep-coverage 30× WGS as the “truth” genotypes, we found that
ulcWGS has higher overall nonreference genotype concordance compared with imputed
GSA-MD for both SNPs (0.90 vs. 0.88) and indels (0.86 vs. 0.83). In addition, ulcWGS
proved to be as sensitive as the genotyping-based method in sex imputation and ancestry
prediction producing similar principal component (PC) scores. Our findings provide
important evidence that the cost efficient ulcWGS of <0.5× generates high genotype
accuracy, outperforming the standard genotyping arrays, making it an attractive alternative
to the array-based method in next-generation GWAS design.

Keywords: ultra low-coverage whole-genome sequencing (ulcWGS), genome-wide association study (GWAS), next-
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INTRODUCTION

Over the past decade, genome-wide association studies (GWASs) have identified genetic variation
contributing to a plethora of complex disease traits (Visscher et al., 2012; Visscher et al., 2017;
Buniello et al., 2019). GWASs have routinely used dense genotyping arrays to assay fixed panels of
hundreds of thousands to millions of common genetic markers, followed by imputation through
population reference panels, to increase the density of the studied genetic variation coverage
(Visscher et al., 2017). Despite the high genotype accuracy and affordable cost, genotype-based
GWAS designs are often limited by ascertainment bias of the genotyped variants present at particular
SNP arrays. This limits the genome-wide variant coverage particularly for the discovery of the
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association with novel and/or rare variants. Recently introduced
whole-genome sequencing (WGS)-based GWAS emerges as a
promising alternative to probe large fraction of genetic variation
in a comprehensive and unbiased fashion, improving the power
of the association tests and downstream fine mapping analyses.
However, high-coverageWGS remains cost prohibitive in GWAS
designs that often require assessment of a large cohort of sample
population.

To address these limitations, low-coverage WGS (lcWGS) has
recently been proposed as an attractive cost-efficient
technological approach, sequencing random genomic regions
at a reduced sequencing coverage. Studies show that lcWGS
significantly supersedes SNP arrays on variant density, which
also allows for a more thorough assessment of associations with
less common variants. Leveraging on haplotype information from
fully sequenced reference panels [i.e., 1000 genome project
(1 KGP) or the haplotype reference consortium (HRC)],
lcWGS sequencing outputs are further improved by robust
imputation tools to increase resolution, unconstrained by fixed
genotyping array probes. Several GWAS studies have successfully
employed lcWGS-based designs with as low as 1.5× sequencing
coverage, in trait-associated variant discovery (consortium, 2015;
Tachmazidou et al., 2017; Luo et al., 2017; consortium et al.,
2015). However, even with 1.5× depth compared with the SNP
array genotyping, the cost is still too high, prohibitive for the large
population screening, particularly in multinational consortia
setting. Ultra low-coverage WGS (ulcWGS ≤0.5× sequencing
depth) would represent additional cost reduction, substantially
below SNP array genotyping; however, it has not yet been
extensively evaluated for its potential as a sequencing-based
GWAS alternative.

A few prior reports assessing the accuracy and efficiency of
ultra low-coverage WGS (0.1–0.5× ulcWGS) were limited to in
silico simulation or downsampling of high-quality deep-
coverage WGS data (Pasaniuc et al., 2012; Gilly et al., 2019;
Homburger et al., 2019; Wasik et al., 2021). While promising,
many of these studies did not account for all aspects of
sequencing library preparation needed for such low
coverage or reduced DNA inputs that might each have
impacted ulcWGS experimental designs and could have
resulted in biased estimates of ulcWGS performance. While
studies that modeled low coverage from high-depth
sequencing data suggested the potential utility of ulcWGS
in GWAS designs at sequencing coverage as low as 0.1×
(Pasaniuc et al., 2012), up to date, there has only been one
study that used low-coverage sequencing design, at 0.5× depth,
to evaluate the performance of ulcWGS platform (Li et al.,
2021). In our study, we performed low-coverage sequencing to
less than 0.5× depth, making this ulcWGS technological
platform even more cost competitive. To investigate the
effectiveness of ulcWGS as a viable alternative to
genotyping arrays, we used the imputed data from the
Global Screening Multi-Disease Array (GSA-MD) as the
genotype gold standard in our primary analysis. For a
subset of samples, we further compared and assessed the
performance and accuracy of genotyping-based vs. ulcWGS
data with high-coverage (30×) WGS.

METHODS

Study design and sample selection
The study population was derived from a melanoma patient
cohort ascertained at New York University Langone Health
(NYULH). We selected 72 samples with high-quality
genotyping data previously generated using the Infinium
Global Screening Array Multi-disease drop-in (GSA-MD V2.0
and V3.0) and available sequencing data from high-coverage
whole-genome sequencing (30× hcWGS). To test the
effectiveness of ulcWGS as a cost-efficient alternative to
genotyping-based GWAS, we sequenced all 72 individuals to a
target 0.4× sequencing coverage (lower per-sample cost
compared with GSA-MD V3.0). All study participants were of
self-reported European descent. Written informed consents for
the use of specimens were obtained at the time of enrollment, and
the Institutional Review Board (IRB) at NYULH approved
the study.

Ultra low-coverage whole-genome
sequencing: data generation and QC
We isolated genomic DNA from whole-blood samples
provided by study participants using Qiagen DNEASY
blood and tissue kit. Qubit was used to quantify DNA
concentration, and the DNA quality was assessed by gel
electrophoresis. All 72 DNA samples selected in this study
had a minimum concentration of 10 ng/µl with no evidence of
DNA degradation from gel electrophoresis. Libraries were
prepared by GENEWIZ using the NEBNext® Ultra™ II
DNA Library Prep Kit for Illumina following the
recommendations of the manufacturer, including eight PCR
cycles. The libraries were quantified using real-time PCR,
clustered on two lanes of a flow cell and loaded on an
Illumina HiSeq instrument following the instructions of the
manufacturer. The samples were sequenced using a 2 × 150-bp
paired-end configuration. Raw sequencing read yields ranged
from 1,300 to 2,623 Mb (mean 1,623 Mb, approximately 0.5×
coverage). The raw sequencing outputs were in FASTQ format.

ulcWGS: sequencing alignment, genotype
calling and imputation-based genotype
refinement
Sequencing FASTQ files were aligned to
Homo_sapiens_assembly19. fasta (GRCh37) from GATK
bundle using Bwa-mem 0.7.17, following GATK best practices.
Sambamba-0.6.8 markdup was used to mark duplicate reads and
BaseRecalibrator function from GATK v. 4.1.2.0 to perform base
quality score recalibration (BQSR). We calculated mean depth
coverage excluding nonprimary alignment, unmapped and
duplicate reads from the processed alignment files (BAM files)
with Mosdepth v.0.2.6.

We estimated genotype likelihoods (GL) of the processed bam
files for all variable genomic positions in the 1 KGP phase 3
reference panel (GRCh37) with bcftools v.1.9 mpileup, followed
by left-aligned normalization of indels and splitting of multi-
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allelic variants into biallelic SNP formats. Subsequently, we
refined and imputed the raw GL estimates of autosomal
chromosomes and non-pseudoautosomal (non-PAR) region of
chromosome X with GLIMPSE 1.0.0, a newly developed software
suite tailored toward efficient and accurate imputation-based
refinement for ulcWGS (Rubinacci et al., 2021). GLIMPSE
utilized Gibbs sampling procedure to iteratively refine the
initial GL estimates conditioning on haplotypes from the input
reference panel and other target samples in each iteration. We
followed the protocols of GLIMPSE’s, with slight modifications to
include indels and SNPs, accessible at https://odelaneau.github.
io/GLIMPSE/tutorial_hg19.html and https://odelaneau.github.
io/GLIMPSE/tutorial_chrX.html, for autosomal and non-PAR
X chromosome, respectively.

Infinium Global Screening Array
Multi-Disease: genotype calling and
imputation
All 72 DNA samples in the study were genotyped using GSA-MD
V2.0/V3.0 that included additional ∼50,000 genomic markers as a
multi-disease drop-in. We used Illumina Genome Studio V2.0 to
generate genotype calls from raw intensity idat files with GenCall
score threshold of 0.15. PLINK Input Report Plug-in v2.1.4
exported the genotype calls from Genome Studio to PLINK
format for downstream analyses.

GSA genotype data were imputed using open-source
Michigan Imputation Server using the 1 KGP phase 3
GRCh37 reference haplotypes (Das et al., 2016), generating
imputation dosage files along with log files and imputation info
score reports.

High-coverage whole-genome sequencing:
data generation and processing
Among 72 samples sequenced by ulcWGS and genotyped by
GSA-MD V2/V3, 13 samples had available high-coverage WGS
data (30×) generated previously. The raw FASTQ files were
processed, and variants were called using GATK variant
calling best practice workflow, in which we used
HaplotypeCaller to simultaneously call SNPs and indels with
de novo haplotype assembly. We performed a liftover (Picard
LiftoverVcf) for the hcWGS vcf from GRCh38 to GRCh37 to be
consistent with ulcWGS and GSA-MD data.

Evaluation of ultra low-coverage
whole-genome sequencing performance
To evaluate the performance of ulcWGS capturing the variation
identified by the imputed GSA-MD platform, we compared the
variant data from ulcWGS and imputed GSA-MD of autosomal
chromosomes to identify 1) overlapping variants discovered by
both platforms and 2) unique variants identified in each platform.
As a secondary analysis, we utilized 30X hcWGS data generated
on a subset of 13 participants from our study cohort and assessed
the ability of ulcWGS vs. imputed GSA-MD in recapitulating 30X

hcWGS non-monomorphic variants at different population
minor allele frequencies (MAFs).

To assess genotype accuracy of ulcWGS, we first compared the
imputation mean R2 scores of ulcWGS with those of imputed
GSA-MD stratified by population MAF (50 MAF bins: MAF <1,
1–2,2–3, . . . ,49–50). Imputation R2, which measures correlation
between empirical allelic dosage and expected true genotype,
ranges from 0 to 1 with a higher score suggesting higher
imputation certainty (Marchini and Howie, 2010).
Subsequently, as an additional metrics for the assessment of
genotype accuracy of ulcWGS, we calculated non-reference
concordance (NRC) by excluding homozygote reference
concordance. As described in detail elsewhere (Martin et al.,
2021), such reference concordance exclusion reduced
overestimated concordance, in particular, for rare variants. We
filtered imputed GSA-MD data at multiple imputation R2

thresholds (>0.3, >0.5, >0.6, >0.8, and >0.9) and used each as
gold standard. Nonreference concordance between the gold
standard and unfiltered ulcWGS was computed separately for
indels and SNPs. As a supplemental analysis, we also calculated
NRC of ulcWGS and GSA-MD, both filtered at each
corresponding R2 thresholds. To further characterize ulcWGS
accuracy, we capitalized on the data from 30× hcWGS available
for a subset of 13 samples, and used this data as the “gold
standard” genotypes. We calculated non-reference concordance
for unfiltered ulcWGS and imputed GSA-MD against 30×
hcWGS to compare genotype accuracy of the ulcWGS and
genotyping-based GSA-MD platforms.

We have also explored the potential utility of ulcWGS for sex
imputation; as to our knowledge, this has never been tested in
low-passWGS analyses. With novel GLIMPSE pipeline to impute
the non-PAR X chromosome from ulcWGS, we obtained raw
genotype calls, which we further filtered to retain high-quality
variants (imputation R2 >0.5; PLINK hardcall >0.8; missing rate
<20%). Similarly, for GSA-MD chip data, we performed a less
conservative filtering, in which variants and samples of missing
rate >20% were removed, as per recommendations from GWAS
QC pipelines (Marees et al., 2018). Subsequently, based on
heterozygosity rate of non-PAR X chromosome, we imputed
sex information with PLINK 1.9 using the default threshold of F
inbreeding coefficient estimates (F <0.2: females and F >0.8:
males). We compared the concordance of sex imputed from
ulcWGS vs. GSA-MD against reported sex information.

As population structure is a common confounding factor in
GWAS, we assessed if sequencing-based ulcWGS data output can
stratify ancestry with comparable sensitivity performed by
genotyping-based GSA-MD array. Using PLINK 2.0 (Chang
et al., 2015), we performed variant QCs under the following
variant exclusion criteria: genotypes with posterior probability
<0.8 (PLINK hardcall flag >0.8); variants with imputation R2

<0.5, variants with call rate <95%, or those deviated from the
Hardy–Weinberg equilibrium HWE p <5E−07. Variants passing
filtering criteria from both ulcWGS and GSA-MD chip data were
merged. To the merged file, we further added genotypes from the
1 KGP phase3, to provide ancestry reference for our study. Sex
chromosomes, rare alleles (maf <0.05), ambiguous variants, and
variants with missing rate >5% were filtered out. We performed
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LD pruning using standard parameters: --indep-pairwise 500 10 0
pruning prior to running --pca. Pairwise kinship coefficients
measuring distance and quantifying similarity among samples
were also estimated using PLINK 2. 0 --make-kin-table for a
subset of pruned variants used in PCA. We expected the same
sample generated by ulcWGS and GSA-MD to have kinship
coefficients ranging from 0.35 to 0.5, which would suggest strong
similarity regardless of the platform. To further characterize
discrepancy in raw PC scores generated by these two
platforms that may affect multivariable model adjustment in
downstream GWAS analyses, we estimated Pearson R2

correlation of the top 10 PC scores of the same individual
from ulcWGS and GSA-MD chip. For a more in-depth
refinement of European ancestry substructure, we have used
the data from European population 1 KG phase 3 and
reference Ashkenazi Jewish (AJ) population data previously
published by our group (Vijai et al., 2013; Ferguson et al.,
2019). We added AJ population into the ancestry reference
since a fraction of the NYULH patient cohort in this study is
of AJ ancestry.

RESULTS

In this study, we have tested the ability of ulcWGS (0.4×) to be
used as a feasible alternative to genotyping-based arrays. On a
sample of 72 melanoma patients with genotype data generated by
GSA-MD (v2 or v3), we performed ulcWGS to a target depth of
0.4× sequencing coverage (Figure 1). GSA-MD genotype data
were imputed using Michigan imputation server utilizing 1 KGP
phase 3 build GRCh37 as a reference panel. UlcWGS data were
processed to generate genotype likelihood for all polymorphic
sites using bcftools, prior to imputation with Glimpse v1. To
further evaluate ulcWGS performance, our study also included
30× hcWGS of 13 individuals (stemming from 72 sample cohort),
which were processed following GATK variant calling pipelines
using build GRCh37. Mean sequencing coverage for ulcWGS data

from raw and post-alignment processing were 0.49× and 0.38×,
respectively (Supplementary Figure S1).

The raw and imputed fraction of detected non-monomorphic
variants from all three platforms is summarized in Table 1. There
were 759,993 and 730,059 variants directly typed onto the GSA-MD
arrays v2 and v3, respectively. We merged 41 samples genotyped on
GSA-MD v2 with 31 samples processed with GSA-MD v3 and
performed imputation, which resulted in a panel of 11,430,960 non-
monomorphic variants (10,157,732 SNPs and 1,264,727 indels).
UlcWGS on all 72 samples identified 11,673,829 non-
monomorphic variants (10,384,933 SNPs and 1,280,217 indels),
which is comparable with imputed data from GSA-MD analysis.
We also further applied multiple imputation R2

filtering thresholds
(>0.3, >0.5, >0.6, >0.8, and 0.9) to both imputed GSA-MD and
ulcWGS data, and consistently observed a comparable number of
variants from these two platforms at respective R2 thresholds
(Supplementary Table S1). For 30× hcWGS data, the number of
nonmonomorphic variants was smaller (N � 9,737,221) in
comparison with imputed GSA-MD and ulcWGS (Table 1),
reflecting a reduced cohort size (N � 13).

To assess the efficiency of ulcWGS in capturing genetic
variation genotyped by GSA-MD arrays, we compared
nonmonomorphic variants generated by these two platforms
(Figure 2). UlcWGS captured a vast majority of variants from
imputed GSA-MD (94.2%), particularly for common variant MAF
>5% (99.9%) and low-frequency variants MAF: 1–5% (95.5%). For
rare variants (MAF <1), imputed GSA-MD generated 542,846
variants unique to GSA-MD, while ulcWGS generated 682,801
variants, capturing ∼25% extra rare/novel variants. As a secondary
analysis, we also evaluated how comprehensive ulcWGS vs.
imputed GSA-MD are in capturing nonmonomorphic variants
generated by 30× hcWGS (N subset � 13). As expected, we
observed a comparable fraction of 30× hcWGS variants
recapitulated by these two platforms at common (MAF > 5%)
(∼88% for both platforms) and low frequency (MAF 1–5%) (∼79%
for both platforms) (Figure 2B and Supplementary Table S2). For
rare variants (MAF <1%), ulcWGS captured noticeably higher

FIGURE 1 | Schematic workflows of the study design and analytical pipelines. The total 72 individuals of European descent in the study were genotyped with
Infinium Global Screening Multi-Disease Array (GSA-MD) (V2.0/V3.0) and whole-genome sequenced to a target 0.4× coverage. A subset of 13 samples had high-
coverage whole-genome sequencing (WGS) (30X) data available and were used to conduct a secondary analysis to assess ultra low-coverage whole-genome
sequencing (ulcWGS) performances against genotyping-based GSA-MD.
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fraction of 30X hcWGS variants compared with imputed GSA-MD
(46.48% vs. 39.64%) (Supplementary Table S2).

To evaluate the quality of the input genotype data (ulcWGS vs
GSA-MD), we estimated imputation R2 score measuring
imputation certainty of each imputed variant, using the same
reference panel (1 KGP phase 3). Overall, as shown in Figure 3,
we observed higher imputation R2 scores for ulcWGS platform
compared with imputed GSA-MD for both indels and SNPs. We
noted that imputation was more accurate in ulcWGS for common
variants (MAF >5%) with mean imputation R2 of 0.93 for SNPs
(vs. 0.87 in imputed GSA-MD) and 0.86 for indels (vs. 0.81 in
imputed GSA-MD) (Supplementary Table S3).

In our primary analysis, we performed quality control of the
imputed GSA-MD data at different imputation R2 thresholds (0.3,
0.5, 0.6, 0.8, and 0.9) and used these variants as the “truth” genotypes.
With increasing filtering R2 threshold, for both indels and SNPs, we
observed an increase in genotype concordance between unfiltered
ulcWGS and imputed GSA-MD across all population MAF bins
(Figure 4A). While imputation R2 filtering threshold for imputed

genotype-based data in GWAS is usually arbitrary, in this analysis,
we showed that even with R2 threshold as low as 0.3 (default criteria
of Michigan imputation server) to include more variants, ulcWGS
data still provided appreciable genotype concordance comparedwith
GSA-MD (mean non-ref concordance: 0.82 for indels and SNPs)
(Supplementary Table S4). At higher R2 thresholds (>0.8), we
observed improved mean NRC for SNPs and indels (NRC
>0.90). We also estimated NRC with ulcWGS and imputed GSA-
MD data, both filtered at multiple imputation R2 thresholds, and
observed slightly higher NRC between these two platforms
(Supplementary Table S5).

Subsequently, we took advantage of 30× hcWGS data available
for a subset of 13 samples, to compare nonreference concordance
of ulcWGS and imputed GSA-MD against hcWGS. For both
indels and SNPs, we observed a higher concordance for ulcWGS
compared with imputed GSA-MD (Figure 4B). The overall
nonreference concordance for GSA-MD and ulcWGS SNPs
was slightly higher than that of indels (SNPs: 0.88 and 0.90;
indels: 0.83 and 0.86, respectively) (Supplementary Table S6).

TABLE 1 | Non-monomorphic variants captured by different platforms in this study.

Variants Infinium Global Screening
Multi-Disease Array (GSA-MD)

(N = 72)

0.4X ultra low-coverage
whole-genome sequencing (ulcWGS)

(N = 72)

30X hcWGS (N = 13)

Raw number of variants 759,993 (v2.0) NA* 9,737,221 (nonmonomorphic)
730,059 (v3.0)

Imputed number (nonmonomorphic) 11,430,960 11,673,829 9,737,221
Number of SNPs 10,157,732 10,384,933 7,351,799
Number of indels 1,264,727 1,280,217 2,240,753

Note. All variants post-imputation for GSA-MD and ulcWGS platforms were unfiltered, with the exception of monomorphic variants. Similarly, 30× hcWGS data generated by GATK
pipelines included only nonmonomorphic variants. The number of SNPs and indels were estimated separately. NA*: The pipeline to process ulcWGS data did not generate raw genotype
hard calls; instead, it calculated posterior genotype likelihood for all polymorphic sites in the reference panel, later refined by the imputation tool GLIMPSE 1.0.0.

FIGURE 2 | Comparison of variant fraction discovered by ulcWGS vs. imputed GSA-MD. (A) Imputed GSA-MD and ulcWGS data (N � 72) were filtered to retain
only nonmonomorphic variants. We compared the filtered variants between both platforms to evaluate the comprehensiveness of ulcWGS in capturing variants
generated by imputed GSA-MD. Numbers of shared and unique variants to each platform were plotted by population MAF derived from non-Finland European
population in gnomAD v2.0. (B) The fraction of non-monomorphic variants (Y-axis) from 30× hcWGS captured by ulcWGS vs. imputed GSA-MD (N � 13
participants genotyped on all three platforms) by different population MAF bins (X-axis). At low (1–5%) and common (>5%) population MAF, both platforms performed
similarly. For rare variants (MAF <1%), ulcWGS recapitulated higher fraction of 30X hcWGS variants, as shown by more pronounced separation of ulcWGS (red line) and
imputed GSA-MD (blue line).
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As a sensitivity analysis, we evaluated ulcWGS performances
for a specific group of curated variants with high clinical
significance (51,334 clinvar and 81,403 exonic variants)
directly genotyped on GSA-MD. Many of these variants were
rare and not captured in the 1 KGP reference used in ulcWGS
imputation. We were able to extract 25,609 clinvar and 52,251
exonic variants from the ulcWGS platform and compared the
imputation accuracy and genotype concordance against the
GSA-MD. In comparisons with the performance of ulcWGS of
all variants, we observed similar imputation R2 accuracy and
nonreference concordance, particularly for low-frequency and
common variant MAF ≥1%, suggesting ulcWGS was comparably

FIGURE 3 | Imputation R2 score by population minor allele frequency. Mean imputation R2 values were calculated separately for indels and SNPs and stratified by
population minor allele frequency (European gnomAD v2.0). All variants were unfiltered.

FIGURE 4 | Nonreference concordance by population allele frequency. (A)We used imputed GSA-MD variants filtered at different imputation R2 thresholds as the
“truth” genotypes (R2: >0.3, >0.5, >0.6, >0.8, and >0.9). Nonreference concordance was computed for ulcWGS data at various population MAF bins (MAF derived from
gnomAD v2.0). To further compare the accuracy of ulcWGS vs. imputed GSA-MD data, we estimated nonreference concordance using 30× hcWGS as the “truth”
genotypes (B).

TABLE 2 | Contingency table of sex imputation from ulcWGS and GSA-MD chip/
reported sex.

ulcWGS

Female Male Unassigned

GSA-MD/reported sex Female 30 0 0
Male 0 41 1
Unassigned 0 0 0

Note. The diagonal cells represent concordance in sex imputation between ulcWGS and
GSA-MD/reported sex. While ulcWGS was not able to impute sex for one male sample,
this platform was able to correctly impute sex information for all other study
populations (∼99%).
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efficient in capturing clinically significant variants crucial for
GWAS application (Supplementary Figure S2).

To assess the ability of ulcWGS in accurately imputing sex, we
computed the X chromosome inbreeding F estimates for both
ulcWGS and GSA-MD chip data. GSA-MD assigned N � 30 of
the study participants as females and N � 41 as males, consistent
with the reported sex information. While ulcWGS was not able to
determine sex information for one sample (F � 0.37; Supplementary
Figure S3), it accurately imputed sex for 71 samples (∼99%) (Table 2).

We computed top principal component scores (PC scores) of
the 72 individuals generated by both GSA-MD chip and ulcWGS
platforms and performed principal component analysis with
1 KGP phase 3 samples as a population reference (Figure 5A).
As expected, for both GSA-MD and ulcWGS platforms, we
observed a similar population distribution, clustering within
European ancestries, confirming self-reported European descent
of the participants. By plotting only the samples of imputed GSA-
MD and ulcWGS data (Supplementary Figure S4), we observed
some spatial distance between identical samples generated by these
two platforms. We computed kinship coefficients using all of the
ancestry-informative markers to quantitatively capture genomic
distance and similarity between these samples. Pairwise kinship
coefficients among identical samples generated by GSA-MD and
ulcWGS ranged from 0.45 to 0.49, indicating minor to no
discrepancy in ancestry prediction between the two platforms.
Similarly, we also estimated Pearson R2 correlation of the 10 PC
scores and observed strong correlations (R2 > 0.95) between
numerical PC values of samples generated by ulcWGS and
GSA-MD platforms (Supplementary Figure S5). We further
compared the performance of ulcWGS vs. GSA-MD in refining
EUR population substructure. With EUR 1 KGP phase 3 and AJ
population as reference, we performed PCA and plotted the top
2 PCs (Figure 5B). Both ulcWGS and GSA-MD were able to
comparably predict EUR population substructure, as exampled by

the three labeled pair sample duplicates from these two platforms
overlaid on top of the distinct EUR subclusters (sample 03 onCEU;
sample 30 on TSI; and sample 55 on AJ).

DISCUSSION

To date, genotyping-based approach using SNP arrays has been a
standard practice in GWAS designs. In this report, we explored, for
the first time, the feasibility and effectiveness of ulcWGS (0.4×
coverage) as a sequencing-based GWAS alternative to standard
SNP array genotyping. Currently, there were only a handful of
studies assessing the capacity of ulcWGS (0.1–0.5×) in GWAS-
based strategies (Pasaniuc et al., 2012; Homburger et al., 2019;
Wasik et al., 2021). Those prior reports primarily have not
stemmed from actual sequencing, but in silico methods of
simulation (Pasaniuc et al., 2012) or downsampling
(Homburger et al., 2019; Wasik et al., 2021). These studies
reported high imputation accuracy (R2 > 0.90) and genotype
concordance with consistent effect estimates and association
p-values of complex disease risk stratification using single-
variant or genome-wide polygenic score (GPS) approaches,
compared with prior genotyping-based GWAS designs.
However, given the lack of real-experiment ulcWGS, these
conclusions could be prone to biases. While simulation-based
study suggested that ulcWGS with a target coverage as low as
0.1× may be of utility in GWAS (Pasaniuc et al., 2012), there has
only been one recent report using actual low-pass sequencing
experimental design (0.5× ulcWGS) (Li et al., 2021). By direct
whole-genome sequencing of 60 European individuals to a
coverage of 0.5–1×, this prior report (Li et al., 2021) showed
that ulcWGS-based GWAS approach delivered increased
genotyping accuracy (0.90 non-reference concordance for
ulcWGS vs. 0.83 for Illumina GSA array) and improved

FIGURE 5 | Population stratification of the study cohort using ulcWGS and GSA-MD chip data. We plotted top 2 PCs of the 72 study individuals on top of the
1 KGP phase 3 population (A). The study population clustered and overlapped with the European ancestries from 1 KGP. In (B), we added AJ population to the
reference panel of EUR 1 KGP phase 3 and performed PCA to further refine the EUR population substructure. Both ulcWGS andGSA-MD chip similarly captured distinct
EUR substructures of the study participants, as exampled by the three labeled sample duplicates overlaid on top of the CEU (sample 03), TSI (sample 30), and AJ
(sample 55) subclusters. FIN, Finnish in Finland; CEU, Northern Europeans in Utah; GBR, British in England/Scotland; IBS, Iberians in Spain; TSI, Tuscans in Italy; AJ,
Ashkenazi Jewish reference; GSA-MD, based on 72 study participants in this study; ulcWGS, based on 72 study participants in this study.
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polygenic risk score estimation for complex traits, making it a
promising alternative to an array-based approach.

In contrast to prior reports, our study performed direct
sequencing to less than 0.5× depth, which significantly improves
the cost compared with that of the popular GSA-MD. In addition,
we were also able to assess the performance of ulcWGS using
hcWGS (30×) as a gold standard, providing another layer of
evidence in support of ulcWGS, compared with GSA-MD SNP
arrays. Also, in our analysis, we adopted the most recent
bioinformatics tools for ulcWGS data shown to outperform
previous imputation pipelines in terms of both computational
time and accuracy across allele frequency spectrum (Rubinacci
et al., 2021). In summary, our data showed that ulcWGS
captured comparable proportion of genetic variation with
imputed data from GSA-MD array and importantly captured
higher fraction of rare variants (MAF <1%) from 30× hcWGS
platform. Also, ulcWGS performed better than GSA-MD in terms of
imputation R2 score and genotype accuracy, particularly for low and
common variants (MAF >1%). Our study also highlighted the
effectiveness of ulcWGS in sex imputation and ancestry
prediction. The ulcWGS correctly assigned the participants by
sex, and all the participants were clustered by the self-reported
European ancestry, with the high correlation for the top 10 PC scores
in each sample duplicate. In addition, our analysis also showed that
ulcWGS performs with the same accuracy as GSA-MD chip in
predicting European population substructure, which is reassuring as
GSA-MD chip is highly curated for ancestry-informative markers
(AIMs) of European ancestry. The highly comparable performance
of both platforms observed in our data further supports the use of
ulcWGS in population genetic scans.

These findings strongly suggest that ulcWGS with sequencing
depth of as low as 0.4× is sufficient to generate information that is
not only comparable with GSA-MD arrays but also supersedes
the accuracy of SNP array genotyping, particularly in imputation
score accuracy and concordance. This further strengthens its use
in GWAS design, given several practical advantages over
genotyping-based arrays. The current cost of 0.4× WGS per
sample, including library preparation, was approximately $30
($12 for sequencing and $18 for library preparation per sample),
lower than the cost of GSA array ($39 per sample). While the
budget saved per sample appears negligible, it quickly adds up to a
considerable magnitude in large-scale population GWAS designs.
In addition, the 0.4X ulcWGS platform requires remarkably less
amount of DNA input (10–20 ng) compared with genotyping
arrays (40–200 ng), making it even more attractive alternative
especially considering clinically precious or compromised DNA
material. Of note, while the low-DNA input in ulcWGS requires
PCR pre-amplification (eight cycles in our study), which may
introduce potential bias, the comparable results observed between
30× hcWGS, GSA-MD, and ulcWGS in our data strongly suggest
that such potential bias is minimal.

The study has certain limitations. While we only assessed the
efficacy of ulcWGS among participants of European descent limiting
the conclusions to other ancestries, we predict that ulcWGS
performs similarly or better in other populations, particularly
those of high genetic diversity such as African populations. As
highlighted in recent reports (Martin et al., 2021; Li et al., 2021),

lcWGS (0.5–1×) outperformed genotyping arrays in African
populations, particularly for the detection of rare variants (MAF
<1%). Our study was also limited to a comparison of ulcWGS
against only one type of genotyping array (GSA-MD); however,
GSA-MD is one of the most commonly used current array for cost-
effective and comprehensive genome-wide scan of multi-ethnic
populations. We were also unable to fully estimate true positives/
positive predictive values (PPV) for novel and rare variants (MAF
<1%) uniquely captured by ulcWGS, due to a relatively small sample
size of our study.

In conclusion, despite the limitations of the study, this report
underscores the significance of ulcWGS (<0.4×) as a competitive
alternative to genotyping arrays in next-generation GWAS, given
its comparable accuracy, affordable cost, and low-DNA input
needed. Future studies are warranted to evaluate the power of
ulcWGS platform in replicating or discovering novel GWAS
signals exerted by the effects of rare variation, in complex trait
association analyses in European and other ancestries.
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