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Abstract
Objectives Validation of the feasibility and efficacy of
volume perfusion computed tomography (VPCT) in the
preoperative assessment of cerebral gliomas by applying a
128-slice CT covering the entire tumour.
Methods Forty-six patients (25 men, 21 women; mean age
52.8 years) with cerebral gliomas were evaluated with
VPCT. Two readers independently evaluated VPCT data,
drawing volumes of interest (VOIs) around the tumour

according to maximum intensity projection volumes, which
were mapped automatically onto the cerebral blood volume
(CBV), flow (CBF) and permeability (Ktrans) perfusion
datasets. As control, a second VOI was placed in the
contralateral healthy cortex. Correlation among perfusion
parameters, tumour grade, hemisphere and VOIs was
assessed. The diagnostic power of perfusion parameters
was analysed by receiver operating characteristics curve
analyses.
Results VPCT was feasible in the assessment of the entire
tumour extent. Mean values of Ktrans, CBV, CBF in high-
grade gliomas were significantly higher compared with
low-grade (p<0.01). Ktrans demonstrated the highest
diagnostic (97% sensitivity), positive (100%) and negative
(94%) prognostic values.
Conclusions VPCT was feasible in all subjects. All areas of
different perfusion characteristics are depicted and quanti-
fied in colour-coded 3D maps. The derived parameters
correlate well with tumour histopathology, differentiating
low- from high-grade gliomas.

Keywords Cone-beam computed tomography . Brain
neoplasms . Glioma . Feasibility studies

Introduction

Perfusion-weighted MRI (PWI) and CT perfusion (PCT)
play an important role in the preoperative assessment of
intra-axial brain tumours. The correlation among perfusion
parameters, tumour grade and treatment response has
already been established through the non-invasive dynamic
measurement of regional cerebral blood flow (CBF) and
volume (CBV) as well as permeability, a marker of blood–

A. Xyda (*) :M. Knauth :R. Schramm :M. N. Psychogios :
P. Schramm
Department of Neuroradiology, Georg-August University,
University Hospital of Goettingen,
Robert-Koch Str. 40,
37075 Goettingen, Germany
e-mail: argyro.xyda@med.uni-goettingen.de

A. Xyda
Department of Radiology, University Hospital of Heraklion,
Crete, Greece

U. Haberland : E. Klotz
Siemens AG Healthcare Sector, Computed Tomography,
Forchheim, Germany

H. C. Bock
Department of Neurosurgery, Georg-August University,
University Hospital of Goettingen,
Goettingen, Germany

K. Jung
Department of Medical Statistics, Georg-August University,
University Hospital of Goettingen,
Goettingen, Germany

G. Erb
Bracco Imaging Deutschland GmbH,
Konstanz, Germany

Eur Radiol (2011) 21:1811–1819
DOI 10.1007/s00330-011-2150-2



brain barrier disturbance [1–5]. Furthermore, perfusion
imaging has demonstrated a potential to distinguish
tumour recurrence from radionecrosis and to differentiate
between cerebral tumour types, such as lymphomas and
gliomas [1, 2].

In patients with intra-axial brain tumours, PCT renders
essential information about tumour vascularisation and
blood–brain barrier disruption. Quantification of tissue
perfusion characteristics contributes to the prediction of
tumour grade and plays an important role in prognosis,
therapeutical management and assessment of treatment
response [6–8].

With its high accessibility, short time and the ability to
offer additional haemodynamic information, PCT is in-
creasingly being used in neuroradiological imaging. More-
over, with the linear relation between density changes and
tissue concentration of contrast medium along with the lack
of susceptibility artefacts triggered by haemorrhage or
mineral depositions, PCT outweighs the role of PWI in
brain perfusion imaging.

The main limitation of currently available multi-
detector row CT in the evaluation of cerebral perfusion
is the relatively narrow range of brain tissue covered (up
to 40 mm above the circle of Willis with 64-slice CT)
[9]. Volume Perfusion CT (VPCT) using periodic spirals is
not limited by the detector width and thus, dynamic data
can be obtained allowing the complete evaluation of brain
perfusion [10].

The aim of the present study was to evaluate the
feasibility and efficacy of brain VPCT in the preoperative
assessment of cerebral gliomas.

Materials & methods

The study was approved by our institutional review board
and written informed consent was obtained from all patients
or their next of kin. From September 2008 to December
2009, 46 consecutive patients with suspected cerebral
gliomas were enrolled prospectively in our study. All
subjects had not received any kind of treatment or biopsy
at the time of examination. Before VPCT all patients
underwent brain MRI and were diagnosed with a suspected
glial tumour. In all cases, VPCT was followed by
stereotactic biopsy or surgery in order to evaluate the
histopathology of the tumour. All the histopathological
specimens were examined by a board-certified neuropa-
thologist and were graded according to WHO guidelines.
According to their degree of malignancy, they were then
classified into low-grade (I and II) and high-grade (III and
IV) consistent with WHO classification. The above men-
tioned classification was also statistically proven (Table 1).
Neuroradiological analysis was conducted blinded to
patients’ clinical data and initial MRI findings. No
information about the diseased hemisphere was given to
the raters. VPCT data were analysed by two neuroradiol-
ogists with different levels of experience in neuro-perfusion
imaging techniques (A.X and P.S with 2 and 10 years’
respectively).

VPCT imaging

Imaging was performed using 128-detector row CT
(SOMATOMDefinition AS+, Siemens, Forchheim, Germany)

Table 1 Comparison of clinical parameters between study groups and
comparison of perfusion parameters between study subgroups (WHO I
vs II and WHO III vs IV). Values are expressed as “mean±standard

deviation” for age and perfusion parameters and “absolute” frequen-
cies for sex. (CBF: cerebral blood flow, CBV: cerebral blood volume,
Ktrans: volume transfer coefficient, VOI: volume of interest)

Diseased Hemisphere

WHO N Study Group Age Sex (male) CBF CBV Ktrans VOI

I 3 Low-grade 45.6±12.1 11 45.3±21.9 2.3±0.9 1.4±0.7 27.4±18.8

II 14 Low-grade 46.7±18.6 2.5±0.9 1.4±0.4 15.3±17.6

p=0.93 p=0.73 p=0.94 p=0.39

III 7 High-grade 60±12.2 14 119.8±53.4 7.3±1.9 6.0±2.0 14.9±24.7

IV 22 High-grade 101.2±31.1 6.0±1.9 6.6±3.1 20.2±18.2

p=0.41 p=0.15 p=0.54 p=0.62

p<0.01 p=0.36

Control Hemisphere

WHO N Study Group CBF CBV Ktrans VOI

I 3 Low-grade 58.1±20.5 3.0±0.8 1.14±0.26 41.8±45.8

II 14 Low-grade 51.1±14.2 3.0±0.9 1.05±0.49 42.6±55.4

p=0.62 p=0.98 p=0.67 p=0.98

III 7 High-grade 48.4±18.2 3.2±0.4 0.93±0.24 42.7±48.8

IV 22 High-grade 54.4±14.0 3.4±0.5 1.07±0.58 34.5±34.0

p=0.44 p=0.54 p=0.36 p=0.71
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with adaptive 4D spiral mode. The technique is based on a
constant periodic bidirectional table movement. Thus, entire
organs larger than the detector width, and, as such, the brain,
can be imaged at a temporal sampling of 1.5 s and time-
resolved perfusion characteristics can be evaluated and
quantified. The imaging parameters for the VPCT were
80 kV and 200mAs, 30 spiral images with an image
volume of 96 mm on the Z-axis and a travel time of
1.5 s per spiral. Reconstructed images of 5 mm were
obtained every 3 mm of the total imaging volume. Total
CT data acquisition time was 45 s.

All injections of contrast medium were performed
through an 18-gauge cannula placed in the cubital vein.
The biphasic injection protocol consisted of 30 ml of highly
iodinated contrast agent (Iomeprol 400, Bracco, Konstanz,
Germany) injected at a rate of 5 ml/s followed by 20 ml
contrast agent at a rate of 1 ml/s and finally 20 ml of saline
chaser applied at a rate of 1 ml/s. Start delay was 4 s in all
patients. There were no patients with cardiovascular disease
or any condition that could affect the ejection fraction. The
contrast material was always preheated to body temperature
before injection. All patients positioned their head in a
tiltable head holder and were fixed with an additional strap
in order to prevent motion during CT data acquisition.

Data processing and analysis

Data were evaluated with commercially available 3D
perfusion software (Syngo Volume Perfusion CT Neuro,
Siemens, Forchheim, Germany). When necessary, acquired
volumes were corrected for motion with a 3D rigid motion
correction, based on skull movement. Signal-to-noise ratio
was improved using a spatiotemporal filtering for all data
(Adaptive 4D Noise Reduction) [11, 12].

Bone was automatically removed with a contour finder that
identified the skull bone and an additional segmentation based
on Hounsfield unit (HU) values for identifying brain
parenchyma (voxels with HU values between 15 and 100
HU were included). These segmentation steps were per-
formed on the average baseline volume from all time points
without contrast material. Vessels were automatically detected
on the time maximum intensity projection (tMIP) images. All
voxels that were above a configured percentage of maximum
enhancement were excluded from the calculation. By drawing
a volume of interest (VOI) around the tumour, vessels could
be defined separately for the tumour and the remaining
healthy brain parenchyma. Absolute values of dynamic
perfusion parameters were acquired and the whole tumour
volume was recorded. Quantitative perfusion values for
cerebral blood volume (CBV) and volume transfer coefficient
(Ktrans) were obtained from a modified Patlak algorithm.
Ktrans from the slope of the Patlak fit describes the portion of
whole blood flow that is extracted into the extravascular

space. The intercept of the fit describes the blood volume
[1]. Cerebral blood flow (CBF) was determined with a
deconvolution-based algorithm [13]. After parameter calcu-
lation, VOI was drawn in the MIP volume and then
automatically mapped onto the result parameter volumes of
CBV, Ktrans and CBF. The two neuroradiologists evaluated
each 3D MIP image independently in order to delineate
manually a VOI including the entire tumour extent, avoiding
areas of necrosis (Figs. 1 and 2).

Fig. 1 A 38-year-old man with the histopathological diagnosis of
low-grade glioma WHO II. The contrast-enhanced maximum intensity
projection (MIP) images in three planes, axial (a), coronal (b) and
sagittal (c) depict the entire tumour extent, which is included in
volume of interest (VOI 1) and show no enhancement within the
tumour in the right insular lobe. A control VOI is drawn in the
contralateral cortex
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A second VOI, cortically pronounced, was drawn around
the contralateral healthy cortical tissue of the brain to obtain
control perfusion values. Disputes between interpreters
were decided by consensus.

Quantification of the tumour volume

The whole tumour volume, given in cm3, consisted of all
voxels included in the delineated tumour VOI according to
the 3D MIPs. The same rules applied to VOIs of the healthy
hemisphere.

Statistical analysis

To analyse differences in perfusion parameters between
high- and low-grade tumours as well as between tumour
(diseased hemisphere) and contralateral cortical hemisphere
(control hemisphere) two-way repeated measures ANOVAs
were performed. The possible confounder age was included
as a covariate. Perfusion parameters were analysed between
high- and low-grade tumours, separately for control and
tumour, by Welch’s t-tests, and between control and tumour
by paired t-tests, separately for low- and high-grade
tumours. Tumour VOIs were compared between high- and
low-grade tumours by one-way ANOVA, including age as a
covariate. Normality of perfusion parameters and of VOIs
was checked by quantile-quantile plots. The significance
level for all tests was set at α=5%.

The diagnostic power of the studied perfusion parame-
ters in terms of sensitivity, specificity, and positive and
negative predictive value was analysed by receiver operat-
ing characteristic (ROC) curve analyses. Optimal cut-off
values for classifying tumours as either low- or high-grade
were determined according to the Youden criterion, which
marks the point on an ROC curve where “sensitivity +
specificity–1” is maximal.

All statistical analyses were performed with the free
software R (version 2.8, www.r-project.org).

Results

Patients’ demographics and clinical characteristics are
presented in Table 1. A significant difference (t-test: p<
0.01) in age was noted between the two subgroups. Age
marked a possible confounder and was modelled as a co-
variable in all comparisons between the two study groups.
Distribution of sex was similar in both groups (Fisher’s
exact test: p=0.36). VPCT was feasible in all subjects and
none of the patients experienced any adverse effects related
to the study procedure. All studies could be evaluated
without artefacts. The complete extent of the tumour was
visible in all cases.

Influence of tumour grade on perfusion parameters

The results of the overall analysis of perfusion parameters
(CBF, CBV and Ktrans) can be studied in Table 2. Each of
these parameters is significantly influenced by the tumour
grade (all p<0.01), and each of them differs between the
tumour and the control hemisphere (all p<0.01). The
potential confounder age did not influence any of these
parameters. Moreover, there was a significant interaction
between the factors “tumour grade” and “hemisphere”. This
interaction means that the difference between low- and

Fig. 2 A 59-year-old woman with the histopathological diagnosis of
glioblastoma multiforme WHO IV. The contrast-enhanced MIP
images show enhancement of the solid tumour part in left hemisphere
(frontoparietal region) with central necrosis. AVOI is drawn covering
the entire tumour extent in three planes, axial (a), coronal (b) and
sagittal (c). Control VOI is delineated in the contralateral cortex
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high-grade tumours might only exist in one hemisphere
(most likely in the diseased one) or that it is at least of
different strengths in the two hemispheres. Vice versa, the
hemisphere effect might be different in low- and high-grade
patients. Therefore, in the following subsections, the
analysis is once split by tumour grade and once by
hemisphere (either control or diseased).

Comparison of perfusion parameters between affected and
normal cerebral parenchyma

The direct comparison of control and diseased hemispheres
is shown in Table 3. While CBF is not significantly
different between the two sides for low-grade tumours

(p=0.10), it is significantly higher in the diseased hemi-
sphere for high-grade tumours (p<0.01). For CBV and
Ktrans, the difference between affected and unaffected hemi-
spheres was found to be significant for both low- and high-
grade tumours (all p<0.01). However, for both parameters,
the difference between affected and unaffected hemispheres
appears to be stronger in the high-grade tumours.

Comparison of perfusion parameters between high-grade
and low-grade gliomas

Regarding the results of the analysis split by hemisphere,
the difference in parameters between tumour grades is only
present in the diseased hemispheres (Table 4). A significant
increase in all three perfusion parameters was noted in
high-grade tumours compared with low-grade tumours.

Diagnostic value of perfusion parameters

Optimal cut-off values for each perfusion parameter as well
as their preoperative classification accuracy are shown in
Table 5. The most accurate diagnostic marker is Ktrans,
which identifies 97% (sensitivity) of all histopathologically
high-grade tumours. Moreover, all tumours classified as
high-grade, with Ktrans above the determined cut-off value
of 2.21 ml/100 ml/min, proved to be high-grade on
histopathology (positive predictive value = 100%).

Quantification of the whole tumour volume

The whole tumour volume was assessed in all 46 patients.
The average tumour size for low-grade and high-grade
gliomas was 42.5±36.2 cm3 and 52.5±36.8cm3, respec-
tively. No significant difference was noted through the
comparison of tumour volumes between high-grade and
low-grade gliomas (Table 2). In addition, tumour volumes
were independent of the possible confounder age (p=0.26).

Table 2 Perfusion parameters are significantly influenced by tumour
grade and hemisphere (either healthy or diseased), however not by age
(CBF: cerebral blood flow, CBV: cerebral blood volume, Ktrans:
volume transfer coefficient)

Parameter Independent variable p

CBF (ml/100 ml/min) Tumour grade < 0.01

Hemisphere < 0.01

Tumour grade×Hemisphere < 0.01

Age 0.59

CBV (ml/100 ml) Tumour grade < 0.01

Hemisphere < 0.01

Tumour grade×Hemisphere < 0.01

Age 0.60

Ktrans (ml/100 ml/min) Tumour grade < 0.01

Hemisphere < 0.01

Tumour grade×Hemisphere < 0.01

Age 0.56

Tumour volume (cm3) Tumour grade 0.71

Age 0.26

Parameter Tumour grade Hemisphere Mean±SD p

CBF (ml/100 ml/min) Low Control cortical 52.4±15.0 0.10
Diseased (tumour) 46.4±18.5

High Control cortical 53.0±15.0 < 0.01
Diseased (tumour) 105.7±37.5

CBV (ml/100 ml) Low Control cortical 2.97±0.87 0.01
Diseased (tumour) 2.46±0.91

High Control cortical 3.34±0.51 < 0.01
Diseased (tumour) 6.31±1.94

Ktrans (ml/100 ml/min) Low Control cortical 1.07±0.45 < 0.01
Diseased (tumour) 1.38±0.41

High Control cortical 1.04±0.52 < 0.01
Diseased (tumour) 6.43±2.89

Table 3 Direct comparison of
control (healthy) cortical and
diseased (tumour) hemispheres,
separately for low- and high-
grade tumours (CBF: cerebral
blood flow, CBV: cerebral blood
volume, Ktrans: volume transfer
coefficient)
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Discussion

The 128-slice VPCT system with bidirectional table
movement, which enables the multispiral acquisition of
dynamic CT data, is not limited by the detector width and
therefore, can be used to obtain perfusion data of large
brain volumes. So far, whole brain CT perfusion has been
applied only in the evaluation of ischaemic cerebrovascular
disease [10, 14, 15].

In the current study, our objective was to validate VPCT
as a novel feasible imaging tool, which allows the
quantitative assessment of both microvascular density and
capillary permeability in one setting for the preoperative
grading of brain gliomas. Additionally, we attempted to
explore whether VPCT maps enable the 3D assessment of
glioma perfusion and the differentiation of high-grade from
low-grade gliomas.

We report the application of VPCT in the preoperative
assessment of a large cohort of patients with primary
cerebral gliomas, overcoming the limitation of restricted
coverage area of PCT. By applying VPCT, we have defined
and quantified VOIs, delineating the whole tumour extent,
instead of regions of interest (ROIs) that were restricted to a
series of slices. Furthermore, we have obtained dynamic
volume perfusion data of the whole tumour and we have

been able to differentiate high-grade from low-grade
gliomas according to absolute perfusion parameters.

The fixation of the head before imaging and the
application of a highly standardised protocol have ensured
the elimination of motion artefacts and therefore, the
reliable post-processing and analysis of perfusion data.

The applied biphasic injection protocol was aimed at a
constant and compact bolus of contrast agent, resulting in a
plateau in the time-density curve (Fig. 3). Such an injection
protocol has ensured a most reliable depiction of the
delayed permeability, which characterises the immature
endothelium of neovascularisation [16].

Dynamic CT perfusion imaging techniques are based on
the quantification of tissue-related distribution of the
contrast agent which acts as a tracer. The distribution of
contrast medium after infusion is determined by the
microvascularisation and diffusion across the endothelial
membrane. VPCT, similar to PCT, allows the quantification
of absolute values of physiological parameters including
blood volume, blood flow, capillary permeability and
leakage. These parameters present pathophysiological cor-
relation with the microscopic changes that occur with
tumour angiogenesis [17, 18]. The absolute perfusion
parameters CBV, CBF and Ktrans correspond to histopath-
ological microvascular density, which constitutes the gold

Parameter Hemisphere Tumour grade Mean±SD p

CBF (ml/100 ml/min) Control cortical Low 52.4±15.0 0.90
High 53.0±15.0

Diseased (tumour) Low 46.4±18.5 < 0.01
High 105.7±37.5

CBV (ml/100 ml) Control cortical Low 2.97±0.87 0.13
High 3.34±0.51

Diseased (tumour) Low 2.46±0.91 < 0.01
High 6.31±1.94

Ktrans (ml/100 ml/min) Control cortical Low 1.07±0.45 0.84
High 1.04±0.52

Diseased (tumour) Low 1.38±0.41 < 0.01
High 6.43±2.89

Tumour volume (cm3) Diseased (tumour) Low 17.4±17.8 0.71
High 19.6±19.6

Table 4 Direct comparison of
low- and high-grade tumours,
separately for the control
(healthy) cortical and the dis-
eased (tumour) hemisphere
(CBF: cerebral blood flow,
CBV: cerebral blood volume,
Ktrans: volume transfer
coefficient)

Table 5 Optimal separation threshold between low- and high-grade
gliomas of the perfusion parameters for the preoperative diagnosis.
Associated classification accuracy as determined by ROC curve

analysis (PPV: positive predictive value, NPV: negative predictive
value, CBF: cerebral blood flow, CBV: cerebral blood volume, Ktrans:
volume transfer coefficient)

Parameter Cut-off Sensitivity Specificity PPV NPV

CBF (ml/100 ml/min) 68.2 90% 94% 96% 84%

CBV (ml/100 ml) 3.47 93% 94% 96% 89%

Ktrans (ml/100 ml/min) 2.21 97% 100% 100% 94%
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standard for such an assessment because of its direct
correlation with angiogenic factor expression, tumour
growth and metastatic occurrence [19]. Tumour volume
however, proved to be an unreliable marker for diagnosing
the grade of cerebral gliomas.

Our data analysis suggests that perfusion parameters
obtained with VPCT are quantified in a more reliable way,
as the entire tumour extent is now included in the analysis
and consequently, the perfusion values obtained are much
more representative of the entire tumour and reproducible
[20].

In view of the heterogeneous nature of cerebral gliomas,
with varying degrees of cellular and nuclear pleomorphism,
mitotic activity, vascular proliferation and necrosis [21, 22],
VPCT could have the potential to significantly improve
neurosurgical biopsy guidance, as the entire tumour is
covered and all areas of different perfusion characteristics
are included and depicted in colour-coded 3D brain
perfusion maps (Fig. 4). After VPCT, neuroradiologists
are able to locate the most hyperperfused malignant tumour
site. Thus, this new perfusion technique could offer the
ability to improve the diagnostic efficacy and also the
accuracy of biopsy guidance in patients with cerebral
gliomas. On the contrary, with the previous PCT method,
the brain area to be perfused was restricted to 2–4 cm
(depending on the detector width) and defined before the
perfusion imaging, which means that a hyperperfused
tumour part could be possibly missed, especially in
multifocal tumours or those exceeding the fixed detector
width.

Consistent with previously published data of PCT
studies, significantly increased CBV and CBF values were
also noted in our study in the subgroup of high-grade
gliomas [1, 6–8, 23]. The already known histopathology of
such tumours with vascular proliferation and vasodilated
feeding arterioles supports these findings [6–8].

The increased vascular leakage has been considered as a
surrogate marker of tumour neoangiogenesis and grade
[23]. Our perfusion data, in accordance with previous PCT
studies, support these histopathological findings, as high-
grade gliomas demonstrated significantly higher Ktrans

values in comparison to healthy parenchyma and low-
grade gliomas [1, 6–8].

Histopathologically, contrary to high-grade gliomas low-
grade gliomas are characterised by the absence of neo-

Fig. 4 Perfusion images of a 63-year-old man with the histopatho-
logical diagnosis of a high-grade glioma WHO IV in the left
hemisphere. a Axial perfusion image shows CBV, b sagittal perfusion
image depicts CBF and c axial perfusion image shows Ktrans. Note the
rim-like notable elevation of the CBV and CBF (marked red) and the
disruption of the blood–brain barrier depicted with the corresponding
elevation of Ktrans (marked green), within the tumour tissue

Fig. 3 Time-density curve: The applied biphasic injection protocol
aimed at a constant and compact bolus of contrast agent, resulting in a
plateau after a rapid incline in density
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vascularisation [2, 24]. However, monitoring to detect
malignant transformation or active proliferation is crucial
in order to estimate the malignant potential of such
tumours. VPCT could represent a reliable method for the
detailed monitoring of low-grade gliomas. Interestingly, we
have found a statistically significant decrease in CBV and a
significant increase in Ktrans in low-grade gliomas, com-
pared with normal contralateral tissue. These findings have
not been reported so far and may implicate a possible
malignant transformation in some of the patients. Follow-
up of this subgroup will be carried out.

In our VPCT study, we confirm the implication of our
previous PCT published data, that high-grade gliomas can
be differentiated from low-grade gliomas on the basis of
CBV, CBF and Ktrans absolute values [1]. There are a
number of PCT series suggesting the preoperative differen-
tiation of cerebral gliomas; however, to our knowledge this
is the first time in the literature that such a differentiation
has been made by applying VPCT and thus, by acquiring
dynamic perfusion parameters through the definition of
tumour VOIs.

The clear increase in all three perfusion parameters in
high-grade tumours in comparison to low-grade supports
the studied perfusion parameters as valuable diagnostic
markers for the classification of gliomas before histopath-
ological diagnosis. Consistent with previously published
data, the most accurate diagnostic marker in our study was
Ktrans with the highest specificity of 100%; however, with a
much lower threshold of 2.21 ml/100 ml/min in comparison
to that already reported [7]. On the contrary, previous
reports have shown that permeability and CBV parameters
were of similar prognostic value and higher than CBF [6,
23]. Moreover, our data analysis has revealed that CBV and
CBF values have comparable diagnostic accuracy with a
sensitivity of 93% and 90%, respectively and a specificity
of 94% for both parameters (Table 5).

In spite of the obvious advantages of VPCT over PCT
and PWI, the radiation dose of 5.3 mSv per VPCT should
be mentioned as a potential concern. The radiation dose of
the Adaptive 4D Spiral is within the range of existing
protocols, with 3 to 5 mSv covering 2–4 cm, but allows the
coverage of the whole tumour [1, 25, 26]. The maximum
imaging range of 96 mm proved to be sufficient in whole
tumour-extent coverage in all patients. As far as spatial
resolution of VPCT is concerned, further research is
required in order to acquire much more detailed colour-
coded anatomical information. A possible advance of
VPCT in the future could be the evolution of commercially
available 3D-perfusion software, which could enable the
fusion of perfusion maps with high anatomical MRI data.

In conclusion, dynamic perfusion data, obtained from a
single VPCT, enable the assessment of the entire tumour,
revealing through the colour-coded perfusion maps the

diverse perfusion characteristics of heterogeneous cerebral
gliomas. VPCT is a feasible tool for the preoperative
histopathological classification of cerebral gliomas, as the
entire tumour is covered and all areas of different perfusion
characteristics are depicted and quantified on colour-coded
3D perfusion maps. With perfusion imaging being progres-
sively an indispensable component in the preoperative
evaluation of cerebral tumours, we should stress the
importance of the evolution of perfusion techniques and
point out the necessity of integrating VPCT into the
preoperative clinical routine. However, judicious applica-
tion is required particularly in the case of low-grade
gliomas. Further investigation will evaluate the role of
VPCT in the daily neuro-oncology practice.
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