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Abstract

The tumor suppressor p53 is known to be able to trigger apoptosis in response to DNA damage, oncogene activation, and
certain chemotherapeutic drugs. In addition to its transcriptional activation, a fraction of p53 translocates to mitochondria
at the very early stage of apoptosis, which eventually contributes to the loss of mitochondrial membrane potential,
generation of reactive oxygen species (ROS), cytochrome c release, and caspase activation. However, the mitochondrial
events that affect p53 translocation are still unclear. Since mitochondrial uncoupling has been suggested to contribute to
cancer development, herein, we studied whether p53 mitochondrial translocation and subsequent apoptosis were affected
by mitochondrial uncoupling using chemical protonophores, and further verified the results using a siRNA approach in
murine skin epidermal JB6 cells. Our results showed that mitochondrial uncoupling blocked p53 mitochondrial translocation
induced by 12-O-tetradecanoylphorbol 13-acetate (TPA), a known tumor promoter to induce p53-mediated apoptosis in
skin carcinogenesis. This blocking effect, in turn, led to preservation of mitochondrial functions, and eventually suppression
of caspase activity and apoptosis. Moreover, uncoupling protein 2 (UCP2), a potential suppressor of ROS in mitochondria, is
important for TPA-induced cell transformation in JB6 cells. UCP2 knock down cells showed enhanced p53 mitochondrial
translocation, and were less prone to form colonies in soft agar after TPA treatment. Altogether, our data suggest that
mitochondrial uncoupling may serve as an important regulator of p53 mitochondrial translocation and p53-mediated
apoptosis during early tumor promotion. Therefore, targeting mitochondrial uncoupling may be considered as a novel
treatment strategy for cancer.
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Introduction

Most of the cell’s redox reactions take place in mitochondria,

which supply cellular energy by oxidating the major products of

glucose, pyruvate, and NADH. Substrate oxidation in this cellular

respiration process generates a proton gradient across the

mitochondrial inner membrane that establishes the electrochem-

ical potential (Dym). The energy contained in Dym is mainly used

for ATP synthesis (oxidative phosphorylation). However, not all of

the energy available in the electrochemical gradient is coupled to

ATP synthesis. Some of the energy is consumed by ‘‘proton leak’’

reactions, by which protons pumped out of the matrix are able to

reflow back along the proton gradient through proton conduc-

tance pathways in the inner membrane that bypass the ATP

synthase. As a result, the energy derived from the metabolic

oxidation reaction is dissipated as heat [1–4]. The nonproductive

proton leak termed mitochondrial uncoupling is physiologically

important and accounts for 20–25% of basal metabolic rate [5,6].

Notably, the impact of mitochondrial uncoupling on cellular

physiology is not restricted to normal cells. Mitochondrial

uncoupling also plays an important role in the reprogramming

of cancer cell metabolism [7]. ROS generation is involved in the

regulation of many physiological processes in cancer cells which

promotes further genomic instability; and upregulates signaling

pathways of cellular growth and proliferation. However, if

produced excessively, ROS may also be harmful to the cell by

initiating cell death pathways [8,9]. Hence, a well controlled ROS

level in cancer cells is of critical importance for tumor cell

physiology, growth and survival [10]. Since mitochondrial

uncoupling has been suggested to have a natural antioxidant

effect that increases respiratory rates and thus attenuates ROS

generation [11–13], it is not surprising that high levels of

mitochondrial uncoupling are found in various chemoresistant

cancer cell lines, which may provide a prosurvival advantage to

tumor cells [14,15].

p53, considered as a pivotal tumor suppressor, can initiate

apoptosis in response to cellular stress stimuli (e.g. drugs,

irradiation, UV, hypoxia) and the expression of viral or cellular

oncogenes [16]. In addition, mutations of p53 are found in more

than 50% of all human cancers [17]. Interestingly, recent studies

have suggested that p53 and mitochondrial uncoupling are

contradictory during apoptosis. It was reported that the Warburg
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effect in leukemia cells is mediated by mitochondrial uncoupling

associated with UCP2 activation, and dissipation of Dym by

protonophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP)

opposes the onset of apoptosis [18]. Furthermore, overexpression

of UCP2 in several colon cancer cell lines is able to promote

chemoresistance which is, at least in part, resulting from the

inhibition of p53-induced apoptosis by posttranslational modifica-

tion of p53 [19]. These data suggests a strong relationship between

mitochondrial uncoupling and the p53-mediated apoptotic

pathway in the tumor metabolism network.

Our previous studies using the skin carcinogenesis model

revealed that during early tumor promotion, the tumor suppressor

p53 was activated after tumor promoter treatment, and a fraction

of p53 translocated into mitochondria which preceded its nuclear

translocation. Moreover, the mitochondrial p53 targeted the

primary antioxidant defense enzyme, manganese superoxide

dismutase (MnSOD), leading to suppression of its superoxide

scavenging activity, as well as, increases in ROS levels [20–23].

Thus, in addition to the direct apoptotic activity of mitochondrial

p53, the ability to induce ROS accumulation might serve as a

positive feed-back loop and play an essential role in the p53-

mediated apoptosis pathway [24]. However, as a major contrib-

utor to cancer survival, whether mitochondrial uncoupling could

exert an anti-apoptotic influence on TPA-induced skin tumor

promotion, and the precise mechanisms by which mitochondrial

uncoupling may interact with p53 mitochondrial translocation and

associated cell apoptosis pathways are not known and have been

explored here.

Materials and Methods

Cell line, reagents, and treatment
Murine epidermal JB6 P+ (CL 41, promotable by TPA

treatment) cells were established and maintained as previously

described [25]. p53 is wild-type in this cell line [26]. The cells were

grown in Essential Modified Eagle’s Medium (EMEM) supple-

mented with 4% fetal bovine serum, 2 mM of L-glutamine,

50 mg/ml penicillin and 50 mg/ml streptomycin. Murine skin

keratinocyte 308 cells were growth in S-MEM medium supple-

mented with 8% Chelexed FBS, 2 mM of L-glutamine, 0.1 mM

nonessential amino acids, 50 mM Ca2+, and 50 mg/ml penicillin

and 50 mg/ml streptomycin. 308 cells carry mutated H-ras at

codon 61 but wild-type in p53 [23]. 20 mM carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone (FCCP) and carbonyl cyanide

3-chlorophenylhydrazone (CCCP) (both were purchased from

Sigma, St. Louis, MO) stock solutions were prepared in

dimethylsulfoxide (DMSO). 12-O-tetradecanoylphorbol 13-acetate

(TPA, purchased from Sigma) was prepared as 1 mM stock

solution in DMSO. All of the stock solutions were diluted directly

in the cell culture medium, and the final concentrations of FCCP,

CCCP, and TPA used were 10 mM, 5 mM, and 100 ng/ml,

respectively. For all of the pretreatment studies, the reagents were

removed before TPA treatment.

Cell transfection and gene knockdown
A combined pool of 3 target-specific siRNAs and specific siRNA

transfection reagent (Santa Cruz) were used to inhibit UCP2

expression. For p53 knock down experiments, pBabe-U6 plasmids

encoding shRNA that specifically inhibit p53 expression [27] were

used together with FuGENE HD transfection reagent (Roche).

Healthy and subconfluent JB6 P+ cells were transfected for 48 h

before further analysis. A fluorescein conjugated non-targeting

siRNA (Santa Cruz) and a GFP-encoding control plasmid was

used to monitor the transfection efficiency. The expression of

target genes was further examined by Western blot analysis with

specific antibodies.

Detection of mitochondrial membrane potential
Five thousand JB6 cells were seeded in 96-well plates with 150-

ml medium. Twenty-four hours after plating, cells were treated as

indicated. After washing with PBS, cells were incubated in fresh

medium containing 2 mg/ml of 5,59,6,69-tetrachloro-1,19,3,39-

tetraethylbenzimidazol-carbocyanine iodide (JC-1, Molecular

Probes, Eugene, Oregon) for 30 min. The dye was then removed;

and cells were washed with PBS. Fluorescence intensity was

measured immediately using fluorescence spectrometry (Synergy

HT, BioTek, Winooski, VT). For JC-1 green, Ex = 485, Em = 528;

for JC-1 red, Ex = 530, Em = 590. The fluorescence signals from

the cells only (no JC-1 dye added) were used to subtract the sample

values from each corresponding well. The ratio of the red to green

fluorescence of JC-1 was calculated. Experiments were repeated

for three times and at the least triplicate samples were included in

each experiment.

Detection of mitochondrial ROS generation
The mitochondrial levels of ROS were assayed using the

mitoSOX Red dye. Briefly, five thousand JB6 P+ cells were seeded

in a 96-well plate and incubated overnight. Twenty-four hours

after plating, cells were treated as indicated in each experiment.

After washing with warm PBS, cells were incubated with fresh

medium containing 5 mM mitoSOX Red (Molecular Probes,

Eugene, OR) for 15 min at 37uC. The fluorescence intensity was

measured at excitation/emission of 530/590 nm using fluores-

cence spectrometry (Synergy HT,). The cells only sample (no

mitoSOX dye added) was used as the background. Experiments

were repeated for three times and at least triplicate samples were

included in each experiment.

Immunofluorescent staining of p53
Ten thousand JB6 or 308 cells were seeded in eight-well Lab-Tek

chamber slides w/cover (Nalge Nunc International, Naperville, IL)

in 400 ml medium per well and incubated overnight. Twenty-four

hours after plating, cells were incubated with 200 nM of

MitoTracker Red CMX-Ros (Molecular Probes) in culture medium

for 30 min. Afterwards the dye was removed, and cells were treated

as indicated. The cells were washed and fixed in 4% formaldehyde

solution for 15 min at room temperature. After rinsing with cold

PBS, cells were permeabilized with 0.5% Triton X-100 for 10 min

at room temperature. After blocking, an anti-p53 antibody (Ab-11,

Calbiochem) was added (1:64 dilution) and incubated at 37uC for

1 hour followed by incubation with an anti-mouse IgG-FITC

(Sigma, 1:128 dilution) for 1 hour. After removal of antibodies, the

cells were rinsed with PBS and mounted with 90% glycerol.

Fluorescence was immediately observed using a wide-field inverted

microscope (Nikon Eclipse TE300).

Isolation of mitochondrial fraction from JB6 and 308 cells
After treatment, cells were suspended in 2 ml mitochondria

isolation buffer [0.225 M mannitol, 0.075 M sucrose, 1 mM

EGTA (pH adjusted to 7.4 with 0.5 M Tris)] in a 10-ml Wheaton

homogenizer tube and carefully homogenized for 30 strokes on

ice. The cell debris was removed by centrifugation at 2,500 rpm

(,6006g) twice for 5 min. The supernatant was filtered through a

nylon screen cloth (Small Parts, Inc., Miami Lakes, FL) and then

centrifuged at 10,000 rpm (,9,0006g) for 10 min. The superna-

tant was kept as the cytosolic fraction and the pellet was washed by

adding 0.5 ml of mitochondria isolation buffer and centrifuged at
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10,000 rpm for 5 min. This washing step was repeated twice. The

mitochondrial pellet was resuspended in 50–100 ml of mitochon-

dria isolation buffer containing protease inhibitor cocktail

(Research Products International Corp. Mount Prospect, IL).

The purity of the mitochondrial and cytosolic fractions was further

examined by Western blot analysis.

Mitochondrial Complex I activity assay
Complex I specific activities were measured as described by Birch-

Machin et al. [28] with slight modifications [29]. Mitochondrial

samples isolated from JB6 cells were subjected to three fast freeze-thaw

cycles in hypotonic buffer. The protein concentration was measured

and adjusted to 1.33 mg/ml before the assay. The assay mixtures,

which contained 25 mM potassium phosphate buffer (pH 7.2), 5 mM

MgCl2, 2 mM KCN, 2.5 mg/ml bovine serum albumin (fraction V),

0.13 mM NADH, 65 mM coenzyme Q1, and 2 mg/ml antimycin A,

were incubated at 30uC for 1 min. Mitochondria were added to

initiate the reaction, and the initial rate of NADH oxidation was

monitored at 340 nm for 1 min (DA). The reaction was inhibited by

2 ml of 2 mg/ml rotenone and the rate of NADH oxidation was

monitored for 1 min (DAr). The relative complex activity was

calculated according to the following formula: DA-DAr.

Western blot analysis
Total cell lysate was prepared by sonicating cells in RIPA buffer

supplemented with protease inhibitor cocktail for 10 s. Mitochondrial

fractions were prepared as described above and 0.5% Triton X-100

was added to the final solutions. Protein samples were separated on a

10% or 15% SDS-PAGE gel. The following antibodies were used:

anti-p53 (Ab11, Calbiochem), anti-MDM2 (Ab2, Calbiochem), anti-

Bax (P19, Santa Cruz), anti-cytochrome c (A8, Santa Cruz), and anti-

active caspase-3 (AB3623, Chemicon). For loading controls, antibod-

ies against Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

(6C5) and succinate dehydrogenase complex subunit B (SDHB)

(FL280) were used (both purchased from Santa Cruz).

Caspase 3 Activity assay
Total cell lysate was prepared and caspase 3 activities were

detected using CasPASE apoptosis assay kit (G-Biosciences, St

Louis, MO) following the manufacturer’s instructions.

Nucleosome fragmentation assay
Cellular fragmentation was performed following the manufac-

turer’s instructions. DNA fragmentation in cell lysate was detected

using Cell Death Detection ELISA (Roche, Indianapolis, IN). This

method applies an anti-histone antibody to capture the histone-

DNA fragments, then applies a HRP-labeled anti-DNA antibody

to detect fragmented DNA.

Soft agar assay
Soft agar assay was performed as described by Colburn et al.

[30] with slight modifications. 0.5% Agar mix (40 ml melted

1.25% agar solution, 40 ml 26EMEM, 10 ml FBS, 10 ml PBS,

1 ml glutamine, 50 ml penicillin & streptomycin) was prepared and

kept in a 50uC water bath. Bottom agar was prepared by adding

desired treatments (e.g. 6.66 ng/ml TPA) to the 0.5% agar mix.

Top agar was prepared by diluting 1 fraction of 16105 cells/ml

single cell suspension with 2 fractions of 0.5% agar mix and

desired treatments. 2.5 ml of bottom agar and 0.75 ml of top agar

was laid into each well of the 6-well plates. Cells were incubated in

a humidified 37uC, 5% CO2 incubator for 2 weeks. Cells were

then stained with 0.25 mg/ml neutral red overnight, and the

number of colonies were counted and plotted.

Statistical analysis
Statistical analysis was performed using one-way ANOVA

followed by Newman-keuls post-test. Data are reported as means

6 standard error (S.E.M.). p,0.05 was considered significant.

Results

TPA induced p53 mitochondrial translocation,
mitochondrial dysfunction and apoptosis in JB6 P+ cells

Initially, a time course study was performed to detect p53

accumulation in the whole cell lysate. The increase in p53

protein levels was observed as early as 1 h after 100 nM TPA

treatment and remained at high levels for the duration of the

24 h treatment (Fig. 1A). As a major p53 transcriptional target

protein, MDM2 showed a rapid response with a significant

increase at 1 h, a slight decline at 3 h, and increased again at

later time points after the TPA treatment (Fig. 1A). Our previous

studies have revealed that a fraction of p53 translocated to

mitochondria during TPA-induced tumor promotion [22].

Herein, we performed a detailed time course study. After

treatment, cells were subjected to a fragmentation procedure by

which mitochondrial and cytosolic fractions were collected and

qualified with specific protein markers. In the mitochondrial

fractions, PCNA, a nuclear marker, was undetectable (Fig. 1B);

GAPDH has been reported to localize in mitochondria [31].

Our study showed a rapid mitochondrial p53 increase at 1 h that

remained throughout the 24-h time course post TPA treatment

(Fig. 1A, lower panel). Consistent with the p53 mitochondrial

translocation, correspondent changes in mitochondrial functions

were also observed, which included increased ROS generation,

loss of mitochondrial complex I activity, decreased mitochon-

drial membrane potential, and release of intermembrane

cytochrome c (Fig. 1C,1F). Moreover, the activation of p53

was associated with increases in the expression levels of Bax, a

pro-apoptotic Bcl-2 protein which can trigger the MOM

permeabilization in cancer cell apoptosis [32], as well as,

increases in DNA fragmentation (Fig. 1G&1H).

To further confirm the correlation between p53 activation and

downstream responses including mitochondrial dysfunction and

apoptosis, a designed p53-targeted shRNA sequence-containing

plasmid was introduced into JB6 P+ cells. In transfected cells, p53

expression was significantly inhibited, and TPA-induced p53

accumulation and mitochondrial translocation were suppressed

(Fig. 1I). As expected, p53 knock down cells did not respond to

TPA treatment in both mitochondrial functions (Fig. 1C–1F) and

apoptotic cell death (Fig. 1G&1H). These results showed that

presence of p53 is critical for TPA-induced mitochondrial

dysfunction and apoptosis in JB6 P+ cells.

Mitochondrial uncoupling suppressed TPA-induced p53
mitochondrial translocation in JB6 P+ cells

The above studies show that the tumor promoter TPA induces

p53 mitochondrial translocation and subsequent mitochondrial

dysfunction. Next, we examined whether mitochondrial uncou-

pling, in turn, affected p53 mitochondrial translocation and

subsequent apoptosis. Indeed, immunofluorescent staining studies

demonstrated that TPA-induced p53 mitochondrial translocation

was extensively blocked by the protonophore FCCP, which is

known to be able to uncouple oxidative phosphorylation by

carrying protons across the mitochondrial membrane. As shown in

Figure 2A, 30 min after TPA treatment, a fraction of p53 (green

signal) was detected in the mitochondria which colocalized with

the mitochondrial marker-MitoTracker Red. This mitochondrial

accumulation of p53 was significantly reduced by FCCP co-
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treatment. These results were further confirmed using Western

blot analysis. The induced accumulation of p53 in mitochondria

was fully blocked by FCCP co-treatment at both 1 h and 6 h after

TPA treatment (Fig. 2B). Interestingly, in contrast to the effect of

FCCP in the mitochondria, there was no significant reduction in

TPA-induced cellular p53 accumulation and transcriptional

activation of MDM2 and Bax by FCCP co-treatment (Fig. 2C).

Taken together, the effect of mitochondrial uncoupling seems to

be specific for mitochondrial p53 accumulation and non-

transcriptional p53 activities. Another mitochondrial uncoupling

reagent, CCCP, also showed results similar to FCCP treatment.

CCCP co-treatment suppressed TPA-induced p53 mitochondrial

translocation with no dramatic effects on the whole cellular p53

levels (Fig. 2D).

Figure 1. TPA induced p53 mitochondrial translocation, mitochondrial dysfunction and apoptosis in JB6 P+ cells. WC: wild-type JB6
P+ cells treated with DMSO (control); WT: wild-type JB6 P+ cells treated with 100 nM TPA; KC: p53-knocdown JB6 P+ cells treated with DMSO
(control); KT: p53-knockdown JB6 P+ cells treated with 100 nM TPA; GAPDH or SDHB served as the loading control. (A) A time course study of TPA-
induced cellular and mitochondrial p53 accumulation, as well as, downstream MDM2 expression. (B) Qualification of mitochondrial fractions. (C) p53
knockdown and ROS levels. Cells were treated for 1 h. (D) p53 knockdown and mitochondrial complex I activities. Cells were treated for 1 h. (E) p53
knockdown and mitochondrial membrane potential. Cells were treated for 1 h. (F) p53 knockdown and cytochrome c release. Cells were treated for
6 h. (G) p53 knockdown and cellular Bax levels. Cells were treated for 6 h. (H) p53 knockdown and cell death levels revealed by DNA fragmentation
assays. Cells were treated for 6 h. (I) p53 mitochondrial translocation verified by gene knockdown assays. *: significant difference compared to WC; **:
significant difference compared to WT.
doi:10.1371/journal.pone.0013459.g001
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Mitochondrial uncoupling suppressed TPA-induced p53
mitochondrial translocation in 308 cells

Our previous studies have demonstrated that TPA can induce

p53 activation and mitochondrial translocation in 308 cells [23].

Here we examined whether mitochondrial uncoupling also affects

p53 mitochondrial translocation and subsequent apoptosis in this

cell model. As shown in Fig. 3A, similar to the results in JB6 cells,

TPA treatment induced rapid (30 min after TPA treatment)

Figure 2. Mitochondrial uncoupling suppressed TPA-induced p53 mitochondrial translocation in JB6 P+ cells. (A) Immunofluorescent
staining of p53 at 30 min after TPA treatment. First panel: p53 detected with an anti-p53 antibody. Second panel: mitochondria labeled with
MitoTracker Red. Third panel: overlay pictures. (B) p53 mitochondrial translocation. SDHB served as the loading control. (C) Cellular p53 activation and
downstream gene expression. GAPDH served as the loading control. FCCP: 10 mM. (D) Western blot analysis of the mitochondrial (left) and the whole
cellular (right) p53 levels after CCCP treatment. CCCP: 5 mM.
doi:10.1371/journal.pone.0013459.g002
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mitochondrial translocation of p53 as indicated by immunofluo-

rescent staining studies, and this p53 translocation was blocked by

FCCP co-treatment. These results were further confirmed using

Western blot analysis. The mitochondrial p53 levels were

suppressed by FCCP co-treatment 6 h after TPA treatment

(Fig. 3B). Not surprisingly, TPA-induced apoptotic cell death was

also suppressed by FCCP cotreatment (Fig. 3C).

Mitochondrial uncoupling prevented mitochondrial
dysfunction and apoptosis associated with p53
mitochondrial translocation in JB6 P+ cells

Given the strong correlation between p53 and downstream

apoptotic events, we further examined whether blocking p53

mitochondrial translocation by mitochondrial uncoupling affected

mitochondrial functions and apoptosis. As shown in Figure 4, FCCP

alone caused a strong decrease in mitochondrial membrane

potential; whereas, no obvious effects on the ROS level, Complex

I activity and cytochrome c levels were observed. However, FCCP

co-treatment significantly attenuated or blocked TPA-induced rapid

ROS generation (Fig. 4A), the loss of Complex I activity (Fig. 4B),

and mitochondrial cytochrome c release (Fig. 4D). Although the

effect of FCCP on TPA-induced decrease in mitochondrial

membrane potential was unable to be detected because of the

extensive dissipating effect of FCCP alone (Fig. 4C), our current

data still indicates that mitochondrial uncoupling exerts an efficient

inhibiting effect on p53-associated mitochondrial dysfunction.

Figure 3. Mitochondrial uncoupling suppressed TPA-induced p53 mitochondrial translocation in 308 cells. (A) Immunofluorescent
staining of p53 at 30 min after TPA treatment. First panel: p53 detected with an anti-p53 antibody. Second panel: mitochondria labeled with MitoTracker
Red. Third panel: overlay pictures. (B) p53 mitochondrial translocation. SDHB served as the loading control. (C) Apoptotic cell death revealed by the DNA
fragmentation ELISA assay. *: Significant difference compared to the control. **: Significant difference compared to TPA treatment.
doi:10.1371/journal.pone.0013459.g003
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Figure 4. Mitochondrial uncoupling prevented mitochondrial dysfunction and apoptosis associated with p53 mitochondrial
translocation in JB6 P+ cells. (A) ROS levels. (B) Mitochondrial complex I activities. (C) Mitochondrial membrane potential. (D) Cytochrome c
detected in both mitochondrial and cytosolic fractions. GAPDH or SDHB served as the loading control. (E) Cell death levels revealed by the DNA
fragmentation ELISA assay. (F) Apoptosis revealed by detection of cleave caspase 3 and caspase 3 activity assay. *: Significant difference compared to
the control. **: Significant difference compared to TPA treatment.
doi:10.1371/journal.pone.0013459.g004
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Consistent with the conservation of mitochondrial function and

integrity by mitochondrial uncoupling, TPA-induced apoptosis was

also attenuated by FCCP co-treatment as detected using the Cell

Death ELISA and cleaved caspase 3 activity assay (Fig. 4E, 4F).

UCP2-knockdown JB6 P+ cells showed enhanced p53
mitochondrial translocation and decreased anchorage-
independent growth in response to TPA treatment

It is notable that a mild uncoupling effect is present in most

mammal cells. Ample evidence has indicated that this mild

uncoupling has multiple physiological roles including export of fatty

acid anions from mitochondria, regulation of insulin secretion, as well

as, attenuation of mitochondrial superoxide production [33]. There

are a series of specific uncoupling proteins (UCP1–5) in mammal

cells. Among which, UCP2 is widely distributed in various tissues and

critical for ROS regulation, as well as, survival of tumor cells [19,33].

Given these facts, we further examined the role of UCP2 in TPA-

induced p53 mitochondrial translocation and cell transformation of

JB6 P+ cells. UCP2 gene expression was knocked down using a

specific siRNA transfection approach (Fig. 5A). As shown in Fig. 5B,

UCP2 absence induced a small amount of p53 mitochondrial

translocation, and also enhanced TPA-induced p53 mitochondrial

translocation. Moreover, the soft agar (cell transformation) assay

demonstrated a highly dependence on the presence of UCP2, since

the UCP2-knockdown cells were much less prone to form colonies

compared to the control JB6 P+ cells (Fig. 5C,5D). These data

indicated that UCP2-mediated mitochondrial uncoupling may

contribute to TPA-induced tumor transformation of JB6 P+ cells.

Discussion

Our previous studies have demonstrated that during early skin

carcinogenesis, increased apoptotic cell death is associated with

increased cell proliferation [20]. As an important apoptotic signal,

the tumor suppressor p53 was activated as indicated by increased

expression levels, DNA binding activity, expression of its target

genes, and moreover, translocation to mitochondria [20,22].

Potentially, as a defending mechanism against carcinogenesis, p53

induces apoptosis via transcription-dependent and transcription-

independent pathways, two fundamentally different, but synergis-

tic mechanisms of action [16,34,35]. In the nucleus, p53 regulates

the transcription of proapoptotic effectors such as Bax, Puma and

Noxa. Meanwhile, a fraction of p53 translocates to mitochondria

where it directly interacts with mitochondrial proapoptotic

proteins such as p53AIPI [36] and multi-domain members of

the Bcl2 family [37], as well as, the antioxidant defense enzyme,

manganese superoxide dismutase [22].

Mitochondria are the power house of the cell, and ATP is

generated through the mitochondrial electron transport chain.

How p53 affects major mitochondrial respiration has not been well

studied. On the other hand, changes in mitochondrial functions

will likely modulate p53 mitochondrial translocation as well. Our

previous studies have suggested that the mitochondrial perme-

ability transition pore (PTP) could serve as both the cause and

barrier for p53 mitochondrial translocation, since mitochondrial

accumulation of p53 induces PTP opening; whereas blocking the

PTP by cyclosporine A suppresses p53 translocation to mitochon-

dria [38]. Our current study aims to investigate if the

mitochondrial electron transport chain is uncoupled during early

cancer development, and whether mitochondrial uncoupling

affects p53 translocation to mitochondria. Our results suggest that

chemically uncoupling oxidative phosphorylation in mitochondria

is able to block p53 mitochondrial translocation; and, in turn,

antagonize most of the apoptotic downstream events including

rapid ROS generation, mitochondrial cytochrome c release, loss of

mitochondrial Complex I activity, and finally apoptosis.

Figure 5. UCP2 knockdown enhanced p53 mitochondrial translocation and decreased colony formation in response to TPA
treatment. (A) UCP2 knockdown efficiency examined by Western blot analysis. (B) p53 mitochondrial translocation. (C) Soft agar colony formation
assays of JB6 P+ cells (light micrograph: 1006 magnification). (D) Quantification of formed colonies. Cells grown in 0.33% soft agar containing
6.66 ng/ml TPA or vehicle (DMSO 10006 diluted). *: Significant difference compared to DMSO treatment. **: Significant difference compared to
normal cells with TPA treatment.
doi:10.1371/journal.pone.0013459.g005
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Our results may also help understand the effects of mitochon-

drial uncoupling in anti-cancer therapy. It is well known that

cancer cells have acquired a metabolic reprogramming to

fermentation which can bypass the Pasteur Effect (the Warburg

Effect) [39]. Recently, this kind of ‘‘respiratory defect’’ is

associated with mitochondrial uncoupling [7] based on the facts

that UCP2, one of the major uncoupling proteins in mammals, is

overexpressed in various chemoresistant cancer cell lines and

primary human cancer samples; and that overexpression of UCP2

leads to an increased apoptotic threshold [19]. Moreover,

mitochondrial uncoupling is reported to be able to oppose the

onset of apoptosis in several human cancer cell lines [18,19,40].

Our results suggest that the contribution of UCP2 in cancer cells

might be more complicated than described before. In our studies,

the UCP2 knockdown cells show a stronger response to TPA-

induced p53 mitochondrial translocation than the control cells by

being less prone to form colonies in response to TPA treatment in

the soft agar assay. These results suggest that UCP2 may play an

important role in both transformed and transforming cells. The

overexpression of UCP2 in cancer cells may be a result of a long-

term selecting procedure during transformation, since any mutant

that results in UCP2 upregulation could help cells escape from

apoptosis mastered via the p53 network. Given the fact that

mitochondrial uncoupling could cause dissipation of the mito-

chondrial potential, a decrease of mitochondrial ROS generation,

and the sensitivity of p53 activation to the intrinsic redox balance

[33,19,24], it is reasonable to hypothesize that mitochondrial

uncoupling may provide malignant cells with a prosurvival

advantage by interfering with the p53-mediated apoptosis

pathway.

The present investigation suggests yet another relationship

between mitochondrial uncoupling, p53 mitochondrial transloca-

tion, and p53-induced apoptosis during early skin tumor

promotion in JB6 P+ and 308 cells. Our data demonstrated that

mitochondrial uncoupling efficiently prevented TPA-induced

mitochondrial ROS generation, and blocked p53 mitochondrial

translocation, leading to prevention of mitochondrial dysfunction

and attenuation of apoptotic cell death. Taken together, our

studies suggest a novel mechanism to explain why mitochondrial

uncoupling, as a major physiologic phenomenon during carcino-

genesis, may contribute to the viability and chemoresistance of

tumor cells; which is mediated at least in part, by converting a

mitochondrial physiological condition into a unique status. Thus,

mitochondrial uncoupling maintains ROS at a reasonable level

and interrupts the p53-ROS positive feed-back loop which further

prevents p53 mitochondrial translocation, associated mitochon-

drial dysfunction, and p53-mediated apoptosis.

In summary, our findings indicate that mitochondrial uncou-

pling modulates p53 mitochondrial translocation and associated

apoptosis pathways during skin tumor promotion. Therefore,

targeting mitochondrial uncoupling may be considered as a novel

treatment strategy for cancer.
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