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Abstract: In this paper, an innovative optimal information fusion methodology based on adaptive
and robust unscented Kalman filter (UKF) for multi-sensor nonlinear stochastic systems is proposed.
Based on the linear minimum variance criterion, this multi-sensor information fusion method has
a two-layer architecture: at the first layer, a new adaptive UKF scheme for the time-varying noise
covariance is developed and serves as a local filter to improve the adaptability together with the
estimated measurement noise covariance by applying the redundant measurement noise covariance
estimation, which is isolated from the state estimation; the second layer is the fusion structure to
calculate the optimal matrix weights and gives the final optimal state estimations. Based on the
hypothesis testing theory with the Mahalanobis distance, the new adaptive UKF scheme utilizes both
the innovation and the residual sequences to adapt the process noise covariance timely. The results
of the target tracking simulations indicate that the proposed method is effective under the condition
of time-varying process-error and measurement noise covariance.

Keywords: multi-sensor information fusion; process-error estimation; adaptive and robust unscented
Kalman filter; target tracking

1. Introduction

There have been increasing demands for developing robust, adaptive, and accurate
multi-sensor information filters (MSIF), which have been widely applied to many fields
such as navigation systems, modern industries, military threat detection, target tracking,
and remote sensing [1,2]. Especially in recent years, there have been many state estimation
problems in which the processes were often non-linear and uncertain for tracking and
navigation, for example [3]. Hence, the theory has been researched and broadly applied to
many realistic systems. A method with both adaptability and robustness cannot be realized
in real time for a single sensor/observer system [4]. By using a multi-sensor structure, an
information fusion algorithm can obtain much more accurate estimations than a single
one [5,6]. However, to the best of our knowledge, few methods focus on both adaptability
and robustness in MSIF. From a system point of view, there are mainly two different
methods to process the data from a multi-sensor [7]. The first method is the centralized
filter where all raw sensor data are fed to a central site for processing [1]. The second one
is the decentralized or distributed filter where the process is divided between some local
filter concurrently to obtain individual raw data-based estimates and one master/center
filter to fuse those local estimates to provide a much accurate global optimal estimate [6,8].

The centralized filter is also called measurement fusion, because all observations are
directly fused to obtain a final estimate. The main advantage is high accuracy due to the
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use of lossless information. However, in practice, this architecture is heavily challenged
by a large complexity of computation while the number of sensors increases. Another
drawback of this method is the lack of robustness when one or more sensors fail.

In the decentralized structure, the complexity of computation can be reduced in the
center filter because part of the computation is taking place at the local filters; furthermore,
fault detection and isolation are easier to be implemented. For the reasons given above,
parallel structure, which can provide improved reliability and fault tolerance of sensors,
has been paid more attention to and implemented in many aspects [1,8].

Frank et al. proposed estimators for multi-sensors with different failure rates [9]. They
took the stochastic perturbations and the probability of sensors’ failure into account, so
the robustness could be improved. However, the matrices which signify the direction
of perturbations are assumed known, which may not be available in practice for many
systems. An excellent piece of literature also focused on the problem, where the Bernoulli
random variables were used to predict the phenomenon of missing observations [10].
Unfortunately, the assumption that any failed sensor may recover after specific m instances
of time cannot be held in many harsh environments.

Qiu et al. proposed a diagonal weighting matrix method for the fusion of local es-
timates [7]. However, this algorithm gains computational efficiency at the expense of a
loss in accuracy [11]. Zhang et al. put forward a method to fuse the multi-sensor mea-
surements in a sequential way [12]. In [13], under the energy harvesting constraints, a
robust fusion filtering over a multi-sensor system is proposed. By using the covariance
intersection fusion strategy, this theoretical framework for discrete time-varying stochastic
multi-sensor systems is established. Based on the fact that so many scholars successfully
use the decentralized structure to improve the performance of multi-sensor information
fusion, this paper adopts the decentralized structure [8].

For a local filter in the MSIF, there are several options. Kalman filter is a promising
method for linear problems [14]. When problems become nonlinear, a set of improved
forms could be adopted, of which the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) are used widely. Using Taylor series expansions, the EKF linearizes
the non-linear models to make them convenient for the standard Kalman filter procedure.
The core drawback of the EKF makes it unable to achieve sufficient estimation accuracy
for a maneuvering target, because the first-order approximate error could be huge under
strong nonlinear conditions. Although a lot of efforts were made to estimate the states by
the adaptive algorithms based on the covariance estimation, as argued by Ge et al. [15],
the EKF and its adaptive forms are still not optimal options for the key reason above.
The generic particle filter (PF) and the cubature Kalman filter (CKF) are also well-known
methods for nonlinear problems, as mentioned by [16]; the high computation cost might
not be affordable in many applications.

The posterior mean and covariance of any Gaussian random variable in third-order
accuracy could be approximated by UKF based on the unscented transformation (UT) [17].
To apply the UKF, process-error and measurement noise should be taken into consideration,
so plenty of adaptive UKF methods have been proposed. Soken et al. corrected the
mismatches of the process noise covariance (Q-adaptation) based on an adaptive UKF
algorithm, and they applied the method to accomplish the picosatellite attitude estimation
under the condition that the process noise covariance may vary [18]. However, by using
one scalar parameter to correct the Q, the accuracy is limited to a certain extent. Similar
to [18], Chang proposed a method with both adaptivity and robustness [4]. The method can
deal with the condition that both the process and measurement noise covariance change at
the same time, but not in real time. Meanwhile, the drawback of the heuristic method is
the same as [4], that only one scalar was calculated for adapting the Q or R, which stand
for the measurement noise covariance.

As argued in [10], if measurements only contain noise, they can be seen as outliers [6].
To make a more accurate estimation of the noise covariance, plenty of scholars have turned
to adaptive UKF methods. Mohamed et al. developed an adaptive Kalman filter, based on



Sensors 2021, 21, 5808 3 of 22

the maximum likelihood criterion for the proper choice of filtering weight. They argued
that the method is efficient by adapting the matrices R and/or Q [19]. The basic idea
of [19] is to adapt the R by innovation sequences and the Q by residual ones. However, the
innovation and residual sequences obtained from the filter are not independent [15].

In [20], based on an adaptively robust EKF, Yuan et al. proposed a PDR/UWB
(Pedestrian Dead Reckoning and Ultra-Wide Band) integrated navigation algorithm. To
obtain the adaptability, the algorithm takes the positioning scene and the heading as
constraints. The robustness of the algorithm is achieved by adopting the idea similar to [6].
However, in many other applications such as tracking and remote sensing, the constraints
are not always available or difficult to implement because of the great complexity and the
high computational cost [21]. In [22], to handle measurement outliers, the robust estimation
reduces the weight of the observation; to handle the model error, an adaptive factor is
introduced to balance the adverse effect. This algorithm has inspired many scholars. In [23],
two novel quantitative nonlinear observability measures are proposed to get an optimal
filter design. However, both [22] and [23] inevitably use the state-dependent calculations to
adjust the measured values or the weight matrix, so the same problem as in [20] mentioned
above exists. In [24], an adaptive filtering method was proposed. The authors used the
residual error to construct a low-pass filter together with the process noise covariance.
They argued that the high process noise could be effectively suppressed. However, if
measurement noise covariance is not estimated accurately in a timely manner, the residual
error will be inaccurate; then, in the next iteration, the residual error may not be adjusted
only by the algorithm. So, it is necessary to estimate the measurement noise covariance as
accurately as possible. Moreover, it is better that the estimation of the measurement noise
covariance is independent of the process noise or estimation of the state [15].

If the estimation of the noise covariance matrix R could be accurately made, it would
be a solid foundation to give the matrix Q a relatively accurate estimation. Zhang et al. de-
veloped a measurement-based adaptive Kalman filtering algorithm (MAKF) that overcame
the instability drawback of improved Sage–Husa adaptive filter for the integrated navi-
gation system [25,26]. Realizing the limitation of MAKF is that the following assumption
could not always be held—one of the measurement noise covariances is relatively smaller
than the other—the group of Zhang afterwards developed an improved method named
redundant measurement noise covariance estimation (RMNCE) [27], which can estimate
the noise variance of the measurement and is not affected by the process state estimation
error. So, in this work, we utilize the RMNCE, which can deal with the unknown noise
covariance in real time, to calculate the measurement noise covariance R̂k for each sensor.

In our proposed method, the matrix R̂k of each sensor is also calculated through
innovation sequences, denoted as Rin, as mentioned in [28]. We denote the ratio between
Rin and R̂k as the indicator to reflect whether there would be non-ignorable process error
or not. Furthermore, if the indicator or the hypothesis test theory based on chi-square
suggests the existence of process error, the trigger for adaptation is on. To the best of our
knowledge, the combination of the two criteria is firstly introduced by this paper.

For a given MSIF problem, without loss of generality, the statistical properties of
measurement noise are not reliable, though they could be obtained in advance. So, we
adopt the RMNCE method to estimate the variance of measurement noise in multi-sensor
system. Additionally, taking all the above adaptive Q estimation algorithms into consider-
ation, a new Q estimation algorithm based on both innovation and residual sequences is
given, which is inspired by [16]. Finally, the decentralized architecture is used to fuse the
estimations from local sensors.

The contributions of the paper are twofold.
Firstly, an efficient algorithm is proposed for the MSIF to detect the process-error

based on the indicator, which is combined by hypothesis test theory with the Mahalanobis
distance of innovation sequences and the RMNCE. Then, an innovative Q estimation
algorithm is proposed by using both innovation and residual sequences.
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Secondly, to the best of our knowledge, the RMNCE algorithm together with a
weighted factor is first introduced into MSIF. To begin with, the covariance of measure-
ment noise obtained by RMNCE is not only used as the measurement noise covariance
estimation of each sensor but also as the element to calculate the weighted factor. Then,
a novel method is proposed to simplify the calculation of the weighted factor as an alter-
native to optimal matrix weights in [1]. Moreover, an indicator is also proposed based
on the RMNCE to detect whether the process-error exists or not. At last, the simulation
results demonstrate that the proposed scheme can increase the tracking precision with both
adaptivity and robustness.

The remainder of this paper is organized as follows: in the next section, we describe
the standard UKF, the RMNCE, an innovative adaptive UKF (AUKF) proposed by this
paper and the decentralized MSIF. Section 3 introduces the adaptive multi-sensor informa-
tion fusion algorithm (RAUKF-MSIF). Section 4 provides the simulation and discussions.
Section 5 finally draws the conclusions.

2. The Decentralized MSIF and the Proposed Adaptive UKF

Considering a discrete time nonlinear stochastic system with l sensors, the process
and measurement models can be described as{

Xk = f (Xk−1) + Γk−1Wk−1
Zi

k = hi(Xk) + Vi
k, i = 1, 2, . . . , l

(1)

where Xk ∈ Rn×1 denotes the state vector, Zi
k ∈ Rmi×1 is the measurement collected by

sensor i at sampling time instant k, Wk−1 and Vi
k are uncorrelated zero-mean Gaussian

white noise with compatible dimension [4,16,25,26,28,29], f (•) and h(•) are the known
time-varying nonlinear state transition and measurement function, respectively. Γk−1 is the
system noise-driven matrix with compatible dimension.

The statistical properties assumed about noise processes can be summarized as [4]
E
[
WkWT

j

]
= Qkδk,j

E
[
Vi

kVi
j
T
]
= Ri

kδk,j

E
[
WkVi

j
T
]
= 0

(2)

where δk,j denotes the Kronecker delta function.
The following assumptions are also made as initial value

E(X0) = µ0, E[(X0 − µ0)(X0 − µ0)] = P0 (3)

where the initial state X0 is independent of Wk−1 and Vi
k , P0 is the initial estimation error

covariance matrix.
In the following Section 2.1, the procedure of the standard UKF is briefly reviewed. In

Section 2.2, the RMNCE is introduced. To improve the adaptivity of the estimation, the
process-error should be detected timely, so an innovative adaptive UKF is proposed in
Section 2.3. In Section 2.4, the structure of MSIF adopted by our work is given.

2.1. The Standard UKF

The UKF uses the fact that it should be easier to estimate a nonlinear distribution than
to give an approximation of a nonlinear system [29]. In the standard UKF, to generate the
sigma points to undergo the nonlinear transformation and calculate the first two moments
of the transformed set, the UT, a deterministic sampling technique, is implemented. For
the sake of simplicity, only one sensor of (1) is taken into consideration, and the general
procedures are as follows:
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Step 1: Initialization. {
X̂0 = E[X0]

P0 = E
[(

X0 − X̂0
)(

X0 − X̂0
)T
] (4)

where X̂0 is the initial state, P0 is the initial estimation error covariance.
Step 2: Sigma points generation.

χ
(0)
k−1 = X̂k−1

χ
(i)
k−1 = X̂k−1 +

√
(n + λ)Pk−1, i = 1, 2, . . . , n

χ
(i)
k−1 = X̂k−1 −

√
(n + λ)Pk−1, i = n + 1, n + 2, . . . , 2n

(5)

where n denotes the dimension of the state; λ = α2(n + κ)− n is the composite scaling
parameter that is used for fine tuning, α is set to 0 ≤ α ≤ 1 and a good default setting on κ
is κ = 0 [15].

Step 3: State prediction.

χ
(i)
k/k−1 = f

(
χ
(i)
k−1, k− 1

)
, i = 0, 1, 2, . . . , 2n

X̂k/k−1 =
2n
∑

i=0
ω
(m)
i χ

(i)
k/k−1

PXX =
2n
∑

i=0
ω
(c)
i

(
χ
(i)
k/k−1 − X̂k/k−1

)(
χ
(i)
k/k−1 − X̂k/k−1

)T

Pk/k−1 = PXX + Γk−1Qk−1ΓT
k−1

(6)

where X̂k/k−1 is the predicted state mean; and PXX is the predicted state covariance. ω
(m)
i

and ω
(c)
i are weights, which are defined as

ω
(m)
0 = λ

n+λ

ω
(c)
0 = λ

n+λ +
(
1− α2 + β

)
ω
(m)
i = ω

(c)
i = λ

2(n+λ)
, i = 1, 2, . . . , 2n

(7)

where β ≥ 0 is used to incorporate the higher order information of the distribution,
according to [15], for Gaussian distribution β = 2 [29].

Step 4: Observation prediction.

γ
(i)
k/k−1 = h(χ(i)

k/k−1, k), i = 0, 1, 2, . . . , 2n

Ẑk/k−1 =
2n
∑

i=0
ω
(m)
i γ

(i)
k/k−1.

(8)

Step 5: Kalman gain calculation.

PXZ =
2n
∑

i=0
ω
(c)
i

(
χ
(i)
k/k−1 − X̂k/k−1

)(
γ
(i)
k/k−1 − Ẑk/k−1

)T

PZZ =
2n
∑

i=0
ω
(c)
i

(
γ
(i)
k/k−1 − Ẑk/k−1

)(
γ
(i)
k/k−1 − Ẑk/k−1

)T
+ Rk

Kk = PXZP−1
ZZ.

(9)

Step 6: State estimation and error covariance matrix update.

X̂k = X̂k/k−1 + Kk
(
Zk − Ẑk/k−1

)
Pk = Pk/k−1 −KkPZZKT

k .
(10)

Step 7: Iterate from steps 2 to 6 until all samples are completed.
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Under the condition of time-varying process-error and measurement noise covariance,
we can infer that if Qk−1 in (6) and Rk in (9) could not be estimated timely, then inaccurate
estimates would be made because, in (10), X̂k is influenced by Kk which is related to Rk
and X̂k/k−1.

2.2. Adaptive R Estimation

As proved by Li et al. in [27], for simplicity, assuming Z1(k) and Z2(k) are independent
redundant measurements of a signal Z(k) from two sensors, they can be modeled as{

Z1(k) = ZT(k) + S1(k) + V1(k)
Z2(k) = ZT(k) + S2(k) + V2(k)

(11)

where ZT(k) denotes the true value of Z(k), S1(k) and S2(k) are steady items of the mea-
surement errors, V1(k) and V2(k) are uncorrelated zero-mean random white noise.

The first-order-self-difference (FOSD) ∆Z1, ∆Z2 and the second-order-mutual-difference
(SOMD) ∆Z12 are defined as

∆Z1(k) = Z1(k)− Z1(k− 1)
∆Z2(k) = Z2(k)− Z2(k− 1)
∆Z12(k) = ∆Z1(k)− ∆Z2(k)

(12)

Under the condition that the sampling interval is short enough, Si(k)− Si(k− 1) ≈
0, i = 1, 2. The covariance of the random noise for measurement Z1(k) and Z2(k) can be
estimated as  R1 =

E
[
∆Z12(k)∆Z12(k)

T
]
+E
[
∆Z1(k)∆Z1(k)

T
]
−E
[
∆Z2(k)∆Z2(k)

T
]

4

R2 =
E
[
∆Z12(k)∆Z12(k)

T
]
−E
[
∆Z1(k)∆Z1(k)

T
]
+E
[
∆Z2(k)∆Z2(k)

T
]

4

(13)

The mathematical expectations in (13) are calculated as follows, because the statistical
characteristics are stable over a relatively short period.

E
[
∆Z1(k)∆Z1(k)

T
]

= 1
M

M−1
∑

m=0
{∆Z1(k−m)− E[∆Z1(k)]}{∆Z1(k−m)− E[∆Z1(k)]}T

E
[
∆Z2(k)∆Z2(k)

T
]

= 1
M

M−1
∑

m=0
{∆Z2(k−m)− E[∆Z2(k)]}{∆Z2(k−m)− E[∆Z2(k)]}T

E
[
∆Z12(k)∆Z12(k)

T
]

= 1
M

M−1
∑

m=0
{∆Z12(k−m)− E[∆Z12(k)]}{∆Z12(k−m)− E[∆Z12(k)]}T

(14)

where E[∆Zi(k)], i = 1, 2 and E[∆Z12(k)] can be calculated by

E[∆Zi(k)] =
1
M

M−1

∑
m=0

∆Zi(k−m) (15)

E[∆Z12(k)] =
1
M

M−1

∑
m=0

∆Z12(k−m) (16)

where M is the sliding window width which can be empirically set to 30~60 [25].
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In practice, in order to capture the transient behavior of the variation of Rk in time
while considering the smoothness, a fading memory calculation is implemented as [30]{

R̂k = (1− dk)R̂k−1 + dkRk
dk =

1−b
1−bk+1 , (0 < b < 1) (17)

where b is the fading factor and in our work is set to 0.980, Rk represents the direct output
in (13) at time k, R̂k is the final covariance matrix.

2.3. The Proposed Adaptive UKF Based on the Mahalanobis Distance of the Innovation Vector

As emphasized by many researchers [15,17,31], the parameters of the system model
and the distribution of the measurement noise and the process noise could not be main-
tained as constants in practice all the time. In order to prevent the estimation from deteri-
orating or even diverging, caused by the model error, it is vital to determine and correct
the mismatch between the real process error and the parameters’ preset. Herein, in our
proposed method, based on hypothesis testing theory [14], the Mahalanobis distance of
innovation vector is employed as a criterion to identify whether the system modeling error
exists or not [17].

For the sake of simplicity, only one sensor of (1) is taken into consideration, thus, the
superscript i is dropped. This paper develops a new method to improve the adaptability of
the classical UKF against process model error based on the Mahalanobis distance. However,
if the measurement noise matrix Rk is also contaminated, then one single sensor cannot
cope with this case. Thanks to the RMNCE, in MSIF, the Rk can be estimated and is immune
to the state estimation.

Define the innovation sequence εk according to [15] as

εk = Zk − h
(
X̂k/k−1

)
(18)

Then εk should be zero-mean Gaussian-distributed with covariance E
[
εkε

T
k
]
=

Hk/k−1Pk/k−1HT
k/k−1 + R̂k [19], Hk/k−1 = ∂h

∂X

∣∣∣
X=X̂k/k−1

; the square of the Mahalanobis

distance of the innovation should be χ2 distributed [4],

M2 = εT
k

{
E
[
εkε

T
k

]−1
}
εk ∼ χ2

m (19)

where m is the degree of freedom.
Based on the hypothesis testing theory, let α be the given significance level, and then

we have
Pr
(

M2 < χ2
m,α

)
= 1− α (0 ≤ α ≤ 1) (20)

where Pr(•) stands for the probability of a random event, χ2
m,α denotes the α-quantile of

the distribution χ2
m.

If (20) does not hold, it can be deduced with high probability (1− α) that there exists
process-error in the system (1), assuming that the observations are within reasonable
bounds. Because there is more than one sensor in the system, (20) should be calculated for
each sensor.

Different from [4,17], instead of a single parameter that acts on Pk/k−1

P∗k/k−1 = λkPk/k−1 = λk

(
PXX + Γk−1Qk−1ΓT

k−1

)
(21)

We present a new algorithm that takes the advantage of sequences of both innovation
and residual to correct the matrix Q directly by a diagonal matrix, and the procedure is
as follows.
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According to [15], the residual ηk can be defined as

ηk = Zk − h
(
X̂k
)

(22)

According to [18], based on the principle of orthogonality [12], the residual sequences
are uncorrelated from the measurements. So, the following equations should hold:

E
(

ηkηT
k

)
= R̂k −HkPkHT

k . (23)

If Pk is replaced by its definition in (10), then

HkPkHT
k = Hk

(
Pk/k−1 −KkPZZKT

k

)
HT

k . (24)

The traces of both sides should be equal:

tr
(
ηkηk

T) = tr
(
R̂k
)
− tr

(
Hk
(
Pk/k−1 −KkPZZKT

k
)
HT

k
)

= tr
(
R̂k
)
− tr

(
Hk

(
P∗k/k−1 + Γk−1QΓT

k−1

)
HT

k

)
+ tr

(
HkKkPZZKT

k HT
k
) (25)

where Hk =
∂h
∂X

∣∣∣
X=X̂k

, and P∗k/k−1 is the predicted covariance without the additive process

noise. If (23) does not hold, there will be some change in matrix Q. So, one scalar called the
adaptive fading factor is generated based on the Equation (23) [16]:

Pk/k−1 = P∗k/k−1 + ΛkΓk−1Qk−1ΓT
k−1

Λk =
tr(R̂k)−tr(HkPk/k−1HT

k )+tr(HkKkPZZKT
k HT

k )−tr(ηkηk
T)

tr(HkΓk−1QΓT
k−1HT

k )
.

(26)

Instead of one scalar being calculated to tune the matrix Q, much higher accuracy
could be obtained by using a matrix Λ = diag{λ1, λ2, . . . , λm}, in which m is the dimen-
sion of the Q.

So, an innovative adaptive method is proposed as

Pk = P∗k/k−1 + Γk−1ΛkQk−1ΓT
k−1, Λk = diag{λ1, λ2, . . . , λm} (27)

Λk =
1
2
(HkΓk−1)

−1
{

E
[
εkε

T
k

]
− E

[
ηkηT

k

]
+ E

[
(εk − ηk)(εk − ηk)

T
]
− 2HkP∗k/k−1HT

k

}(
ΓT

k−1HT
k

)−1
Q−1

k−1. (28)

To obtain (28), firstly, the relationship of E
[
(εk − ηk)(εk − ηk)

T
]
, E
[
εkε

T
k
]

and E
[
ηkηT

k
]

are given; then the matrix Λk is solved but not in the form of the trace of a matrix.
The covariance of innovation is:

E
[
εkε

T
k

]
= HkPk/k−1HT

k + R̂k. (29)

The covariance of difference sequences between innovation and residual is

E
[
(εk − ηk)(εk − ηk)

T
]
= E

[
εkε

T
k

]
+ E

[
ηkηT

k

]
− E

[
εkηT

k

]
− E

[
ηkε

T
k

]
. (30)

A deep look should be taken at εk and ηk before calculating (30)

εk = Zk − h
(
X̂k/k−1

)
= h(Xk) + Vk − h

(
X̂k/k−1

)
≈ Hk/k−1

(
Xk − X̂k/k−1

)
+ Vk

= Hk/k−1X̃k/k−1 + Vk
ηk = Zk − h

(
X̂k
)
= h(Xk) + Vk − h

(
X̂k
)

≈ Hk
(
Xk − X̂k

)
+ Vk

= HkX̃k + Vk

(31)
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where X̃k/k−1 and X̃k represent the prediction error and the estimation error, respectively.
The first two items in the right side of (30) can be derived based on (31) as

E
[
εkε

T
k
]

= E
[(

Hk/k−1X̃k/k−1 + Vk

)(
Hk/k−1X̃k/k−1 + Vk

)T
]

= Hk/k−1Pk/k−1HT
k/k−1 + R̂k

E
[
ηkηT

k
]

= E
[(

Hk
(
Xk − X̂k

)
+ Vk

)(
Hk
(
Xk − X̂k

)
+ Vk

)T
]

= R̂k −HkPkHT
k .

(32)

Because the sample frequency is high, the Jacobian matrices Hk/k−1 ≈ Hk, and
E
[
εkηT

k
]
≈ E

[
ηkε

T
k
]
, Ge et al. gave the proof in [15]

E
[
εkηT

k
]

= E
[(

Hk/k−1

(
X̃k/k−1

)
+ Vk

)(
Hk/k−1

(
X̃k

)
+ Vk

)T
]

= Hk/k−1PkHT
k + R̂k

(
I−KkHT

k
)
.

(33)

Then, based on (32) and (33), namely,

E
[
(εk − ηk)(εk − ηk)

T
]

= E
[
εkε

T
k
]
+ E

[
ηkηT

k
]
− E

[
εkηT

k
]
− E

[
ηkε

T
k
]

≈ Hk/k−1Pk/k−1HT
k/k−1 + R̂k + R̂k −HkPkHT

k
−2
(
Hk/k−1PkHT

k − R̂kKkHT
k + R̂k

)
= Hk/k−1Pk/k−1HT

k/k−1 −HkPkHT
k

≈ HkPk/k−1HT
k −HkPkHT

k
= Hk(Pk/k−1 − Pk)HT

k
= HkKkPZZKT

k HT
k

(34)

According to (29), replacing R̂k by E
[
εkε

T
k
]
−HkPk/k−1HT

k in (25) can be rewritten
without trace calculation based on (32), (33), and Pk/k−1 = P∗k/k−1 + Γk−1ΛkQk−1ΓT

k−1

E
[
ηkηk

T] = E
[
εkε

T
k
]
−HkPk/k−1HT

k −HkPk/k−1HT
k + HkKkPvvKT

k HT
k

= E
[
εkε

T
k
]
− 2HkPk/k−1HT

k + HkKkPZZKT
k HT

k

= E
[
εkε

T
k
]
− 2Hk

(
P∗k/k−1 + ΛkΓk−1Qk−1ΓT

k−1

)
HT

k + E
[
(εk − ηk)(εk − ηk)

T
]
.

(35)

Hence, (28) is obtained by rearranging (35). Normally, the covariance equations
stacked above are calculated as

E
[
εkε

T
k
]
= 1

M

M−1
∑

m=0
(εk−m − ε)(εk−m − ε)T

E
[
ηkηk

T] = 1
M

M−1
∑

m=0
(ηk−m − η)(ηk−m − η)T

E
[
(εk − ηk)(εk − ηk)

T
]
= 1

M

M−1
∑

m=0
(εk−m − ηk−m)(εk−m − ηk−m)

T

(36)

in which M is the windows size, ε = 1
M

M−1
∑

m=0
εk−m, and η = 1

M

M−1
∑

m=0
ηk−m.

Remark 1. In Equation (28), the inverse matrices of (HkΓk−1)
−1and Q−1

k−1are required to be
calculated. In practice, Qk−1is normally a positive definite diagonal matrix, but HkΓk−1may be not
an invertible matrix, or not even a square matrix. Considering that Λk is a diagonal matrix, we can
obtain the elements by solving the following equation:

HkΓk−1ΛkQk−1ΓT
k−1HT

k =
1
2

{
E
[
εkε

T
k

]
− E

[
ηkηT

k

]
+ E

[
(εk − ηk)(εk − ηk)

T
]
− 2HkP∗k/k−1HT

k

}
. (37)
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Remark 2. In Equation (37), Hk and HT
k are the Jacobian matrices. They normally can be considered

as the slope at X̂k. During the course of numerical calculation, Hk and HT
k may be very small, so

one or more elements of Λk will be large enough to cause Pk to be a negative definite in the next
step. To solve this problem, a threshold value is used to limit the element of Λk. Meanwhile, if λi is
not positive in numerical applications, it is always reset to the absolute value of its estimate [28].

Remark 3. In (28) or (37), the result of the first three items in the right side of equations may be
much greater than the last item, because the assumption that the innovation and residual sequences
are orthogonal is statistically ideal. In other words, for a limited set of the sample, (36) is commonly
biased [28]. However, in many real-time or online systems, the sliding window could not be set very
large to meet the assumption. So, the tradeoff should be made between the numerical stability and
real-time performance.

2.4. The Decentralized MSIF

Due to the expensive computational cost for high-dimension matrices and low stability
when some measurements are abnormal [10], i.e., one or more sensors provide information
with large noises, or just noises, the centralized architecture is not adopted widely. This
work adopts the decentralized MSIF structure similar to [1], which is derived from [32].
For simplicity, the time instant k in Xk is dropped in this section [1].

Let X̂i, i = 1, 2, . . . , l be unbiased estimators of X in (1) and the estimation errors be
X̃

i
= X− X̂i, i = 1, 2, . . . , l. Assume that Xi and Xj are correlated, the covariance and cross

covariance are Pii and Pij, respectively. The optimal fusion estimator X̂op with matrix
weights can be described as

X̂op =
l

∑
i=1

AiX̂i
= A1X̂1

+ A2X̂2
+ . . . + AlX̂l (38)

where the optimal matrix weights Ai, i = 1, 2, . . . , l are to be determined.
The globally optimal information fusion Kalman filter X̂op of the state X, based on the

principle of linear minimum variance, will satisfy the following conditions [1,17]:

Condition 1. X̂op must be the unbiased estimation of X, namely, E
[
X̂op
]
= E[X].

Condition 2. X̂op makes tr{P} minimum, in which P is the error covariance matrix of X̂op.

For simplicity, we denote A = [A1, A2, . . . , Al ]
T

. Our aim is to find A to construct
the unbiased estimator

X̂ =
l

∑
i=1

AiX̂i
= A1X̂1

+ A2X̂2
+ . . . + AlX̂l (39)

where Ai, i = 1, 2, . . . , l are arbitrary matrices.
If X̂op is an unbiased estimator for X, the following condition should be fulfilled,

E
[
X̂op
]
= E[X] (40)

Taking the expectation of both sides of (38) yields,

E
[
X̂op
]
= E

[
l

∑
i=1

AiX̂i
]
=

l

∑
i=1

AiE
[
X̂i
]
. (41)

So (43) is obtained

In =
l

∑
i=1

Ai = A1 + A2 + · · ·+ Al . (42)
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Based on (38) and (42), we get the fusion estimation error

X = X−
l

∑
i=1

AiX̂i
=

l

∑
i=1

Ai(X− X̂i
) =

l

∑
i=1

AiX
i
. (43)

The error variance matrix of the fusion estimator is

P = E
[
XX

T]
= ATΣA (44)

where Σ =
(
Pij
)

i, j = 1, 2, . . . , l is a symmetric positive definite matrix.
Now the problem is converted to a classic one: under the constraint of (42), to solve

the minimum of tr{P} = tr
{

ATΣA
}

by applying the Lagrange multiplier

F = tr{P}+ tr
{

Λ[ATE− In]
}

(45)

where Λ ∈ Rn×n is the Lagrange multiplier, E = [In, In, . . . , In]
T ∈ RnN×n; and In

represents an n-dimensional identity matrix.
By setting ∂F/ ∂A|A=A = 0, and noting that ΣT = Σ, we have

ΣA + EΛ = 0 (46)

By substituting (42) into (46)(
Σ E

ET 0

)(
A
Λ

)
=

(
0
In

)
(47)

Because Σ is a symmetric positive definite matrix, ETΣ−1E is nonsingular. Based on
the matrix theory, (47) can be solved

(
A
Λ

)
=

(
Σ E

ET 0

)−1( 0
In

)
=

 Σ−1E
(

ETΣ−1E
)−1

−
(

ETΣ−1E
)−1

 (48)

From (48), the matrix Σ should be calculated to obtain the global optimal state estima-
tion. The diagonal elements Pii, i = 1, 2, . . . , l in the matrix Σ can be directly calculated
by the error covariance matrix of the state estimation in the ith local filter. However, the
cross-covariance matrix is difficult to get. In our work, we use the result given by Gao et al.
base on UT [17].

Pij
k =

2n
∑

s=0
ω
(c)
s

(
χ
(i)
s,k/k−1 − X̂(i)

s,k/k−1

)(
χ
(j)
s,k/k−1 − X̂(j)

s,k/k−1

)T

−
[

2n
∑

s=0
ω
(c)
s

(
χ
(i)
s,k/k−1 − X̂(i)

s,k/k−1

)(
γ
(j)
s,k/k−1 − Ẑ(j)

s,k/k−1

)T
](

K(j)
)T

−K(i)
[

2n
∑

s=0
ω
(c)
s

(
γ
(i)
s,k/k−1 − Ẑ(i)

s,k/k−1

)(
χ
(j)
s,k/k−1 − X̂(j)

s,k/k−1

)T
]

+K(i)

[
2n
∑

s=0
ω
(c)
s

(
γ
(i)
s,k/k−1 − Ẑ(i)

s,k/k−1

)(
γ
(j)
s,k/k−1 − Ẑ(j)

s,k/k−1

)T
](

K(j)
)T

(49)

where χ
(i)
s,k/k−1 is the sigma point transformed by the nonlinear function f (•) in (6) for the

ith sensor; γ
(j)
s,k/k−1 represents the sigma points transformed by the nonlinear function h(•)

in (8); and s = 0, 1, . . . , 2n denotes the order of the transformed sigma points.



Sensors 2021, 21, 5808 12 of 22

Remark 4. In order to maintain Pij
k as a positive definite, some exceptions should be taken into

consideration. Firstly, Equation (42) should be examined immediately when Σ is fulfilled by Pij
k .

This step is necessary because there may be truncation errors during calculation. If the constraint
defined by (42) is not satisfied, set Pij

k = Pij
k−1.

Secondly, in MSIF, the optimal estimation X̂op theoretically lies in the closed interval:

min
(

norm2(X̂i
)
)
≤ norm2

(
X̂op
)
≤ max

(
norm2

(
X̂i
))

, i = 1, 2, . . . , l (50)

where norm2(•) denotes the 2-norm. If (50) is not maintained, the following degenerative
methods (52) or (53) can be used:

Pij
k (row, col) = 0. when row 6= col (51)

X̂op =
1
l

l

∑
i=1

X̂i. (52)

3. The Proposed Method with Both Adaptivity and Robustness

In Section 2, we proposed the innovative algorithm to adapt Q when process-error
exists. In this section, based on the hypothesis theory, the adopted judging criterion on
process-error detection is given [4,17]. However, the drawbacks of the methods proposed
by [4] and [17] are that the Q and R could not be estimated at the same time. Severe
problems would be caused under the dilemma to decide which one should be adapted:
Q, R, or both? To conquer this challenge, the RMNCE is employed to estimate the noise
covariance of each sensor, then a decision is made whether the matrix R is suffering
gross errors or not. Based on RMNCE, the decision is made easier by MSIF because the
estimations of R are obtained with relatively high accuracy.

Briefly, in our proposed MSIF architecture, the matrix R of each sensor is estimated by
RMNCE, and is denoted as R̂i

k; meanwhile, the process-error can be corrected by adapting
Q if necessary. For the sake of simplicity, only one sensor of (1) is taken into consideration,
so the superscript i in R̂i

k could be dropped.

3.1. Robust R Estimaiton Based on RMNCE

As described in Section 2.2, the main advantage of RMNCE is that the estimate of
variance is based only on measurements and hence can be immune to the state estimation
error [27]. So, R̂k calculated by (17) can be considered as the benchmark to test whether the
process error exists or not. Let Rin be calculated by the following equation [28]

Rin = E
[
εkε

T
k

]
−HkPk/k−1HT

k . (53)

The difference between Rin and R̂k could be large if process error exists. The quotient
is used as an indicator to detect the process error as

indicator =
tr
(
R̂k
)

tr(Rin)
=

{
[0.90, 1.10] : normal
esle : process erorr may exist

(54)

where tr
(
R̂k
)

and tr(Rin) denote the trace of R̂k and Rin, respectively.
When the quotient is around 1.0, it could be deduced with great probability that there

is no process error. In this paper, a closed interval from 0.90 to 1.10 is used as the normal
range. Otherwise, if the indicator is larger than 1.10 or smaller than 0.90, there is process
error with great probability.
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Remark 5. If the diagonal elements differ by more than one order of magnitude, it is better to
calculate the indicator separately. For example, the matrices R̂k and Rin are as

R̂k =

[
10 0
0 0.1

]
, Rin =

[
10 0
0 1

]
. (55)

Although the indicator calculated by (54) belongs to the closed interval,
tr(R̂k)
tr(Rin)

=
10.01

11 = 0.918 ∈ [0.90, 1.10], it is obvious that the second element in the diagonal differs
10 times in Rin than R̂k.

Remark 6. The sliding window width for calculating Rin and R̂k should be the same. In this paper,
it is set to 50.

In our MSIF architecture, we also proposed the following matrix weights ARi as an
alternative to (48).

Consider a MSIF system with three sensors, the noise covariance matrices R̂i, i =
1, 2, 3 could be obtained by (13). Because the noise covariance matrices are usually
diagonal, the following equation is employed to calculate the ARi

ARi (j, j) = diag

{
1

R̂i(j, j)
×
(

3

∑
l=1

1
R̂l(j, j)

)}
, j = 1, 2, . . . , m. (56)

where m is the dimension of Zi.

Remark 7. In our proposed MSIF structure, all the sensors have the same measurement model,
so all the ARi have the same dimension. If a MSIF system has different sensors, the variation of
(56) should be derived specifically. However, the core idea is that the smaller R̂i(j, j) is, the greater
weight ARi (j, j) is. A degenerated case is that if one or more elements of X are observed only by
one sensor, assuming sensori, then

ARi =

[
Ir 0r

0m−r Am−r
Ri

]
, ARj =

[
0r 0r

0m−r ARj

]
, j 6= i (57)

where r denotes the number of elements in X that are only observed by sensor i. Hence, this is not a
MSIF anymore, and this paper would not discuss this case any further.

Remark 8. When there are l ≥ 2 sensors in a MSIF system, there are basically two options to
utilize (13):

Option 1. To calculate two matrices R̂k one time, so (13) and the relative equations will be run
l − 2 times at least.

Option 2. To calculate all matrices R̂k one time, then the classical least square method is used to
solve the overdetermined equations, which are derived by the variation of (13). In this paper, Option
1 is adopted.

3.2. The Adaptive and Robust UKF Algorithm for MSIF (ARUKF-MSIF)

In this subsection, the complete scheme is given. The proposed Algorithm 1 ARUKF-
MSIF aimed at target tracking can be implemented as follows.
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Algorithm 1. ARUKF-MSIF algorithm

Initiation: initiate the l sensors′ filters with X̂i
0, Pii

0 , Pij
0 , α, and χ2

m,α;
Step 1: State prediction through (5)–(7) for each sensor.
Step 2: Observation prediction through (7) and (8) for each sensor.
Step 3: Estimate matrix Ri for each sensor through (12) to (17).
Step 4: Process-error judgment through (20) and (54).
Step 5: Abnormal innovation distinguishing.

5.1 If (20) and (54) holds:
5.1.1 Go to step 6.

5.2 Else:
5.2.1 Adapt Q through (28).

Step 6: Calculate Kalman gain and filtering through (9) and (10).
Step 7: MSIF implementation.

7.1 Calculate Pij through (49).
7.2 Calculate matrix weights A through (48) or (56), generate the optimal estimation X̂op.

Step 8: For the next iteration, repeat steps from 1 to 7.

The framework of the proposed ARUKF-MSIF methodology is shown in Figure 1. It
has a two-layer fusion structure, the local layer and the globally optimal layer.
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Figure 1. The framework of the proposed ARUKF-MSIF method.

Based on RMNCE, the measurement noise covariance of each sensor is estimated.
Every sensor estimates the states independently in the local layer. If any sensor subsystem
detects the process-error by the chi-square test or the indicator proposed by this paper
suggests the existence of the process-error, then the proposed Q-adaption algorithm is
employed to correct this mismatch. The globally optimal layer is the final fusion center,
where the optimal matrix weights are determined.
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4. Simulations and Discussion

In this section, a set of numerical simulations of the radar tracking problems will be
presented to illustrate the effectiveness of the proposed ARUKF-MSIF.

4.1. Process Model and Measurement Model

Similar to [1], consider the radar tracking system with three sensors. The differences
between our model and [1] are threefold.

Firstly, our model is more complicated and challenging: a two-dimension trajectory
with time-varying process-error and/or measurement noise. In order to illustrate the
effectiveness of our proposed method, the uncertainty of the system contains not only the
measurement outliers/failures argued in [1] but also the process-error as in [15], which is
usually the case in practice.

Secondly, all the sensors have the same measurement model in our simulation. With
the development of hardware technology, more and more systems can afford redundant
equipment to apply the multi-sensor information fusion into practical projects because
the price of hardware is getting cheaper and cheaper. As proved by [6], if the sensors in
decentralized structure have identical measurement matrices as in the centralized one,
the two fusion methods are functionally equivalent. By taking advantage of the much
smaller computational burden of the decentralized structure and the same accuracy as
the centralized one, the simulation is arranged with three identical sensors whose noise
characteristics are different.

Thirdly, the 2-D motion is taken into consideration as with [15,31]. The function of the
radar can be demonstrated well enough; meanwhile, the model is not so complicated as the
3-D one. The simulated target trajectory is depicted in (Figure 2), and the true acceleration
is shown in (Figure 3).

Consider that a target trajectory is in x–y plane. The position, velocity, and acceleration
of the objective at time k are represented by the vector Xk =

[
xk, yk,

.
xk,

.
yk,

..
xk,

..
yk
]

in the
Cartesian coordinates. The dynamic equation for the target movement is as [15,31],

Xk =



1 0 T 0 T2/2 0
0 1 0 T 0 T2/2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1

Xk−1 + Γk−1Wk−1, Γk−1 =



T2/2 0
0 T2/2
T 0
0 T
1 0
0 1

 (58)

where T denotes the sampling period.
The initial state is X0 =

[
1000 m, 5000 m, 10 m/s, 50 m/s, 2 m/s2,−4 m/s2], the

process noise covariance matrix is

Qk−1 =

[
0.001 0

0 0.001

]
(59)

The multi-sensor observation systems are composed by three radars with the same
measurement model described as

Zi
k =

[
ri

k
ϕi

k

]
=

 √
x2

k + y2
k

arctan
(

yk
xk

) + Vi
k , i = 1, 2, 3 (60)

where ri
k and ϕi

k denote the slant range and azimuth angle in polar coordinates measured
by the ith radar, respectively. The variance matrices of Vi

k , i = 1, 2, 3 are different from
each other.



Sensors 2021, 21, 5808 16 of 22

Sensors 2021, 21, 5808  17 of 25 
 

 

computational burden of the decentralized structure and the same accuracy as the cen‐

tralized one, the simulation is arranged with three identical sensors whose noise charac‐

teristics are different. 

Thirdly, the 2‐D motion is taken into consideration as with [15,31]. The function of 

the radar can be demonstrated well enough; meanwhile, the model is not so complicated 

as the 3‐D one. The simulated target trajectory is depicted in (Figure 2), and the true ac‐

celeration is shown in (Figure 3). 

 

Figure 2. Flight trajectory of the target. 

 

Figure 3. True acceleration during the trajectory. 

Consider that a target trajectory is in  –x y   plane. The position, velocity, and accel‐
eration  of  the  objective  at  time  k   are  represented  by  the  vector 

 ,  ,  ,  ,  ,  k k k k k k kX x y x y x y   
 
in  the Cartesian coordinates. The dynamic equation  for 

the target movement is as [15,31], 

1000 2000 3000 4000 5000 6000 7000
3400

3600

3800

4000

4200

4400

4600

4800

5000

5200

5400
Simulated target trajectory.

X(m)

Y
(m

)

0 200 400 600 800 1000
-0.5

0

0.5

1

1.5

2

2.5

A
cc

e
le

ra
ti

on
 X

(m
/s

2 )

Time (s)

0 200 400 600 800 1000
-4

-2

0

2

4

A
cc

e
le

ra
ti

on
 Y

(m
/s2 )

Figure 2. Flight trajectory of the target.
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4.2. Simulations

To demonstrate the effectiveness of our proposed method, the following three cases
are designed specifically.

Case 1: The noise covariance matrices Ri = diag
[
i2 × 100, i2 × 0.01

]
, i = 1, 2, 3 are known

and the process noise covariance matrix Q varies over time. The process noise covariance matrix is
assigned to be Q = diag[0.015, 0.015] during the epochs [200, 400].

Case 2: The measurement noise covariance matrices Ri are uncertain, and the process noise
covariance matrix Q = diag[0.001, 0.001] is known. The measurement noise covariance matrix
R1 is assigned to be R1 = 10× diag

[
12 × 100, 12 × 0.01

]
during the epochs [200, 400], and it is

set to the same value as in Case 1 for the remaining periods.

Case 3: Not only the measurement noise covariance matrices R1 but also the process noise covariance
matrix Q are uncertain. The changes in Case 1 and Case 2 are implemented simultaneously in
this case.
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Different from [15], in which the dynamic maneuver is simulated during a period
when both the Ri and the Q stay unchanged, in our simulations, all cases are designed to set
the interval of the maneuver to the same one when R1 and/or Q varies. So, the situations
in our simulations are much harsher than the ones in [15]. The interacting multiple model
(IMM) is employed by Ge et al. [15] to compare the algorithms; however, in this paper, we
do not take the IMM method into consideration because its computational load is higher
than the algorithm proposed by [15], and the complexity of our algorithm to adapt the Q is
similar to [15]. Moreover, the Markov transition matrix used in IMM is obtained on the
basis of statistics on the system evolution [33], so in order to employ the IMM, the transition
matrix should be available. However, it could not be obtained precisely in practice.

For Case 1, the reason why only the matrix Q is uncertain is that we want to illustrate
the effectiveness of our proposed method contrast to several algorithms which focus on
the Q adaption. Except for the standard UKF, the AUKF algorithm proposed by [19], the
adaptive fading UKF (AFUKF) method developed by [18], and the N-UKF given by [32]
are taken into consideration together with ours to run the simulation.

For Case 2, to test the validity of our proposed MSIF structure with RMNCE, only R1

changes during the specified intervals. The algorithms contained in the simulation are the
improved Sage–Husa adaptive method in [26], the N-UKF, the standard UKF, and ours.

It is natural for Case 3 that the algorithms with both adaptability and robustness
claimed by their inventors are taken into consideration except for the standard UKF and the
improved Sage–Husa adaptive method. So, the N-UKF, the robust adaptive UKF proposed
by [34], and our proposed method are applied to track the target.

For each case, R1 of the sensor 1 is used by every single method. From 50 times of the
Monte Carlo simulation in all cases, the root mean square error (RMSE) of each moment is
obtained as

RMSEk =

√√√√ 1
N

N

∑
i=1

[(
x̂i

k − xk
)2

+
(
ŷi

k − yk
)2
]

(61)

where is the total times of simulation,
(
x̂i

k, ŷi
k
)

represents the filtering position of the target
at time instant k in the ith simulation.

For the first case, the position tracking errors of the standard UKF, adaptive fading UKF,
N-UKF, and our proposed method are shown in (Figure 4). To illustrate the performance
of these algorithms clearly, we list the means and variance of the position tracking errors
during the epochs [200, 600] and [601, 1000].

The epochs of Case 1 can be divided into three intervals: [0, 199], [200, 600], and [601,
1000]. The positioning errors during the first interval are close to each other because there is
not process-modeling error. In the second interval, the maneuver of the target deteriorates
the performance of the standard UKF. For the robust adaptive UKF, a modulation is made
to prevent the algorithm divergence, i.e., a limitation is used for the adaptive factor. It can
be seen clearly that all the methods except for the standard UKF can maintain their accuracy
and robustness due to the Q adaption strategy used. From Table 1, the conclusion can
be made that our proposed algorithm can resist the influence from both the time-varying
process and the maneuvering motion models. The positioning errors estimated by our
method remained the lowest among all the algorithms.

For Case 2, the improved Sage–Husa adaptive algorithm proposed by Zhang et al. is
introduced to verify the performance in R estimation [26]. The position errors estimated by
the algorithms mentioned above are shown in (Figure 5), the means and variances of the
position tracking errors are listed in Table 2. The measurement noise variances estimated
in the algorithms are shown in Figure 6.
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Figure 4. Position tracking errors for Case 1.

Table 1. Mean RMSEs of the overall estimation errors for the simulation Case 1. The bold numbers
stand for the minimum.

Algorithm
200–600 Epochs 601–1000 Epochs

Mean (m) Variance (m2) Mean (m) Variance (m2)

Standard UKF 4.9253 2.7772 2.7306 0.7438
Robust adaptive UKF 3.1699 0.0620 3.0537 0.0555

N-UKF 3.1010 0.0584 2.9953 0.0552
Our proposed method 2.7508 0.0494 2.6785 0.0448
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Figure 5. Position tracking errors for Case 2.
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Table 2. Position tracking errors of the different algorithms for Case 2. The bold numbers stand for
the minimum.

Algorithm
200–600 Epochs 601–1000 Epochs

Mean (m) Variance (m2) Mean (m) Variance (m2)

Standard UKF 7.183457 4.194677 2.963046 0.946813
Robust adaptive UKF 7.516162 4.186171 3.026402 0.083734

N-UKF 7.297261 3.885044 2.731655 0.091129
Improved Sage–Husa UKF 15.99712 90.22968 6.232764 34.17588

Our proposed method 4.160627 0.738772 2.848997 0.095412
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Figure 6. Estimated measurement noise by the algorithms in Case 2.

It can be seen from Figure 5 and Table 2 that the error of the improved Sage–Husa is
much greater than other algorithms. This is because the innovation sequences used by this
algorithm are contaminated by the maneuvering motion. The improved Sage–Husa method
cannot maintain its accuracy or even diverges when process-error becomes non-negligible,
although it can overcome the time-varying noise covariance of the measurement. Similar
to N-UKF, the robust adaptive UKF can recognize the mismatch between the theoretical
values and the calculated ones of Q and/or R, but it cannot provide the same accuracy as
our proposed method because it cannot estimate the R independently.

From Figure 6, we can see that the improved Sage–Husa algorithm could estimate
the measurement noise variance. However, this method requires a much longer time to
catch up with the reference values; moreover, this method would give a much greater
overestimation than ours. The N-UKF and the adaptive fading algorithm can estimate the
measurement noise variance only when the variance becomes greater, and they fail when
the variance becomes smaller. After the epoch 600, the estimated values cannot be restored
to the reference values. The values estimated by the standard UKF are unchanged, because
the standard UKF does not have the ability to estimate the measurement noise variance.

For Case 3, from Figure 7 and Table 3, we can see that the standard UKF takes about
200 epochs (from epochs [601, 800]) longer to obtain the accuracy than the N-UKF, the
adaptive fading UKF, and our proposed method. The reason is that in order to maintain
its accuracy, the standard UKF could only rely on the accurate measurement under the
condition in Case 3, this correction procedure has a relative long lag. As to the improved
Sage–Husa method, it could be influenced relatively significantly by the process-error
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more than other algorithms. The simulation result is similar as with Case 2, that the
positioning errors estimated by the improved Sage–Husa algorithm are the greatest among
the candidates. The N-UKF and the adaptive fading UKF have a similar accuracy because
they can both resist the process-error and the time-varying measurement noise to some
extent, but they cannot estimate the measurement noise variance as accurate as ours, as
mentioned above in Case 2.
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Table 3. Position tracking errors of the different algorithms for Case 3. The bold numbers stand for
the minimum.

Algorithm
200–600 Epochs 601–1000 Epochs

Mean (m) Variance (m2) Mean (m) Variance (m2)

Standard UKF 7.477111 5.486144 3.029508 1.137522
Robust adaptive UKF 7.433516 3.756174 2.982606 0.265064

N-UKF 7.350406 3.667636 2.698935 0.141301
Improved Sage–Husa UKF 22.03666 240.3023 29.90538 267.7623

Our proposed method 4.260319 0.56904 2.749053 0.110879

4.3. Discussion

Base on the decentralized MSIF architecture, we proposed the RAUKF-MSIF to tackle
the problems for the nonlinear target tracking systems with time-varying noise covariance.
From the results simulated in Case 1, we can see that if there are time-varying noise
covariances, the algorithms can detect the process-error and adapt the Q except for the
standard UKF.

In practice, the measurement noise covariance is also time-varying. So, in Case 2,
we simulate the condition under which each sensors’ measurement noise covariance is set
to be 10 times greater during the specified interval than the others. From Figure 6, we can
see that the estimation of R by our proposed scheme is more accurate than the others due
to RMNCE and the fusion strategy described in Section 2.2 and 3.1. The performance of the
improved Sage–Husa is not as good as ours because it could not resist the process-error.

The harshest environment of the simulations is presented in Case 3, in which, together
with maneuvering, the matrix Q and R are changed simultaneously in the same interval.
As analyzed in Section 4.2 for Case 3, our proposed method can obtain a relatively high ac-
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curacy due to both the process-error and the measurement noise variance can be estimated
or adapted by our ARUKF-MSIF architecture.

Future work can be divided into two aspects. Firstly, we will focus on improving the
numerical stability when adapting the matrix Q. Although the algorithms including ours
can adapt the matrix Q, the adapted Q would be a negative definite or the adapted scalar
factor would be so much greater than desired that some certain limited values must be set
to prevent the algorithms from diverging.

Secondly, in addition to adapting the matrix Q, we would introduce the idea of IMM
to estimate the dynamics of the target, while reducing the computational load of the IMM.
Due to the existence of redundant measurement, we could improve the accuracy of the
probability of the target moving from one model to another. Thus, a more precise model
together with an adapted Q would improve the estimation accuracy further.

5. Conclusions

This paper addresses the target tracking problem with both time-varying process-error
and time-varying measurement noise covariance by using a multi-sensor information filter
structure based on an adaptive UKF and the RMNCE. The proposed ARUKF-MSIF employs
the RMNCE to estimate the measurement noise variance of each sensor. Subsequently,
it uses the theory of hypothesis testing to identify process model uncertainty; next, an
innovative algorithm uses both the innovation sequences and the residual sequences to
correct the process-error. Then, the algorithm calculates the weight matrices, which are used
to fusion the results obtained by each individual sensor. The simulation results demonstrate
that the proposed architecture can be robust against the process model uncertainty and
error. Moreover, in the harshest circumstances as simulated in Case 3, the proposed method
would still maintain the lowest position error among the algorithms. Further, although this
paper uses the UKF as the filter, the core idea of the ARUKF-MSIF can be to broaden the
EKF, CKF, and other variants of Kalman filter.
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