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Persistent random deformation 
model of cells crawling on a gel 
surface
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Thasaneeya Kuboki & Satoru Kidoaki

In general, cells move on a substrate through extension and contraction of the cell body. Though cell 
movement should be explained by taking into account the effect of such shape fluctuations, past 
approaches to formulate cell-crawling have not sufficiently quantified the relationship between cell 
movement (velocity and trajectory) and shape fluctuations based on experimental data regarding actual 
shaping dynamics. To clarify this relationship, we experimentally characterized cell-crawling in terms of 
shape fluctuations, especially extension and contraction, by using an elasticity-tunable gel substrate to 
modulate cell shape. As a result, an amoeboid swimmer-like relation was found to arise between the cell 
velocity and cell-shape dynamics. To formulate this experimentally-obtained relationship between cell 
movement and shaping dynamics, we established a persistent random deformation (PRD) model based 
on equations of a deformable self-propelled particle adopting an amoeboid swimmer-like velocity-
shape relationship. The PRD model successfully explains the statistical properties of velocity, trajectory 
and shaping dynamics of the cells including back-and-forth motion, because the velocity equation 
exhibits time-reverse symmetry, which is essentially different from previous models. We discuss the 
possible application of this model to classify the phenotype of cell migration based on the characteristic 
relation between movement and shaping dynamics.

Cell migration plays important roles in various physiological and pathological processes in living organisms such 
as embryogenesis, morphogenesis, immunological response1, wound healing2, cancer metastasis3, etc. The ability 
to characterize and predict the migration behaviors of various kinds of cells is an important issue not only from 
a biomedical viewpoint, but also from the perspective of basic science in molecular cell biology. In general, cells 
dynamically change their shape as a result of contraction by actomyosin and extension through protrusion of the 
plasma membrane driven by actin polymerization4. In a time-scale of from minutes to hours, an entire cell can 
move based on the sum of such local fluctuations in shape. For example, in the case of keratocytes, extension of 
the front part and retraction of the rear part occur simultaneously at a constant speed. As a result, the cell experi-
ences ballistic motion with a constant shape5. In the case of Dictyostelium cells, local extension and contraction 
fluctuate spatiotemporally6. As a result, cell movement consists of an alternating series of directed motion and 
random turning, which is called persistent random motion7.

With regard to such persistent random motion, random walk-based models, such as the persistent random 
walk (PRW) model, have been proposed to reproduce the migration patterns, but only if the trajectory does not 
have strong spatiotemporal correlations8–13. However, the PRW model does not adequately explain ordered pat-
terns of migration, such as rotation, oscillation, and zig-zag trajectories, because this model assumes Brownian 
motion. These ordered motions have been reported to derive from the spatiotemporal dynamics of pseudopo-
dia6,14–17, i.e., cell-shape dynamics. Thus, to explain spatiotemporally correlated motion, we should consider the 
effect of the shaping dynamics. However, previous approaches to formulate cell-crawling have not adequately 
quantified the relationship between cell movement and shape fluctuations based on experimental data regarding 
actual shaping dynamics. Recently, as a model for the migration of keratocytes and Dictyostelium cells, a phe-
nomenological cell-crawling model was proposed based on the assumption that cell velocity is determined by the 
cell shape18. However, such a shape-based formulation of movement has not been experimentally examined for 
persistent random motion.
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In this study, we aimed to elucidate and formulate the relationship between movement and shape fluctua-
tions through the quantitative analysis of cell-shaping dynamics. First, to clarify the quantitative relationship 
between velocity and shape, we experimentally characterized the crawling of fibroblast cells in terms of shape 
fluctuations, especially extension and contraction, by using an elasticity-tunable gel substrate to modulate cell 
shape. Through a Fourier-mode analysis of the shape, the cell velocity was found to follow the cell-shape dynam-
ics, where the obtained velocity-shape relationship was equivalent to that of an amoeboid swimmer19. Next, to 
formulate such shape fluctuation-based cell movement, we proposed a persistent random deformation (PRD) 
model by incorporating the amoeboid swimmer-like velocity equation19 into model equations for a deformable 
self-propelled particle18. The PRD model fully explains the statistics and dynamics of not only movement but also 
cell shape, including the characteristic back-and-forth motion of fibroblasts. This reciprocating motion is due to 
the time-reverse symmetry of the amoeboid swimmer-like velocity equation19, which is essentially different from 
previous migration models. Through fitting of experimental data with the model, we quantitatively evaluated 
fitting parameters, such as mobility, relaxation time of shaping, and magnitude of the internal force. The depend-
ence of the fitting parameters on elasticity revealed that cells showed strong adhesion and large internal force on 
stiffer gels, as previously reported20. Finally, we discuss the possible application of this PRD model to classify the 
phenotype of the migration of different kinds of cells based on their characteristic relations between movement 
and shaping dynamics.

Results
Movement and deformation of cells on a gel surface.  First, to elucidate the phenomenologi-
cal relationship between cell movement and deformation, we studied the movement and deformation of NIH 
3T3-fibroblast cells on a hydrogel surface with different degrees of stiffness. Photocurable styrenated gelatin (StG) 
was used because the elasticity of the gel can be adjusted from 1 to 1000 kPa by changing the duration of light 
irradiation in a photocrosslinking procedure21 (see Method). To determine the cell response to the elasticity of 
the substrate, we used 35, 120, and 410 kPa gels. Because cell movement is restricted to the flat gel surface, we 
analyzed the shape and trajectory of the geometric center of the cell shape projected on an x-y plane. In this paper, 
we define cell movement as the translocation of a cell body from one site to another. The word “cell migration” is 
used when we focus on the properties of movement at a cell-population level.

Figure 1A,B show phase-contrast images of cell trajectories on 35 and 410 kPa gels, respectively. As the elas-
ticity of the gel increases, the motility and persistence of motion decrease, and the cell body extends20,22,23. In all 
cases, the cells tend to show back-and-forth motion (Fig. 1C). Figure 1D shows time evolutions of movement 
and cell shape for cells on 35 kPa gel: Fig. 1D1–D3 show slow, middle, and fast cells, respectively. In all cases, the 
cells migrate along the long-axis of elongation24,25. When the cells change their direction of movement, they con-
tract pseudopodia and then extend new ones. Thus, at the turning point of cell movement, the cells change their 
shape. As long as the cells remain elongated, they persistently migrate. A comparison of the slow and fast cells 
(Fig. 1D1,D3) shows that the fast cell repeatedly extends and contracts during migration. On the other hand, cells 
that maintain constant elongation do not move fast (Fig. 1D1).

Figure 1D implies that cell movement is correlated with the cell-shape dynamics. Here, we seek to quantify the 
relation between cell movement and shape. To evaluate cell shape quantitatively, we calculated the complex 
Fourier coefficient Cn of cell-shape R (see Method). The inset in Fig. 1D shows a phase-contrast image of a cell and 
its periphery detected by image analysis. The distance R(θ) from the centroid to the rim is calculated as a function 
of the angle θ, where θ is measured from the x axis (Fig. 1D, Inset). We averaged R over θ ± 6° for smoothing. 
Next, complex Fourier coefficient Cn(t) is calculated from R(θ, t). Here, we focus on the elongation mode C2(t) 
and triangular mode C3(t). Figure 1E shows the time series of the magnitude of cell velocity |v(t)|, elongation 
|C2(t)|, time derivative of elongation C2

| |, and time derivative of triangular deformation | |C3 . |v(t)| tends to be large 
when elongation |C2(t)| varies rapidly. Thus, the time series of C2

| | closely resembles that of |v|. |v| is also moder-
ately correlated with C3

| |. This result indicates that a cell moves when the cell body extends or contracts. Figure 1F 
shows the relation between |v| and | |C2 . Each symbol denotes the time average data of a cell. As expected, there is 
a strong positive correlation between these values (correlation coefficient r is 0.90). |v| is also positively correlated 
with | |C3  (r = 0.77, Fig. 1G). These results indicate that cells which exhibit frequent extension and contraction 
migrate faster. In a previous cell-crawling model18, |v| is conjectured to be proportional to |C2| and |C3|. However, 
Fig. 1D–G indicate that velocity v is positively correlated with C2

  and C3, instead of C2 and C3.

Migration law based on deformation.  The results in the previous section suggest that cell movement is 
determined by the cell-shape dynamics. Since an equation that describes the relation between cell shape and 
velocity has not been elucidated for persistent random motion, we explored the velocity equation based on defor-
mation, Cn and Cn, experimentally. The previous cell-crawling model18 conjectured that velocity is determined by 

β= −v C Cc1 2 3, where = +v v ivx y1  and C-2 is a complex conjugate of C2. Here, we examine the velocity equation 
in terms of correlation among phases (arguments) of variables, v1, Cn, and Cn

 . The phases correspond to the direc-
tion of movement and deformation (see Method). When the previous model β= −v C Cc1 2 3 holds, 

= −v C Carg( ) arg( )1 2 3  must be satisfied for βc > 0, where arg(x) is an argument of complex variable x. Figure 2A 
shows the joint probability distribution of arg(v1) and −C Carg( )2 3 . As shown, arg(v1) is not correlated with 
arg(C−2C3). Thus, v C Cc1 2 3β= −  does not hold for our experiment. Instead, we found that arg(v1) and C Carg( )2 3−

  
are closely correlated. As shown in Fig. 2B, the joint probability distribution of arg(v1) and 

−C Carg( )2 3  has a region 
of high probability around the diagonal line. This result indicates that = −v C Carg( ) arg( )1 2 3 . By analogy to the 
previous model, = −v C Carg( ) arg( )1 2 3  suggests the relation v C C1 1 2 3β= −

 . The relation v C C1 1 2 3
β= −  also satisfies 

the requirement that |v| is positively correlated with C2
| | (Fig. 1E,F). Similarly, we found a moderate correlation 
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between arg(v1) and C Carg( )2 3
− −  (Fig. 2C). Figure 2C suggests that the velocity equation also includes the term 

C C2 2 3β− − . However, the term β −C C2 2 3 should be less dominant than β −C C1 2 3. Based on the above consideration, 
we propose that the velocity equation is

v C C C C , (1)1 1 2 3 2 2 3β β= −− −
 

where β1 and β2 are fitting parameters. As β1 and β2 increase, cell velocity increases. Thus, β1 and β2 represent the 
mobility of the cell. This equation appeared to be equivalent to the migration law for a swimming amoeboid in a 
3D fluid19. In general, terms with a higher mode, − +

C Cn n 1 and − +
C Cn n 1 with n > 3, could appear in the velocity 

equation19. However, in our experiment, C C2 3−  and C C2 3−
  are the largest modes, and higher modes make only a 

small contribution. Thus, for simplicity, we do not include higher modes in Eq. (1). The equations for higher 
mode, Cn (n > 3), are discussed in the Supplementary Information (SI).

Here, we examine Eq. (1) experimentally, in terms of the measured velocity and deformation. We calculated 
the mobility β1 and β2 by least-squares fitting of Eq. (1). Estimated β1 and β2 for the three gels are listed in Table 1. 
As expected, β2 is smaller than β1 in all cases. As the elasticity of the gels increases, the mobility decreases. This 
result suggests that the resistance to motion increases as the elasticity of the substrate increases. By using esti-
mated β1 and β2, we can compare the velocity v1 predicted from the model to the actual velocity V1 = Vx + iVy 

Figure 1.  Cell movement with extension and contraction of the cell body. (A,B) Examples of the trajectories of 
cells on (A) 35 kPa and (B) 410 kPa gels. (C) Image sequence of a reciprocating cell. The time interval for each 
image is 25 min. (D) An example of the cell-shape dynamics. Color indicates the observation time (see color 
bar). Cells have average velocities of (D1) 10–20 μm/h, (D2) 20–30 μm/h, and (D3) 40–50 μm/h. Inset: Phase-
contrast image of a cell and periphery of the cell detected by image analysis. (E) Time series of the magnitude of 
velocity |v(t)|, elongation |C2(t)|, time derivative of elongation | |C2 , and time derivative of triangular 
deformation | |C3 . Dashed lines indicate the peak positions of velocity. (F,G) Relation between the magnitude of 
velocity |v| and the time derivative of elongation C2| | and triangular deformation C3| |. A symbol represents the 
time average of a cell. (A,C,D,E,F,G) Elasticity of the gel: 34 ± 18 kPa. (B) Elasticity of the gel: 412 ± 69 kPa. (A) 
N = 12. (B) N = 10. (F,G) N = 155.
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measured in the experiment. The scatter plot of vx and Vx in Fig. 2D implies that there is a positive correlation 
with large fluctuation. The correlation coefficient r between vx and Vx is 0.39. To clarify the detailed relation, we 
average Vj in sections, Zv i i j x y/2, , ,j γ γ| − | ≤ ∈ = , where the boundaries of the sections are shown as 
dashed lines in Fig. 2D with γ = 12 μm h−1. In Fig. 2E, the symbols and error bars indicate mean values and stand-
ard deviations of Vx and Vy. Blue and red bars at the lower side of the figures denote the region where 99% of the 
data points are included. For both Vx and Vy, the symbols are well aligned on the black line that represents vx = Vx 
and vy = Vy. Next, autocorrelation functions of | |v1  and V1| | were compared (Fig. 2F). For comparison, autocorrela-
tion functions of the velocity | |vc  in a previous cell-crawling model18 were also calculated, where v C Cc c 2 3β= − . 
While the autocorrelation functions of | |v1  and | |V1  are very close, that of vc| | differs significantly. As shown in 
Fig. 2D, it is still hard to precisely predict the instantaneous velocity. However, on average, Eq. (1) describes the 
velocity dynamics well (Fig. 2E,F). Similar results were obtained for fibroblasts on 120 kPa and 410 kPa gels (see 
SI).

What can be predicted for cell movement based on Eq. (1)? Next, we discuss examples of the predicted dynam-
ics in cell movement and deformation (Fig. 3A to C). Here, we consider the case of increasing |Cn| with constant 
phases. In this case, a cell extends its body toward a certain direction. When the first term C C1 2 3

β −  in Eq. (1) is 
dominant, arg(C2) = arg(C3) = 0 gives the dynamics that one of three pseudopodia extends (Fig. 3A). As a result, 
the cell body elongates and the centroid moves in the direction of the extended pseudopod. When the second 
term C C2 2 3β− −  in Eq. (1) is dominant, =Carg( ) 02  and Carg( )3 π=  give the dynamics for the extension of two 
pseudopodia (Fig. 3B). This process represents the extension of lamellipodia. In addition, β− −C C2 2 3

  with 
Carg( )2 π=  and Carg( ) 03 =  gives the case in which an elongated cell extends a new pseudopod (Fig. 3C). For 

Figure 2.  Robust relations among cell velocity and deformations. (A) Joint probability distribution between 
arg(v1) and C Carg( )2 3− . (B) Joint probability distribution between arg(v1) and −C Carg( )2 3

 . (C) Joint probability 
distribution between arg(v1) and C Carg( )2 3−

 . (A to C) Yellow color indicates a high probability. (D) Scatterplot 
of the velocity vx predicted from the model and the actual velocity Vx. (E) Relation between vx (vy), and Vx (Vy). 
Black dashed line represents vx = Vx (vy = Vy). Error bar indicates the standard deviation. Blue and red bars at 
the lower side of the figures denote the region where 99% of the data points are found. (F) Autocorrelation 
function of the velocity | |v1  predicted from the model, actual velocity V1| |, and velocity Vc| | predicted from the 
previous model. (A,F) Elasticity of the gel: 34 ± 18 kPa. N = 155.

Designation β1 (μm−1) β2 (μm−1)

35 kPa gel . ± .0 29 0 01 0 11 0 01. ± .

120 kPa gel 0 20 0 01. ± . . ± .0 06 0 01

410 kPa gel 0 19 0 01. ± . . ± .0 04 0 01

Table 1.  Parameter estimation: velocity equation. List of fitting parameters in Eq. (1). Designation represents 
the elasticity of the gels. The fitting parameters are estimated through least-squares fitting. The minimum and 
maximum values show the 95% confidence interval. N = 155 for 35 kPa gel. N = 95 for 120 kPa gel. N = 119 for 
410 kPa gel.
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the case of decreasing |Cn|, movement with contraction is described. Since Eq. (1) exhibits time-reverse symme-
try, contraction is described as the reverse of extension. Figure 3D to I show the corresponding dynamics 
observed in the experiment, including both extension and contraction. As expected from Eq. (1), it is hard to 
distinguish between extension and contraction based solely on a snapshot of the cell shape (Fig. 3D–I). However, 
there are differences in the cell-shape dynamics. For example, contraction is faster than extension. Consequently, 
we need to know the cell-shape dynamics to predict movement. This migration property is quite different from 
those in a previous cell-crawling model18 and keratocytes5, where velocity is determined by the instantaneous 
shape.

Migration model and fitting of the experimental data.  Equation (1) describes the dynamics of the 
velocity. However, we still don’t have the governing equations for C2 and C3 to describe the actual movement of a 
cell, i.e., the dynamics of the cell trajectory and shaping, because the velocity is determined by the time evolution 
of C2 and C3. Here, we propose a migration model by introducing time-evolution equations for C2 and C3 that are 
based on a previous cell-crawling model18. In the cell-crawling model, elongation and triangular deformations 
are induced by the force dipole F2 and force quadrupole F3 of the internal force acting on the periphery of the cell. 
We derive time-evolution equations for C2 and C3 by considering the force multipole and possible coupling terms 
(see Method):

C C v C F , (2)2 2 2 2 1 3 2
 κ α= − − +−

C C v C C F F , (3)3 3 3 3 1 2 3 3 6 3Κ α β= − − + +−


C (4)3 3 3 3
2Κ κ γ= + .

In these equations, κ2C2 and K3C3 cause relaxation to a circular shape, which corresponds to a restoring force. 
The terms α2v−1C3 and α3v1C2 represent changes in shape due to movement. As we explain later, β3C−3F6 is intro-
duced to fit the long tail of the probability distribution function of C3. γ | |C3 3

2 is a nonlinear damping term to 
suppress the divergence of C3 due to β3C−3F6. Similar to the noise term in the persistent random walk model8–10, 
we assume that the force multipole fluctuates randomly. Here, we use red noise with cut-off frequency κf for the 
force multipole, because the spatial distribution of the internal force may not change so frequently:

Figure 3.  Examples of typical movement predicted from the velocity equation. Red curves show the initial cell 
shape. Blue curves shows the shape after some duration, Δt. Arrows indicate the displacement of the centroid. 
(A,C) Cell movement calculated from Eq. (1). We assume linear increases of (A) | |C2  and (B and C) | |C3

 . (A) For 
the case in which elongation dominantly increases, C C2 3| | | |� � � . C Carg( ) arg( ) 02 3= = . (B,C) For the case in 
which triangular deformation dominantly increases, � � �C C2 3| | | |. (B) π= =C Carg( ) 0, arg( )2 3 . (C) 

π= =C Carg( ) , arg( ) 02 3 . (D–F) Extension processes of cells that correspond to (A–C). (G to I) Contraction 
processes of cells that correspond to reverse dynamics of (A–C). (D to I) Elasticity of the gel: 34 ± 18 kPa.
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F F( ), (5)i f i i i
 κ σξ= − +

where ξi = ξix + iξiy. ξix and ξiy are white Gaussian noise; 0,ij ij kl ik jlξ ξ ξ δ δ〈 〉 = 〈 〉 = , i, k = 2, 3, … and j, l = x, y. In 
the experiment, cells move along the long-axis of elongation (Fig. 1D). In our model, Eqs (1) to (5) are not suffi-
cient to reproduce such movement, because Eq. (1) does not include a coupling term between v1 and C2. To 
resolve this discrepancy, we modify the velocity equation, Eq. (1), by adding a coupling term between v1 and C2:

v v C C C C C , (6)v v1 1 2 1 2 3 2 2 3
 Γ α β β= + −− − −

Γ γ= + .C1 (7)v v 2
2

The additional term αvv−1C2 causes movement along the long-axis of elongation for αv > 025,26. In the previous 
model, velocity regulates the direction of elongation18. In our model, elongation regulates the direction of move-
ment of the cell. We also add the nonlinear damping term γ | |Cv 2

2 to suppress the divergence of v1 due to αvv−1C2. 
We confirmed that Eq. (6) is a better model than Eq. (1) in terms of Akaike’s Information Criterion (AIC)27. For 
35 kPa gel, Eq. (1) gives AIC =  . ×5 352 104, and Eq. (6) gives AIC = 5 263 104. ×  (see SI). Eventually, velocity v1 
is fully determined by cell deformations C2 and C3 that are randomly activated by internal forces F2 and F3. Since 
C2 and C3 should have persistence through terms κ2C2 and K3C3, the migration model, Eqs (2) to (7), can be 
referred to as a persistent random deformation (PRD) model.

Figure 4A and B show the trajectories obtained by experiment and numerical simulation with Eqs (2) to (7) 
(see also SI and movies). Although the model does not have an inertia term in the velocity equation, the trajectory 
consists of persistent motion and rapid turning (Fig. 4B). Figure 4C show the cell-shape dynamics calculated in 
the simulation. In the simulation, we calculate C4, C5, and C6 (see SI). Since inertial forces F2 and F3 fluctuate, 
the cell shape repeatedly extends and contracts. At the turning point, cells change the direction of the deforma-
tion. Cells that experience frequent extension and contraction move faster (Fig. 4C). Thus, the PRD model well 
explains the cell movement and shaping in the experiment (Fig. 1D). In the PRD model, the cell-shape dynamics 
and force gradually follow the fluctuation due to the time-retardation term, 1/κi. As a result, elongation and 
triangular deformation persist for a few hours. Since the direction of movement is approximately parallel to the 

Figure 4.  Cell trajectory and cell shape calculated from the PRD model. (A,B) Starting position-superimposed 
trajectories of the cells for (A) the experiment and (B) the numerical simulation. (C) Examples of the cell-shape 
dynamics obtained from the numerical simulation. Color indicates the observation time. Cells have an average 
velocity of (C1) 10–20 μm/h, (C2) 20–30 μm/h, and (C3) 40–50 μm/h. (A) Elasticity of the gel: 34 ± 18 kPa. 
N = 22. (B,C) We used fitted parameters for 35 kPa gels listed in the SI. To reconstruct the shape, we considered 
higher modes, n < 7 (See SI).
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direction of elongation (Fig. 4C), persistent random motion in the PRD model arises from persistent fluctuation 
of the cell shape, as we expected.

The detailed properties of migration dynamics are shown in Fig. 5, along with a comparison of the experimen-
tal and simulated results. In this figure, red and blue symbols represent the data obtained on 35 and 410 kPa gels, 
respectively. For clarity, symbols for the 410 kPa gel are shifted downward. Black and green lines are fitting curves 
for Eqs (2) to (7) for cells on 35 and 410 kPa gels, respectively (see Method). Note that the statistical properties 
of the results in Fig. 4 are shown as data for the 35 kPa gel in Fig. 5. The experimental and simulated data for 120 
kPa gel are shown in the SI. The properties of migration and deformation are well-fitted by the model. For com-
parison, we also fitted the same experimental data by the conventional PRW model (gray lines in Fig. 5A,H,I, see 
Method). The PRW model reproduces the MSD and autocorrelation function of velocity (see SI). However, the 
model cannot explain the PDFs of velocity, persistent length, or rotation angle (Fig. 5A,H,I). Fitting by the PRW 
model is described in detail in the SI.

Figure 5.  Properties of the cell velocity, deformation and trajectory. (A,C) Probability distribution function 
(PDF) of (A) velocity, (B) elongation, and (C) triangular deformation. (D,E) Autocorrelation function of the 
cells on (D) 35 kPa and (E) 410 kPa gels. Red: elongation. Yellow: triangular deformation. Blue: velocity. Black 
dashed lines: fitted curve. (F) Mean square displacement (MSD). Red: 35 kPa gel. Blue: 410 kPa gel. Black: fitting 
curve for 35 kPa gel. Green: fitting curve for 410 kPa gel (G) An example of the cell trajectory. The trajectory 
was drawn with red lines when cells moved persistently. An example of a rotation angle Δθ is illustrated. (H) 
Complementary cumulative distributions (CDF) of the persistent length. (I) PDF of the rotation angle. (A to 
C, H, and I) Red circle: 35 kPa gel. Blue circle: 410 kPa gels. Black line: fitting curve for 35 kPa gel. Green line: 
fitting curve for 410 kPa gel. (A,H,I) Gray dashed lines: fitted curves by the PRW model. N = 155 for 35 kPa gel. 
N = 119 for 410 kPa gel. (A to C,H,I) For clarity, symbols for the 410 kPa gel are shifted (A to C) 1/100, (H) 1/10, 
and (I) −0.005.
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Statistical properties of cell velocity, deformation and trajectory.  We evaluated the statistical prop-
erties of v1, C2, and C3 through a probability distribution function (PDF) for the migration of a cell population. 
Due to spatial symmetry, the real and imaginary parts of v1, C2, and C3 obey the same distribution function. Thus, 
in Fig. 5A,C, we averaged the PDFs of the real and imaginary parts of the variables. The PDF of the velocity has a 
non-Gaussian tail (Fig. 5A). We found that the PDF of velocity approximately obeys an exponential distribution, 
as previously reported28,29. In the PRD model, the term αvv−1C2 in Eq. (6) causes the exponential tail of the veloc-
ity distribution (Fig. 5A). Without the nonlinear damping term, Cv 2

2γ | |  in Eq. (7), the velocity would show a 
power law distribution30,31. The tail of the PDF of elongation resembles a Gaussian distribution, but the peak of 
the PDF is sharper than that of a Gaussian distribution (Fig. 5B). The PDF of triangular deformation has an expo-
nential tail (Fig. 5C). In the PRD model, the term β3C−3F6 in Eq. (3) gives the exponential tail of the PDF of trian-
gular deformation (Fig. 5C), because the term behaves as multiplicative noise30,31. In addition to the PDFs of v1, 
C2, and C3, those of phase differences among velocity and deformations are also well fitted (see SI).

Figure 5D,E show autocorrelation functions of v1, C2, and C3 for 35 and 410 kPa gels. The dashed lines repre-
sent fitting curves by the model. The relaxation times of C2 and C3 are long compared to v1, which denotes a long 
persistence of the cell shape. The non-Gaussian distribution of C2 and C3 (Fig. 5B,C) and the long persistence 
(Fig. 5D,E) indicate the persistent non-Gaussian fluctuation of cell deformation. Because the cells migrate in the 
direction of elongation (Fig. 1D) and the relaxation of elongation is slow (Fig. 5D,E), the trajectories of the cells 
tend to follow a straight line.

Figure 5F shows the mean square displacement (MSD) of the cells. Similar to previous results13,28,32, the expo-
nents of MSD were 1.6–1.7 at a short time interval. At a long time interval, the exponents came close to 1 and 
the dynamics became diffusive. The cell trajectory consisted of a series of persistent motion and rapid turning7,13. 
Thus, we investigated the persistence and turning angle of the trajectory (Fig. 5G), which are defined in the 
Method section. Figure 5H show the complementary cumulative distributions (CDF) of the persistent length. The 
CDF of the persistent length has an exponential tail, as reported previously13,32. The PDF of the rotation angle Δθ 
has a large peak at 180° (Fig. 5I), which is quite different from previous studies with persistent random walk-based 
models7,13. The angle 180° represents reciprocal motion (Fig. 1C), but the back-and-forth motion is not periodic 
(Fig. 5D,E). The peak decreases as the elasticity of the substrate increases. Thus, back-and-forth motion is sup-
pressed on the stiff gel. In contrast to PRW models that violate time-reverse symmetry, the time-reverse symme-
try of the velocity equation, Eq. (6), causes this strong anti-correlation of turning angles.

Dependence of the cell properties on the elasticity of the substrate.  We now summarize the cell 
response to the elasticity of the substrate. Some of the fitting parameters for the three gels are shown in Table 2. 
All sets of fitting parameters are listed in SI. Table 2 shows that the mobility β1 and β2 significantly decreased as 
the elasticity of the substrate increased. This result suggests that, for a stiff substrate, cells strongly stick to the 
substrate20. The relation κ2 < κ3 indicates that elongation is the most unstable and ‘active’ Fourier mode. As the 
substrate become stiffer, κ3 significantly decreases while κ2 is constant. This implies that triangular deformation 
is enhanced on a stiff gel.

Finally, we performed a dimensional analysis to estimate the magnitude of internal forces. In the PRD model, 
we assume that the coefficients of C2 and C3

  are unity. As a result, the dimensions of σ2 and σ3 become μm h−1. 
Here, we consider Cn/R0 to be the strain for the cell body, where R0 is the mean radius of the cell. We also define E 
as the elasticity of the cell. If we consider that the terms κ2C2 and κ3C3 in Eqs (2) and (3) cause relaxation to a 
circular shape, these terms should correspond to the restoring force ECn/R0. Thus, by multiplying Eqs (2) to (4) by 
E/(R0κn), we can estimate the magnitude of the internal forces to be Eσn/(R0κn). In our analysis, we can calculate 
the non-dimensional forces, σn/(R0κn). Table 2 shows a constant value in the non-dimensional force dipole, σ2/
(R0κ2), while the non-dimensional force quadrupole, σ3/(R0κ3), increases significantly on a stiffer substrate. It has 
been reported that the elasticity of fibroblast cells increases as the substrate becomes stiffer23. Eventually, internal 
forces should increase as the elasticity of the substrate increases20.

Discussion
In this study, we applied a Fourier mode analysis of the cell shape to quantitatively examine the relation between 
movement and shaping dynamics. The Fourier mode analysis revealed that the velocity of fibroblast cells is a 
function of the time derivative of the elongation and triangular deformation of the cell. We sought to apply our 
analytical method to other cells. For example, keratocytes are well-known migratory cells5. Keratocytes migrate 
in a manner that is quite different from that of fibroblasts. Fibroblasts migrate along the long axis of the cell 
body through extension and contraction. On the other hand, keratocytes migrate along the short axis of the cell 
body while retaining an almost constant shape5. Equation (1) cannot explain the migration dynamics of kerato-
cytes because Eq. (1) with a constant shape gives a motionless state. Thus, the previous model of cell-crawling is 

Designation β1 (μm−1) β2 (μm−1) κ2 (h−1) κ3 (h−1) σ2/(R0κ2) σ3/(R0κ3)

35 kPa gel 1.21 ± 0.03 0.24 ± 0.01 0.38 ± 0.00 1.55 ± 0.05 0.66 ± 0.01 0.026 ± 0.001

120 kPa gel 0.83 ± 0.02 0.15 ± 0.01 0.40 ± 0.01 1.11 ± 0.02 0.64 ± 0.01 0.036 ± 0.001

410 kPa gel 0.59 ± 0.02 0.07 ± 0.00 0.40 ± 0.01 0.51 ± 0.02 0.67 ± 0.03 0.076 ± 0.003

Table 2.  Parameter estimation: Persistent random deformation model. List of fitting parameters in Eqs (2) 
to (7) used in Figs 3, 4 and 5. The method of fitting is described in Method. The designation represents the 
elasticity of the gels. Mean radius R0 is obtained from experimental data. R0 = 23.9, 26.6, and 27.2 μm for 35, 
120, and 410 kPa gels, respectively.
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adequate for a migration model of keratocytes18, which assumes that the velocity is proportional to C−2C3. If we 
combine Eq. (1) with the previous model, the general form of the migration law can be written as

v C C C C C C , (8)c1 1 2 3 1 2 3 2 3
 β β β= − +− − −

where βc = 0 gives a migration model of fibroblast-like cells and β1 = β2 = 0 gives a migration model of kerato-
cytes. Dictyostelium cells seem to have intermediate properties. When we focus on the phases of velocity and 
deformation, arg(v1) is correlated with arg(C−2C3)24. This implies that the velocity equation includes the term 
βcC−2C3. However, in contrast to keratocytes, the shape of Dictyostelium cells varies considerably over time6. 
Thus, extension and contraction, Eq. (1), could also be included in the velocity equation. Although the above 
discussion is merely a conjecture, a systematic investigation of the relation between cell velocity and shape may be 
useful for classifying the migration type of cells.

In this work, we found that the movement of fibroblast cells on a gel surface is not explained by previous 
migration models. We quantitatively show the correlation between cell movement and extension/contrac-
tion of the cell body. We propose a persistent random deformation (PRD) model that is based on extension/
contraction-based movement. The PRD model shows good agreement with the statistical properties of the trajec-
tory, velocity and shape of the cell, including persistent non-Gaussian fluctuation of deformation. By fitting exper-
imental data to the model, we quantitatively evaluate the coefficients in Eqs (2) to (7), such as motility parameters, 
the relaxation time of shaping, and the magnitude of internal force. With regard to a theoretical viewpoint, it is 
important to clarify the physical meaning of the coefficients by solving the continuous migration model33,34 based 
on the dynamics of focal adhesion and actin35. The movement and shaping of cells should be regulated by the 
dynamics of focal adhesion, stress fibers and an actin network35. Thus, with regard to an experiment, the simul-
taneous measurement of such internal structures could provide a better understanding of migration law Eq. (1) 
and the PRD model. Since the PRD model can be applied regardless of the details of the cell and its environment, 
we can evaluate the dependence of cell properties on the culture environment through estimation of the fitting 
parameters. In summary, the proposed model and analytical method provide a new tool for investigating the 
migration dynamics of cells.

Methods
Preparation of StG gel substrate.  Photocurable styrenated gelatin (StG) was used as a culture substrate. 
The preparation method has been described previously21,36,37. StG (30 wt%) and sulfonyl camphorquinone (2.5 
wt% of gelatin; Toronto Research Chemicals, ON, Canada) were dissolved in phosphate-buffered saline (PBS). 
The mixed solution was centrifuged and aspirated to exclude deposits and dissolved oxygen. The sol solution 
was then conditioned using an AR-100 deforming agitator. 30 μl of the StG sol solution was spread between 
vinyl-silanized glass substrates (vinyl-glass) and a normal glass substrate coated with poly(N-isopropylacryla-
mide) (PNIPAAm, Sigma Aldrich, St. Louis, MO). The gel was then prepared by irradiation of the entire sample 
with visible light (62 or 63 mW/cm2 at 488 nm; light source: MME-250; Moritex Saitama, Japan). Finally, the gels 
were detached from the PNIPAAm-coated normal glass substrate and washed thoroughly with PBS at 28 °C to 
remove adsorbed PNIPAAm. The elasticity of the gel was varied by changing the duration of irradiation from 
300 s to 660 s. As we reported previously, the surface biochemical conditions were ensured to be the same for all 
the gel samples with different elasticities21. Therefore, the present experiments enabled us to investigate the pure 
biomechanical aspects of cell migration. The surface elasticity of the StG gel was determined by nano-indentation 
analysis using an atomic force microscope (JPK NanoWizard 4, JPK Instruments). A commercial silicon-nitride 
cantilever with a tetrahedral tip and a nominal spring constant of 0.1 N/m was used (BioLever mini, Olympus). 
We made three hydrogels with Young’s moduli of 34 ± 18 kPa, 121 ± 46 kPa, and 412 ± 69 kPa, respectively.

Cell culture.  NIH 3T3 fibroblast cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, Nacalai 
Tesque) at 37 °C in a humidified atmosphere containing 5% CO2.

Time-lapse observation of cell migration.  The migratory motion of cells on gels was monitored using 
an automated all-in-one microscope with a temperature- and humidity-controlled cell chamber (BIO REVO 
BZ-9000; Keyence Corporation, Osaka, Japan). Prior to the time-lapse observations, cells were seeded onto the 
gel surface at a density 1.5 × 103 cells/cm2 and cultured for 6 hours under 5% CO2. Phase-contrast images of cells 
were captured every 5 min for 15–20 h.

Analysis of cell trajectories and cell shape.  Movement trajectories and the shape of the cells were deter-
mined and analyzed using MATLAB software. Based on the edge detection of the cell, we extracted the shape of 
the cell from the phase-contrast images (Fig. 1D). The details of image-processing are explained in SI. We traced 
each cell and measured the time evolution of the trajectory and shape. If the cells collided or if a cell replicated, we 
stopped the trace. When the cells separated again, we renumbered the cells and restarted the trace. Thus, the cells 
have different durations of data. We only analyzed data that accumulated for longer than 8.3 h (35 kPa and 120 
kPa gels) or 4.2 h (410 kPa gel). Through the image analysis, cell trajectories x(t) and shape R(θ, t) were calculated 
(Fig. 1D inset). The complex Fourier coefficient Cn(t) of the spatiotemporal shape R(θ, t) is defined as

R t R C t e C t e( , ) ( ( ) ( ) ),
(9)n

m

n
in

n
in

0
2

∑θ = + +θ θ

=
−

−

where R0 is the mean radius and m is the number of data points. The mode n = 1, C1(t), almost always vanishes 
because C1(t) corresponds to displacement of the centroid. Thus, C1(t) is included in the velocity of the cen-
troid25,26. The amplitude |Cn(t)| corresponds to the magnitude of deformation, and the phase φn represents the 
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direction of maximum deformation, where φn is defined as φ= | |C t C t in( ) ( ) expn n n. Before calculating velocity v t( ) 
and C t( )n , we take the moving average of x t( ) and Cn(t) over 3 consecutive data points. β1 and β2 in Eq. (1) are 
estimated by minimizing the distance S between the velocity V t( ) obtained experimentally and the velocity v t( ) in 
the model; V vS 2= ∑ − . The solution of ∂ = ∂ =β βS S 0

1 2
 gives β1 and β2.

Coupling terms in the model.  Based on the symmetry argument, we explain how coupling terms in the 
model are determined. A necessary condition for the coupling term is to satisfy the fundamental symmetries, 
uniformity and isotopy of the space25,26,38. The model equations should be invariant under a rotational transfor-
mation of coordinates. For simplicity, we define =C v1 1 and φ φ= v1 . When we rotate the cell θ0 radians, 
C t C t in( ) ( ) expn n nφ= | |  is transformed into C t in C in( ) exp ( ) expn n n0 0φ θ θ| | + = . Similarly, the 2nd-order nonlinear 
term C Cl m is transformed into θ+C C i l mexp ( )l m 0. In the equation for Cn, we require that Cn and C Cl m undergo the 
same transformation, otherwise the equation changes under rotational transformation. Thus, n = l + m is 
required. For example, C−1C2 and C−2C3 are acceptable nonlinear terms in the equation of C1. In the same way, the 
3rd-order nonlinear term C C Ck l m must satisfy the condition n = k + l + m. In the case of a coupling term that 
includes Cl and Fm, the same condition holds.

Numerical simulation of the model.  For numerical calculation of the force terms, Eq. (6), we use the 
standard Euler-Maruyama scheme for time discretization:

F t t F t F t t t( ) ( ) ( ) ( ) (10)i i f i f i i
1/2κ κ σξ+ Δ − = − Δ + Δ .

To calculate Eqs (3) and (4), we use the Euler method with Δt = 0.5 min. The trajectories are calculated as 
+ Δ − = Δ + Δ − = Δx t t x t v t y t t y t v t( ) ( ) , ( ) ( )x y . In the procedure for fitting, we numerically sampled x(t), 

y(t), and Cn(t) with a time interval of 5 min, which is identical to the time interval of the image sequence in the 
experiment. To include observation error13, we add Gaussian white noise to x(t), y(t), and Cn(t);

ξ ξ

ξ ξ

= + = +

= + = +

x t x t y t y t

C t C t C t C t

( ) ( ) , ( ) ( ) ,

Re( ( )) Re( ( )) , Im( ( )) Im( ( )) , (11)
ox oy

n n rn n n in

where ξi are white Gaussian noises with standard deviation σ0. We estimated that the magnitude of the observa-
tion error of image processing was around 1 μm (see SI). In the fitting procedure, similar to the previous work13, 
the magnitude of the observation error σ0 was treated as a fitting parameter. We then calculate v t( ), C t( )n  after a 
moving average of x t( ) and C t( )n ;

v x xt t t( ) [ ( ) ( )]/ , (12)τ τ= + −

 τ τ= + −C t C t C t( ) [ ( ) ( )]/ , (13)n n n

with τ = 5 min. The properties of the trajectory are analyzed with the same procedure as that used for the exper-
imental data.

Fitting of the experimental data by the PRD and PRW models.  In this section, we explain the 
method for fitting of the PRD and PRW models. Both fittings are performed at the cell-population level. For the 
PRD model, the number of fitting parameters is large. Thus, it is difficult to find the best fit either analytically 
or numerically. Thus, we manually search for a set of fitting parameters that well reproduces PDFs of velocity, 
deformation, phase differences (see SI), autocorrelation function of velocity and deformations, persistent length 
and time, rotational angle, and mean square displacement. The parameter range of manual search is shown in SI. 
Next, we numerically search the set of fitting parameters that locally minimize an error function ERR around the 
manually searched fitting parameters.

ERR R(1 ), (14)i
2∑= −

where Ri
2 are coefficients of determination. Here we use R2 of quantile-quantile plots of experimentally-measured 

and numerically-calculated PDFs of velocity, deformations, and phase differences. We also include R2 of the 
autocorrelation functions of velocity and deformations in the error function. Since the numerical results slightly 
fluctuate due to the finite size of the data points, the calculated local minimum of ERR slightly fluctuates from 
time to time. Thus, we searched for the local minimum 20 times. In Table 2, we show the average and standard 
deviation of fitting parameters that give a local minimum of ERR.

For fitting by the PRW model, we fit the mean square displacement of experimental data to that of the analyti-
cal solution of the PRW model13 (see SI). In the fitting procedure, we numerically minimize the weighted residual 
sum of squares by using a nonlinear programming solver in MATLAB software.

Calculation of persistence and turning angle.  To extract the persistent motion from the trajectory, we 
used a time series of velocity correlation CV(t) with a short time interval;

= + Δ + + ΔCV t v t t v t v t t v t( ) ( ) ( ) ( ) ( ), (15)x x y y

where Δt = 10 min. CV(t) has a small value for two cases; the cell shows a rapid change in the direction of migra-
tion, or the cell almost stops. Therefore, we define that motion is persistent when CV(t) has a large value. For 
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the threshold of persistent motion, a value that was 2/3 of the median of CV(t) was used, where the median was 
taken for each trajectory. In Fig. 5G, the trajectory is drawn with red lines when the cell moves persistently. We 
define the persistent length as the length of the red lines in Fig. 5G. We also define the rotation angle as the angle 
between two successive persistent trajectories7, shown as Δθ in Fig. 5G.

Data and materials availability.  All data needed to evaluate the conclusions in the paper are present in 
the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the 
authors.
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