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Abstract: N-acetylglutamate synthase (NAGS) catalyzes the production of N-acetylglutamate 

(NAG) from acetyl-CoA and L-glutamate. In microorganisms and plants, the enzyme 

functions in the arginine biosynthetic pathway, while in mammals, its major role is to 

produce the essential co-factor of carbamoyl phosphate synthetase 1 (CPS1) in the urea 

cycle. Recent work has shown that several different genes encode enzymes that can 

catalyze NAG formation. A bifunctional enzyme was identified in certain bacteria, which 

catalyzes both NAGS and N-acetylglutamate kinase (NAGK) activities, the first two steps 

of the arginine biosynthetic pathway. Interestingly, these bifunctional enzymes have higher 

sequence similarity to vertebrate NAGS than those of the classical (mono-functional) 

bacterial NAGS. Solving the structures for both classical bacterial NAGS and bifunctional 

vertebrate-like NAGS/K has advanced our insight into the regulation and catalytic 

mechanisms of NAGS, and the evolutionary relationship between the two NAGS groups. 

Keywords: arginine biosynthesis; urea cycle; N-acetylglutamate synthase; crystal structures; 
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1. Introduction 

N-acetylglutamate (NAG) is the initial precursor of arginine in the arginine biosynthetic pathway in 

microorganisms and plants, while the same compound is an essential cofactor of carbamoyl phosphate 

synthetase 1 (CPS1) in the urea cycle [1–3]. Acetylation of the early precursors of arginine prevents 

the spontaneous cyclization of the semialdehyde with the unprotected α-amino group of glutamate 

separating arginine biosynthesis from proline biosynthesis. The flow of the acetylated precursors  

of arginine often starts with NAG and ends with acetylornithine, identification of the novel  

N-acetylornithine transcarbamylase suggests that the acetylated precursors of arginine extend beyond 

acetylornithine in certain bacteria [4–6]. Deacetylation of acetylornithine to form ornithine is achieved 

by one of two enzymes, either acetylornithine deacetylase (acetylornithinase) in the linear pathway,  

or ornithine acetyltransferase in the cyclic pathway. The cyclic pathway observed in most bacteria  

and plants recycles the acetyl group to form NAG, which is energetically more economical and is  

considered traditionally to have evolved more recently [7]. The formation of arginine is catalyzed by three  

subsequent enzymes, ornithine transcarbamylase, argininosuccinate synthase, and argininosuccinate lyase, 

via citrulline and argininosuccinate. 

Enzymes catalyzing the acetylation of L-glutamate exhibit a high degree of diversity compared to 

the other enzymes of arginine biosynthesis. The best known is the classical bacterial N-acetylglutamate 

synthase (NAGS), which was identified in Escherichia coli and Pseudomonas aeruginosa [8–11].  

This enzyme is encoded by a single gene (argA), and consists of two domains. The N-terminal domain 

is similar to amino acid kinases (AAK), which are also found in the next enzyme of arginine 

biosynthesis, N-acetylglutamate kinase (NAGK). The C-terminal, N-acetyltransferase (NAT) domain 

is a member of the Gcn5-related acetyltransferase (GNAT) family that transfers the acetyl group from 

acetyl-CoA to various amino groups. The protein sequence of members of the GNAT family is highly 

diverse with overall similarities as low as 5%–10%. Even though human and rat NAGS activities have 

been known for more than thirty years [12–14], the mammalian NAGS genes were not identified until 

2002, probably because of the low sequence similarities to bacterial homologues [15,16]. Interestingly, 

some bacterial NAGS-like sequences with higher sequence similarities to mammalian NAGS than to 

classical bacteria NAGS, were also identified in several Xanthomonadales and marine α-proteobacteria. 

Further studies have revealed that these proteins have both NAGS and NAGK activities, catalyzing the 

first two reactions of arginine biosynthesis as a bifunctional NAGS/K enzyme [17,18]. Phylogenetic 

analysis of NAGS sequences from bacteria, fungi, plants and vertebrates demonstrated that classical 

bacteria NAGS and plant NAGS belong to one group (defined as the bacteria-like NAGS group), while 

vertebrate and fungal NAGS and bifunctional NAGS/K cluster into another group (defined as 

vertebrate-like NAGS group), but with higher divergence within the group [17]. Interestingly, fungal 

NAGK also belongs to the vertebrate-like NAGS group, even though it does not have NAGS activity. 

In addition to the above enzymes, which have AAK and NAT domains, several other proteins  

are able to catalyze the formation of NAG (Figure 1). The best-known is argJ encoded ornithine 

acetyltransferase (OAT), which catalyzes the reversible acetyl exchange between ornithine and 

glutamate. OATs have been characterized in vitro or in vivo as mono- or bifunctional enzymes [19,20]. 

The bifunctional OAT catalyzes both the acetyl transfer reaction from acetylornithine to glutamate and 

from acetyl-CoA to glutamate as does the typical NAGS. No detectable sequence similarity is 
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observed between bifunctional OATs and typical NAGS. It seems that the CoA moiety of acetyl-CoA 

does not enter the catalytic site of OAT [19], in contrast to the typical NAGS, which recognizes  

CoA [21]. Mature active OAT derives from a preprotein, which undergoes autocatalytic cleavage to 

form a biologically active hetero tetramer [22,23]. 

 

Figure 1. Enzymes that produce N-acetylglutamate. Bacteria-like N-acetylglutamate 

synthase (NAGS) include the classical bacterial NAGS and plant NAGS, which have 

hexameric architectures, represented by NAGS from Neisseria gonorrhoeae (PDB code 

2R8V). Vertebrate-like NAGS include the bifunctional bacterial NAGS/K, mammalian 

NAGS, fungal NAGS and other vertebrate NAGS, which have tetrameric architectures, 

represented by the bifunctional NAGS/K from Maricaulis maris (PDB code 3S6G). These 

two groups of NAGS are typical NAGS enzymes in that they have both AAK and NAT 

domains and catalyze the formation of NAG from AcCoA and glutamate. They are the 

focus of this review. ArgJ is the mono- or bi-functional ornithine acetyltransferase that 

catalyzes the production of NAG from acetylornithine and glutamate (mono-) and AcCoA 

and glutamate (bi-). This enzyme is likely to be a heterotetramer, represented by argJ from 

Mycobacterium tuberculosis (PDB code 3IT4). Other atypical NAGSs exist in certain 

bacteria but no structures have been determined so far. The short version of NAGS  

(S-NAGS), for example argA from M. tuberculosis has only NAT domain. The NAGS 

encoded by the argO gene of Campylobacter jejuni (O-NAGS) consists of 146 amino 

acids, which broadly relate to the GNAT family. H-NAGS has been identified in Moritella 
abyss and Moritella profunda with argH fused to the N-terminal end of the NAT related 

domain. C-NAGS is a novel type of NAGS, recently identified in Corynebacterium 
glutamicum, whose sequence does not have any relationship to other known NAGS. 

Synthesis of NAG can also be catalyzed by other proteins including argO encoded NAGS  

(O-NAGS) first identified in Campylobacter jejuni, S-NAGS, a short version of NAGS first identified 

in M. tuberculosis [24], and argH fused NAGS (H-NAGS) [7,25]. O-NAGS has only 146 amino  

acids [26] and although its sequence is related to the GNAT family, it does not have significant 
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similarity to the NAT domain of the typical NAGS. S-NAGS is able to catalyze the formation of NAG, 

but has an extremely high Km for glutamate [24]. H-NAGS, which includes a short version of NAGS 

fused to the C-terminus of argininosuccinate lyase (argH), has been found in some bacteria in the  

Alteromonas-Vibro group and is able to complement an argA E. coli mutant [27]. These enzymes have 

been reviewed in detail by Xu et al. [7]. More recently, a novel type of NAGS, the sequence of which 

is not related to any known NAGS, was identified in Corynebacterium glutamicum [25]. The variety of 

these enzymes raised the question of how and why proteins with such high divergence have the ability 

to catalyze the formation of the same compound, NAG. 

The acetylation of the α-amino group of glutamate was once thought to be the only way to  

prevent spontaneous cyclization of unprotected intermediates in the arginine biosynthetic pathway.  

The discovery of the novel N-succinyl-L-ornithine transcarbamylase indicates that different organisms 

may use different mechanisms to protect the α-amino group of glutamate [28,29]. Although the  

gene that encodes an enzyme that succinylates glutamate has not been identified, the identification of  

a GNAT-like succinyltransferase suggests that a similar enzyme will catalyze the succinylation 

reaction of glutamate [30]. Yet another mechanism for protecting the α-amino group of glutamate was 

identified when a small protein, LysW, was shown to also protect the α-amino group of glutamate by 

covalently linking the amino group of glutamate to the γ-carboxyl group of the terminal glutamate of 

LysW [31]. A RimK-like protein [32] encoded by ArgX (a homolog of LysX), with no sequence 

similarity to any known NAGS, catalyzes the above reaction. Notably, this mechanism was discovered in 

a member of the archaea, which use the same set of enzymes for L-lysine and L-arginine biosynthesis. 

This review will focus on the function, structures and mechanisms of the typical NAGS, which have 

been well characterized. Fifteen structures of these enzymes have been determined with seven in the  

bacteria-like NAGS group (PDB codes: 4I49, 3D2M, 3D2P, 2R8V, 2R98, 3B8G and 3E0K) and eight 

in the vertebrate-like NAGS group (4NEX, 4NF1, 4KZT, 4K30, 3S6H, 3S6G, 3S6K and 3S7Y).  

They include full-length and sub-domain structures, complexed with inhibitors as well as substrates.  

No NAGS structure from any fungi or plant has been determined until now, probably because of 

instability of most NAGS from other organisms. The structural information gleaned so far offers new 

insights into structure-function relationships as well as the catalytic and regulatory mechanisms. 

2. Early Biochemical Characterization of NAGS 

NAGS from E. coli (ecNAGS) is the best characterized member of the bacteria-like NAGS group. 

The protein has been purified to homogeneity and its biological and catalytic properties have been 

reported [8,9]. The enzyme seems to shift between trimeric and hexameric states depending on its 

concentration and the presence of ligands [8]. ecNAGS shows a relatively high substrate specificity 

towards L-glutamate and acetyl-CoA. Among the other amino acids tested, only L-glutamine and  

L-2-aminoadipate have acetylation activity of 6.8% and 1.3% of that of L-glutamate, respectively. 

Among the L-glutamate acyl donors that were tested, propionyl-CoA was the only other effective 

donor with 4.5% of the acetyl-CoA acylation rate [8]. 

The activity of ecNAGS is inhibited by L-arginine, with 50% activity reduction at 2 mM. ecNAGS 

is also inhibited, but to a lesser degree, by the reaction products NAG and CoA, with 50% inhibition at  

25 and 2.5 mM, respectively. Feedback inhibition by L-arginine was enhanced additively by CoA and 
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NAG, suggesting that L-arginine binds to the enzyme at a different site. Stabilization of the hexameric 

form of NAGS by NAG and L-arginine indicates that the regulation of the enzyme probably involves 

ligand-induced changes of its oligomerization state. 

Mammalian NAGS is found in the mitochondrial matrix of cells of the liver and intestines but not  

the kidney or spleen [33,34], and has been purified to apparent homogeneity from rat and human  

liver [12,13]. The molecular weight of the human holoenzyme is 190,000. Human liver NAGS affinity 

constants (Km) were reported as 4.4 mM for acetyl-CoA and 8.1 mM for L-glutamate [12], quite 

different from the values of 0.7 and 1 mM, respectively, for the rat enzyme [13]. The later numbers are 

in better agreement with recent biochemical studies on the recombinant enzymes [35]. 

Mammalian NAGS acetylates almost exclusively L-glutamate, with little activity with glutamine (5.0%) 

and glycine (2.9%) and no acetylation of other amino acids (<1.0%). L-glutamate-hydroxamate shows low 

activity as an acyl acceptor (15.5%), whereas no activity was found for L-glutamate-monoethyl ester  

and -hydrazide. Glutamate analogues that have longer carbon chains, such as DL-aminoadipate (5.2%) and 

DL-aminopimelate (4.0%), show low activity. The acetyl-CoA substrate is also very specific, showing 

low activity with propionyl-CoA (4.3%) and no activity with other acyl-CoA derivatives [13]. 

Enzymatic activity in the presence of saturating concentrations of substrates more than doubles  

(2–5-fold) in the presence of L-arginine with an activation constant (Ka) of 30–50 µM in vitro. Since no 

other amino acid has this activity and since the Ka is in the range of liver arginine concentrations  
in vivo [12–14,34,36], it is likely that arginine has a role in regulating NAG production. Arginine seems 

to increase the enzyme velocity without an effect on affinity for the substrates [37]. It is transported into 

mitochondria and therefore could activate NAGS in vivo [38]. The activation of NAGS by arginine seems 

to be very specific, since among the structural analogues of arginine, intermediates of the urea cycle, and 

amino acids, only L-argininic acid produces a similar activation [13]. Activation by argininic acid and 

arginine are not additive, implying that they probably bind to the same site. NAGS can also be 

activated by cationic polypeptides such as protamines, polyarginine and polylysine, but the activation 

is additive relative to that of arginine [13]. Mammalian NAGS appears to be a trimer but its 

oligomerization state seems to depend on the concentration of L-arginine [39]. These cationic 

polypeptide activators seem to stabilize the conformation of activated NAGS. A better understanding 

of arginine’s effect on NAGS activity could clarify its role in NAGS activation. 

3. Recent Biochemical Characterization of Recombinant NAGS 

Recently, Rubio’s group revisited the classical NAGS from Pseudomonas aeruginosa (paNAGS) 

using recombinant protein and mutagenesis techniques [10,39–41]. Gel filtration assays revealed that 

paNAGS exists in a non-dissociating hexamer regardless of the presence and absence of arginine. 

Mutation studies demonstrated that mutations of the site at which arginine is bound, specifically the  

C-terminal end of the AAK domain, did little to change the substrates’ kinetic parameters. The AAK 

and NAT domains can be expressed separately. The NAT domain has NAGS activity and is arginine 

insensitive even though the concentration of glutamate required for activity with the NAT domain  

alone was 25-fold higher than for full-length NAGS. Gel filtration experiments demonstrated that  

the AAK domain alone assembled as a hexamer, implying that the hexameric architecture of the  

full-length NAGS is nucleated by a hexamer ring of AAK domains that closely resembles the arginine 
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sensitive bacterial NAGK [42]. In contrast, the NAT domain probably exists as a monomer, although 

this needs to be further confirmed by additional experiments. Mutagenesis studies further demonstrated 

that the linker amino acids between the two domains are important for regulation of NAGS activity  

by arginine [41]. 

Because of the low sequence similarity between mammalian NAGS and classic bacterial NAGS, the 

gene that encodes mammalian NAGS was not identified until 2002 [15,16,43]. In addition to the AAK 

and NAT domains, mammalian NAGS has 40–50 additional amino acids at its N-terminus, termed  

the “variable domain” because of its low sequence similarity even among mammalian NAGS.  

The biochemical properties of mature NAGS (with variable domain but without mitochondrial target 

signal) and conserved NAGS (without variable domain and mitochondrial target signal) recombinant 

human and mouse proteins were compared [35]. The presence of 1 mM arginine enhances NAGS 

activity about twofold. More interestingly, conserved NAGS (without the variable domain) has 

twofold higher activity than mature NAGS (with the variable domain), in the presence of arginine. The 

variable domain is rich in charged amino acids and prolines, and likely devoid of secondary structure. 

Such unstructured domains are often important for protein–protein interactions. Whether and how the 

variable domain is involved in regulation of NAGS activity or interaction with other enzymes such as 

CPS1 needs to be further elucidated. 

4. Overview of the Structural Fold 

Determination of the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS), which 

belongs to the classical bacteria-like NAGS group, and bifunctional NAGS/K structures from 

Maricaulis maris (mmNAGS/K) and Xanthomonas campestrics (xcNAGS/K), which belong to the 

vertebrate-like NAGS group including mammalian NAGS allows detailed structural characterization 

of each group possible. Even though there are significant sequence differences between the bacteria-like 

and vertebrate-like groups, both consist of two independent domains [44,45] (Figure 2A,B). 

Furthermore, the overall fold of each domain of these two groups of NAGS is very similar, although 

some differences exist. The N-terminal domain has typical the AAK domain with an eight-stranded β 

sheet as its central core and α helices hanging on both sides. The superimposition of AAK domains of 

mmNAGS and ngNAGS results in a root mean square deviation of 2.7 Å, with over 260 aligned 

residues. The most significant differences are identified in the N-terminal segment. The N-terminal 

segment of mmNAGS/K has two helices; in contrast, ngNAGS has only one as does arginine sensitive 

NAGK while arginine insensitive NAGK has no mobile N-terminal helix. The differences in their  

N-terminal segments appear to be highly correlated to their different subunit-subunit interactions  

and formation of different quaternary structures. The C-terminal has typical GNAT fold with a  

seven-stranded β sheet as its central core and three α helices hanging on both sides to form αβα 

sandwich structure. Superimposition of the NAT domain of mmNAGS/K and ngNAGS results in  

a root mean square deviation of 2.5 Å, with 112 aligned residues. Significant differences are found in 

the C-terminal arm. mNAGS/K has a much shorter loop to link β18 and β19 than ngNAGS, which has 

two extra helices (α14’ and α14) (Figure 2C). Instead, a long helix, α15, at the C-terminal of 

mmNAGS/K occupies the equivalent position of α14 in ngNAGS (Figure 2D). A 1–3 amino acid 

residue flexible linker fuses the two domains. The relative orientation between the two domains appears to 
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be affected by inhibitor binding and the different packing environments in crystal structures, and appears to 

be closely related to the regulation mechanism [44,46,47]. 

 

Figure 2. Ribbon diagram of subunit structures of ngNAGS and mmNAGS/K. (A) Subunit 

structure of ngNAGS in the absence of arginine. The structure consists of two domains, 

amino acid kinase (AAK) domain and N-acetyltransferase (NAT) domain, linked together 

by a flexible linker. No domain-domain interactions are observed within the subunit except 

via the linker; (B) Subunit structure of mmNAGS/K in the absence of arginine. The linker 

between AAK and NAT domains is shorter than that in ngNAGS. Some domain-domain 

interactions are observed. The structures are colored as a rainbow gradually changed from 

dark-blue for the N-terminus to red for the C-terminus; (C) Ribbon diagram of the NAT 

domain of ngNAGS. The bound CoA and NAG are shown in green and magenta sticks, 

respectively. Three residues, R416, R425 and S427, which are involved in binding NAG, 

are shown as green sticks; and (D) Ribbon diagram of NAT domain of mmNAGS/K. The 

last helix, α15, occupies the equivalent position of α14 of ngNAGS. Three residues, R386, 

R388 and N391, which are potentially involved in binding NAG, are shown as green 

sticks. The major differences in the NAT domains between ngNAGS and mmNAGS/K are 

colored in red. 
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5. Quaternary Structure of NAGS 

In NAGS from N. gonorrhoeae (ngNAGS), six subunits assemble via the N-terminal AAK domains 

with D3 symmetry to form a toroidal shaped structure with three NAT domains on one side and three 

NAT domains on the other side of the hexamer (Figure 3A). Although this is the only member of the 

bacteria-like NAGS group with a determined structure, it is likely conserved among members of this 

group. paNAGS has also been shown to be a hexamer in solution [10]. In contrast to the bacteria-like 

NAGS configuration represented by ngNAGS, the NAGS structures of M. maris and X. campestris  

are tetramers in which the AAK domains of the subunits are in the middle of the molecule and the 

NAT domains are at both polar ends (Figure 3B). The whole molecule has a D2 symmetry, which is 

different from ngNAGS. Although the protein sequences are highly diverse [17], the tetrameric 

structure seems to be a common feature among the vertebrate-like group. Consistent with this finding, 

NAGK from Saccharomyces cerevisiae, has a sequence similar to the vertebrate-like group and similar 

two-domain structures, as well as similar tetrameric quaternary structures [48]. 

AAK domains nucleate the quaternary structures of both bacteria-like and vertebrate-like NAGS 

through two different interfaces. The first interface involves the N-terminal segment. In ngNAGS, this 

interface (K1–K4 interface) is formed by interlacing the N-terminal helices from adjacent subunits 

(Figure 3C). In mmNAGS/K, the two helices in the N-terminus interact in parallel to two other 

equivalent helices from the adjacent subunits, to form this interface (K1–K2 interface) (Figure 3F). 

The second interface (K1–K5 in ngNAGS and K1–K3 in mmNAGS/K) involves the N-terminal lobe 

of the AAK domain. This subunit surface is commonly used to form the dimer structures in all other 

amino acid kinases, including E. coli NAGK [49], Pyrococcus furiosus UMP kinase [50], and E. coli 
glutamate 5 kinase [51]. However, the detailed interactions involving this interface are very different. 

Even though the two subunits involved in this interface are related to each other by two-fold 

symmetry, in both ngNAGS and mmNAGS/K, the two-fold symmetry axis is perpendicular to the 

plane of the central β-strand in ngNAGS, while it is parallel to the central β-strand in mmNAGS/K.  

In comparison to the equivalent subunit surface in ngNAGS, the subunit surface in mmNAGS  

has relative rotation about 117° between subunits around an axis perpendicular to the interacting 

surface (Figure 3D,G). 

In ngNAGS, no interaction between NAT domains from different subunits is found. Instead, the 

NAT domains interact with the AAK domains from the other subunits. This interaction (S1–K3 in 

ngNAGS) is weak but important for the regulation of NAGS activity (Figure 3E), because arginine 

binding changes this interface interaction completely. It is noteworthy that the structure of the  

C-terminal NAT domain without AAK domain from Vibrio parahaemolyticus (PDB code 3E0K) 

shows a domain swapped dimer. However, this dimer should not be biologically relevant because no 

such interactions were identified in the full-length structure in ngNAGS. In mmNAGS, the NAT 

domain interacts with the equivalent domain from adjacent subunit to form S1-S2 interface  

(Figure 3H). The pairing of NAT domains is involved in the antiparallel hydrogen bonding of the 

central β strands to form a continuing β-sheet, in addition to the hydrophobic interaction between 

helices from subunit 1 and 2. The dimer structure of NAT domains is maintained for the isolated NAT 

domain as well. The isolated C-terminal NAT domain from human and Xylella fastidiosa were recently 

shown to be a dimer in solution, and form the same dimer interface as the full-length mmNAGS/K in 
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the crystal structures [52,53]. This situation differs from the C-terminal DUF619 domain of scNAGK, 

in which the full-length structure shows very similar interactions of the C-terminal DUF619 domain, 

but, the isolated domain remains a monomer [48]. 

 

Figure 3. Quaternary structure and interface interactions of ngNAGS and mmNAGS/K. 

Simplified model of the hexamer architecture of ngNAGS (A) and the tetrameric 

architecture of mmNAGS/K (B). Ribbon diagram of three different types of interface for 

ngNAGS: K1–K4 interface (C), K1–K5 interface (D), and S1-K3 interface (E), in comparison 

to those of mmNAGS/K: K1–K2 interface (F), K1–K3 interface (G), and S1–S2 interface 

(H). K1–K4 and K1–K5 interfaces of ngNAGS have two-fold symmetry, whose axes, 

indicated by a blue oval, are perpendicular to the plane. As a result, in K1–K5 interface the 

central β5 interacts with the equivalent β5 from another subunit in an antiparallel fashion to 

form a continuous β strand across this interface. No symmetry exists for S1–K3 interface 

of ngNAGS, which will change upon arginine binding to enzyme. All three types of 

interfaces of mmNAGS/K have a two-fold symmetry, indicated by blue arrows, which are 

parallel to the plane. As a result, the central β3 positions with the equivalent β3 from other 

subunit in a parallel fashion in K1–K3 interface of mmNAGS/K, which is different from 

that in ngNAGS. The central β18 interacts with the equivalent β18 from another subunit 

antiparallel in S1–S2 interface of mmNAGS/K, forming a continuous β strand across the 

interface. No equivalent interface is found in ngNAGS. 
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6. Active Site and Catalytic Mechanism 

Since the short NAGS without the N-terminal domain of NAGS displays an extremely high Km for 

glutamate [10,24], it was speculated previously that an efficient glutamate binding site might be 

provided by the AAK domain [7,42]. It is now clear, however, that both substrates, AcCoA and 

glutamate, bind in the NAT domain. Even though the sequence similarity for the NAT domain in 

ngNAGS and mmNAGS is low (15% sequence identity), both AcCoA and glutamate bind in a similar 

location within the cleft of the V-shaped GNAT fold [44,45,52–54]. The unique characteristics of the 

CoA recognition motif, which conforms to the (Arg/Gln)-Xaa-Xaa-Gly-Xaa-(Gly/Ala), can be seen in 

all ngNAGS, mmNAGS/K and human NAGS. The AcCoA and CoA bound ngNAGS structures 

clearly demonstrate that the S-acetylpantetheine moiety of AcCoA forms a pseudo-antiparallel β-sheet 

interaction with β22, and the pyrophosphate moiety interacts with the CoA recognition motif (Figure 2C). 

Even though no AcCoA or CoA bound structures of vertebrate-like NAGS are available, probably due 

to weaker affinity for AcCoA compared to bacteria-like NAGS, it is believed that AcCoA binds to the 

enzyme in a way similar to its binding to ngNAGS and other Gcn5-related acetyltransferases. 

The NAG bound structures of both ngNAGS and human NAGS enable the glutamate binding sites to 

be characterized in detail. A comparison of NAG bound structures of ngNAGS and hNAGS is shown in 

Figure 4A,B. The acetyl and the α-amino groups of NAG bind to the protein in a very similar way for  

both ngNAGS and hNAGS. However, the α-carboxyl and γ-carboxyl groups of NAG are in different  

locations and use different sets of amino acid residues to anchor to the protein. In ngNAGS, the  

side-chains of Arg316, Arg425 and Ser427, in addition to the main-chain N of Leu314 and Cys356, are 

involved in binding the two carboxyl groups. In hNAGS, the side-chains of Lys401, Arg474, Arg476 

and Asn479 contribute hydrogen-bonding interactions for positioning the carboxyl groups. Two  

water-mediated interactions with the side-chain of Tyr441 and the main-chain N of Ser524 are also 

involved in binding the α carboxyl group. The NAG binding cavity of hNAGS appears to be larger  

than that of ngNAGS. The recently available structure of the NAT domain alone of xfNAGS/K bound  

with NAG demonstrate that NAG can bind to the protein in two different conformations, implying that  

the glutamate binding site for vertebrate-like NAGS might have more plasticity than its counterpart in  

bacteria-like NAGS [53]. 

The structures of ngNAGS bound with CoA and NAG, and with the bisubstrate-like analog,  

CoA-S-acetyl-L-Glu, suggest that the enzyme uses a direct attack mechanism to catalyze the  

reaction [45,54]. The similarities of the AcCoA and glutamate binding sites to those of ngNAGS imply 

that the vertebrate-like NAGS uses the same catalytic mechanism. In order for the α amino group of 

glutamate to attack the carbon atom of the acetyl group of AcCoA, a general base to facilitate the 

depronation of the α-amino group is usually needed. In ngNAGS, Glu353 was proposed to play this  

role [54]. In hNAGS, Tyr441 was proposed to play the similar role. The equivalent Tyr353 in 

mmNAG/K, Tyr361 in xcNAGS/K and Tyr352 in xfNAGS/K, can be identified as well [53].  

After formation of the tetrahedral intermediate, a general acid to assist the protonation of the releasing 

CoA may also be required. In most of Gcn5 acetyltransferases, a tyrosine can be found to play this role 

including in vertebrate-like NAGS (Tyr485 in hNAGS and Tyr397 in mmNAGS/K) [52,53,55]. 

However, in ngNAGS, no such equivalent tyrosine residue is found, instead, the nearby Ser392 

replaces it as a general acid [54]. 
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Figure 4. NAG binding site of ngNAGS (A) and hNAGS (B). The protein is shown in 

ribbon diagram. The bound NAG is shown as thick cyan sticks. The residues involved in 

binding NAG are shown as sticks. The hydrogen bonds are shown as red dashed lines. 

NAG binds to the protein in different conformations and using different sets of amino acid 

residues in ngNAGS and hNAGS. 

7. Arginine Binding Site and Regulatory Mechanism 

Structural and mutagenesis studies show that the arginine-binding site of NAGS and arginine 

sensitive NAGK is conserved across phyla [42,46,47,56]. The arginine-binding site is located at the  

C-terminus of the AAK domain, close to the AAK and NAT domain interface and the C-terminal 

segment of the N-terminal helix of protein (helix 1 in ngNAGS, helix 2 in mmNAGS/K)  

(Figure 5A,B). The primary sequence has a conserved motif of E-(L/I)-(F/M)-(T/S)-X-X-G-X-G-T [56], 

which forms a loop connecting the last helix and the last β strand of the AAK domain.  

The arginine binds to the protein in such a way as to place the Cα on the N-terminal helix,  

the α-carboxyl group towards the central β-sheet and the side-chain to be encircled by the loop. A key 

lysine from the central β-sheet (K201 in ngNAGS and K206 in mmNAGS/K) and a key glutamate 

from the last helix of AAK domain (E270 in ngNAGS and E277 in mmNAGS/K) with many  

main-chain oxygen atoms help to position arginine in this position (Figure 5C,D). 

The ngNAGS and mmNAGS/K structures with and without arginine bound provide significant 

insights into arginine induced regulation mechanisms [44–47]. In ngNAGS, arginine binding tightens 

its site and triggers the N-terminal helix movement to enhance K1–K5 interface interaction. As a 

result, the conformation of the whole hexamer changes significantly with a ~20 Å contraction along its 

three-fold axis and ~10 Å expansion for its hexamer ring (Figure 5E). The magnitudes of these 

changes are comparable with those found in arginine-sensitive NAGK structures [42], implying that 

arginine induced global conformational changes depend on the AAK domain only. As the hexamer 

ring widens, the linker between the AAK and NAT domains tightens, trigging a significant changes in 

the relative orientation of the NAT and AAK domains, re-establishing the K3-S1 interface interaction 

(Figure 5F). Eventually, the glutamate binding loops (helix10–helix11 and helix14-β25) become 

disordered and less able to bind the substrate. Mutagenesis and biochemical studies are consistent with this 

regulatory mechanism. The presence of arginine mainly affects the Km for glutamate and the elongation of 

the linker between AAK and NAT domains completely abolishes the arginine inhibition [41]. In the 
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absence of an AAK domain, as in the short NAGS from Mycobacterium tuberculosis, the Km of 

glutamate can be as high as 600 mM [24]. 

 

Figure 5. Arginine binding site and conformational changes. (A) Ribbon diagram of 

subunit structure of ngNAGS in the presence of arginine; (B) Ribbon diagram of subunit 

structure of mmNAGS/K in the presence of arginine. Arginine is shown in space filling 

model; (C) The details of arginine binding site of ngNAGS; (D) The details of arginine 

binding site of mmNAGS/K. The arginine and key residues involved in binding arginine 

are shown in sticks; (E) Simplified model of quaternary structure in the presence of arginine; 

and (F) The K3-S1 interface of ngNAGS in the presence of arginine. 

mmNAGS/K and other vertebrate-like NAGS have tetrameric structures that are totally different 

from bacteria-like NAGS and the arginine regulation mechanism appears to be quite different. In the 

absence of arginine, the relative orientation between the AAK and NAT domains in vertebrate-like 
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NAGS is quite flexible. The difference of the orientation angle can be as large as 29° between open 

and closed conformations [44]. In the presence of arginine, the subunit is in the closed conformation, 

which blocks AcCoA binding and therefore inhibits NAGS activity (Figure 5B) [47]. Interestingly, the 

relative orientation differences between AAK and NAT domains in the mature scNAGK structure for 

different subunits are up to 55°, reflecting similar conformational plasticity. Although the structure of 

mature hNAGS has not yet been determined, hNAGS and mNAGS both exist as tetramers in solution 

and pairing of the NAT domains is similar and thus it seems likely that the molecular mechanism of 

arginine activation is similar [52]. The respective domains are close only to a certain degree to promote 

catalytic activity, rather than to completely block the AcCoA binding site to inhibit it. The arginine titration 

curve of xcNAGS/K gave some clues for the mechanism. In the presence of very low concentration of 

arginine (<0.1 mM), arginine enhances NAGS activity about 20%, even though higher concentration of 

arginine inhibits NAGS activity completely by blocking the AcCoA binding site [17,52]. 

8. Evolution of Primary and Quaternary Structures 

Phylogenetic analysis has shown that classical bacteria and plant NAGS cluster in one group while 

bifunctional NAGS/K, fungal NAGK and NAGS, and vertebrate NAGS cluster in another large  

group [17]. The different quaternary structures of representative members of each group are consistent 

with the distant relationship between these two groups, implying that the separation of these two 

groups is a very early evolutionary event, as predicted previously [57]. However, the conservation of 

the arginine binding site and the general folding of the AAK domain indicate that the domains of  

both groups may be derived from the same common ancestor. The low sequence similarity and  

the non-conservation of the glutamate binding site in the NAT domains of the two groups demonstrate 

either that the NAT domains for different groups may come from different ancestors or that  

the separation of their NAT domains is likely a much earlier event before they fused with AAK 

domain to form NAGS. In the vertebrate-like NAGS group, the bifunctional NAGS/K appears to be 

the progenitor of other members positioned close to the root of the phylogenetic tree [17]. 

Interestingly, the bacteria whose genomes encode bifunctional NAGS/K also encode the gene for  

N-acetyl-L-ornithine transcarbamylase (AOTCase) in the arginine biosynthetic pathway, suggesting  

a coevolution of these two genes [17]. Phylogenetic analysis of the transcarbamylase family showed 

that the group of AOTCase clustering with N-succinyl-L-ornithine transcarbamylase [29] and YgeW 

encoded transcarbamylase of unknown function [58] is close to the root of the tree [59].  

The primordial bifunctional NAGS/K evolved further to become the present day vertebrate NAGS, 

fungal NAGS and NAGK. The vertebrate NAGS and fungal NAGS preserved acetyltransferase 

activity, but lose the kinase activity while the fungal NAGK does the opposite. However, the present 

day fungal NAGK is formed by proteolytic processing of the biprotein precursor encoded by fusing an 

additional down-stream gene, argC [60,61]. Searches of the bacterial genomes reveal that the NAGS 

gene found in some bacteria appears to be the vestiges during this evolution. In the Azospirillum sp. 
B510 genome, the NAGS gene (AZL_c01370 is incorrectly annotated as argC, since argC encodes  

N-acetyl-γ-glutamyl-phosphate reductase), which has close sequence similarity with human (41.8%) 

and xcNAGS/K (76.7%), has lost its NAGK activity as a result of the elimination of key residues in 

the NAGK active site (R66D, N158G, K217T, E. coli NAGK numbering). Instead, a protein encoded by  
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a different gene (AZL_005260) performs the NAGK function. In the Haliangium ochraceum genome, 

where there is a separate gene (Hoch_4935) for a bacterial-type NAGK, the gene for NAGS appears fused 

to the argC gene for N-acetyl-γ-glutamyl-phosphate reductase. Thus, this gene (Hoch_4300, incorrectly 

annotated as argC only) resembles the yeast gene encoding NAGK and N-acetyl-γ-glutamyl-phosphate 

reductase. Whether this protein in H. ochraceum undergoes proteolytic processing to cleave the argC 

domain as in yeast remains to be determined. The evolutionary paths of the typical NAGS are summarized 

in Figure 6. 

 

Figure 6. Proposed evolutionary path of the bacteria-like and vertebrate-like NAGS.  

The domains that have and have not enzymatic activity are colored green and red, 

respectively. The genes for fungal NAGK and Haliangium ochraceum NAGS (marked  

with *) encode a three-domain preprotein, whose mature proteins are formed likely by 

cleaving the argC domain. 

9. Concluding Remarks 

As a result of convergent evolution, many proteins have the capacity to catalyze the production of 

NAG from AcCoA and glutamate. Many more studies are needed to elucidate how these proteins bind 

substrates, whether they use the same catalytic mechanisms, where arginine binds and how arginine 

regulates their activity. The current knowledge about structure-function relationship is derived mainly 

from the two major groups of NAGS, bacteria-like and vertebrate-like. They are both two-domain 

proteins with an AAK domain at the N-terminus and a NAT domain at the C-terminus. Even though 

only the NAT domain has significant NAGS activity, the AAK domain provides the structural 

architecture for the enhancement of NAGS activity and for arginine binding and regulation. In 

mammalian counterparts, there is an extra N-terminal variable segment in addition to the AAK 
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domain. This segment may be involved in protein-protein interactions with other mitochondrial protein 

partners [52]. Currently, little is known about the function and structure of H-NAGS. Whether argH 

plays a similar role to the AAK domain in the typical NAGS remains to be established. The possibility 

that the short version of NAGS (S-NAGS) and O-NAGS interact with other protein partners in vivo 

cannot be ruled out without further experiments. The recent discovery of a novel type of NAGS  

(C-NAGS) provides a new and fascinating opportunity to explore how different structures can catalyze 

the same reaction [25]. 
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