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Background: Previous work has identified a hierarchical organization of neural
oscillations that supports performance of complex cognitive and perceptual tasks, and
can be indexed with phase-amplitude coupling (PAC) between low- and high-frequency
oscillations. Our aim was to employ enhanced source localization afforded by
magnetoencephalography (MEG) to expand on earlier reports of intact auditory cortical
PAC in schizophrenia and to investigate how PAC may evolve over the early and chronic
phases of the illness.

Methods: Individuals with early schizophrenia (n=12) (≤5 years of illness duration), chronic
schizophrenia (n=16) (>5 years of illness duration) and healthy comparators (n = 17)
performed the auditory steady state response (ASSR) to 40, 30, and 20 Hz stimuli during
MEG recordings. We estimated amplitude and PAC on the MEG ASSR source localized to
the auditory cortices.

Results: Gamma amplitude during 40-Hz ASSR exhibited a significant group by
hemisphere interaction, with both patient groups showing reduced right hemisphere
amplitude and no overall lateralization in contrast to the right hemisphere lateralization
demonstrated in controls. We found significant PAC in the right auditory cortex during the
40-Hz entrainment condition relative to baseline, however, PAC did not differ significantly
between groups.

Conclusions: In the current study, we demonstrated an apparent sparing of ASSR-related
PAC across phases of the illness, in contrast with impaired cortical gamma oscillation
amplitudes. The distinction between our PAC and evoked ASSR findings supports the
notion of separate but interacting circuits for the generation and maintenance of sensory
gamma oscillations. The apparent sparing of PAC in both early and chronic schizophrenia
patients could imply that the neuropathology of schizophrenia differentially affects these
mechanisms across different stages of the disease. Future studies should investigate the
distinction between PAC during passive tasks andmore cognitively demanding task such as
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working memory so that we can begin to understand the influence of schizophrenia
neuropathology on the larger framework for modulating neurocomputational capacity.
Keywords: schziophrenia, ASSR = auditory steady-state response, phase amplitude coupling, biomarker, Cross
Frequency Coupling (CFC), magnetoencephalagraphy (MEG)
INTRODUCTION

The neurophysiological basis of sensory and cognitive
impairments in schizophrenia has been intensely investigated
in order to aid biomarker development for early illness detection
and inform the development of novel treatment approaches.
Cortical oscillations are widely reported to be disturbed in the
illness, and lend insight regarding the integrity of neural network
activity related to perception and cognition (1). Core cognitive
disturbances, such as impaired cognitive control, are associated
with gamma (30–50 Hz) oscillatory impairments, and reflect the
disrupted functioning of pyramidal cells and parvalbumin (PV)
interneurons in schizophrenia (2–7). Electrophysiological
measures such as electroencephalography (EEG) and
magnetoencephalography (MEG) can index the entrainment of
neural circuits to externally driven stimulation, eliciting a steady-
state response that resonates at the stimulating frequency and is
suggested to reflect the synchronization of endogenous
oscillations (8). On the grounds of well-established auditory
perceptual (9) and cortical (10) disturbances in schizophrenia,
the auditory steady state response (ASSR) paradigm has emerged
as a reliable tool for assessing the physiological (11–14) and
pharmacological elements of gamma oscillatory disturbance in
the illness (11, 15).

As our understanding of gamma dysfunctions has grown, there
has been a push to investigate more detailed mechanics that
describe how gamma oscillations act as part of a complex
system. A crucial aspect of cortical oscillations that has received
growing attention in schizophrenia research is phase-amplitude
coupling (PAC). PAC is a form of crosstalk between different
frequency oscillations, with the high-frequency amplitude being
modulated by the phase of a lower frequency oscillation. In the
human auditory cortex, PAC in response to passive and active
auditory perception is primarily observed between theta (4–7 Hz)
phase and gamma (30–50 Hz) amplitude (16–22). The
physiological purpose of PAC is broadly thought to be enhanced
neurocomputational capacity within and between networks in a
metabolically efficient manner (23, 24), where coupling is regulated
dynamically and at multiple spatial and temporal scales (25, 26).

Interestingly, in contrast with findings of decreased gamma
band ASSR in schizophrenia (11), PAC during this paradigm
appears to show no appreciable impairments in patients
suggesting that there may be relative preservation of the
physiologic mechanisms supporting PAC (17, 27). Kirihara
and colleagues (27) investigated theta-gamma PAC during the
40-Hz ASSR in chronic schizophrenia patients and reported that
despite reduced gamma phase coherence and increased theta
amplitude in the patient group, there were no group differences
in PAC strength. The lack of a discernable difference in theta-
2

gamma PAC was recently corroborated by Hirano and colleagues
(17) who reported no group differences but found strong left
lateralized coupling in controls, but no lateralization was found
in schizophrenia patients.

Given the importance of understanding the impairments and,
indeed, the relative preservation of mechanisms supporting
coordinated neural circuit activation in the illness, the current
study further investigates this question and addresses a number
of methodologic limitations of prior studies. The study by
Kirihara and colleagues (27) limited their investigation to 40
Hz PAC, and so lacked any inference about frequency specificity
in their findings. Our study addresses this limitation through
examination of multiple stimulation frequencies (20, 30 and 40
Hz). In human adult subjects, ASSR evoked power at 40 Hz is
maximal compared to 20 and 30 Hz (28, 29). In schizophrenia
patients, while there is a deficit in 40 Hz ASSRs, 30 and 20 Hz
ASSRs are mostly unaffected (30–32) with some exceptions (14,
33). By examining 20 and 30 Hz conditions, we are able to
determine the frequency specificity of PAC in MEG-ASSR source
estimates. Hirano and colleagues (17) examined only the baseline
pre-ASSR stimulation period to prevent confounding PAC
changes due to changes in power spectra caused by evoked
activity (34), thus making any direct inferences regarding the
active cortical entrainment period implausible. For this reason,
we restricted our PAC analysis to the steady state portion of the
trials, employed surrogate data and comparisons with the
baseline period, as well as combined this approach with non-
parametric statistics (35). To better evaluate source estimates of
impairments in ASSR PAC, we additionally employed MEG
which has a superior ability over EEG to separate cortical
sources due to reduced spatial smearing associated with the
measurement of magnetic rather than electrical fields (36).
Compared to EEG, which is more sensitive to radial sources,
MEG, which is more sensitive to tangential sources, is favorable
for localizing the auditory cortex (37–39). Almost no studies to
date have explored the changes in ASSR induced PAC over the
illness course in schizophrenia patients. The lack of specificity of
ASSR deficits to illness stage contrasts with the significant
differences in neural signatures between early and chronic
schizophrenia patients (40). Early-stage schizophrenia can be
characterized by acute effects of NMDA-R hypofunctioning (40,
41), not evidenced in chronic schizophrenia patients, by means
of a gradual shift in excitation/inhibition balance that implicates
increased glutamatergic neurotransmission in early-onset
patients (41, 42). Overall, increased glutamatergic metabolites
in early schizophrenia (42) and decreased glutamatergic
metabolites in chronic schizophrenia have been found (43).
Thus far, most studies for gamma deficits in schizophrenia, by
means of 40-Hz ASSR have focused on chronic schizophrenia,
June 2020 | Volume 11 | Article 507
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with very few examining the pattern of deficits in early-onset,
first-episode patients or at-risk populations (8), and even fewer
assessing PAC changes. This study aims to map the trajectory of
PAC changes over the different illness phases by investigating
both early and chronic phase schizophrenia patients.
METHODS

Participants
We recruited N = 17 healthy controls (HC) (mean, 28.87 ± 5.98
years), N = 12 patients with early stage schizophrenia (EA)
(mean, 27.5 ± 6.89 years), and N = 16 patients with chronic
stage schizophrenia (CR) (mean, 33.63 ± 6.94 years). There are
some preliminary findings which suggest that dysfunctions in
neural oscillations and synchronization are present around the
onset of schizophrenia but that prolonged medication usage
might have varying effects (29). To address this question, we
divided patients into early and chronic disease stages based on
illness duration which have been proposed to more accurately
capture the split between the critical but varied early stages of
the disease and the point at which most patients have begun
more steady treatment (early phase defined by ≤5 years of
illness duration; and chronic, > 5 years) (44, 45). This study was
carried out in accordance with the recommendations and
approvals of the University of Texas Health Science Center at
Houston Institutional Review Board. Written informed consent
was given by all participants in accordance with the Declaration
of Helsinki. Diagnoses were confirmed by Structured Clinical
Interview for DSM-V Disorders. Further cognitive and clinical
characterization included assessments of psychopathology
using the Scale for the Assessment of Positive Symptoms
(SAPS), the Scale for the Assessment of Negative Symptoms
(SANS), the seven-point Clinical Global Impression (CGI)
Scale, the Global Assessment Functioning (GAF), the Brief
Assessment of Cognition Scale (BACS), and the Social
Functioning Scale (SFS).

Task
Auditory click trains (1000 ms) were presented binaurally (ER-
3A insert earphones, Etymotic Research, IL, USA) as 40 Hz, 30
Hz, or 20 Hz repetitions of 1 ms duration tones (1000 Hz) using
E-Prime software (Psychological Software Tools, PA, USA). To
ensure attentional engagement, participants were presented the
click trains in the context of an Oddball paradigm with Standard
(click train consisting of 1000 Hz tones) vs. Oddball (click train
consisting of 2000 Hz tones) stimulus trials. We presented N =
100 trials (85 standard, 15 oddball) as 10 blocks of 10 trials/block.
Oddball tone (2000 Hz) placement was randomly assigned across
the total number of trials and did not follow a trial-by-trial order.
At the end of each set of 10 trials participants were asked to
indicate the number of oddball trials that were presented using a
response box. Oddball trials were not included in the analyses.
The click train conditions were presented sequentially (i.e., all 40
Hz, then all 30 Hz, then all 20 Hz) and counterbalanced across
participants to reduce order effects. To reduce wandering gaze
Frontiers in Psychiatry | www.frontiersin.org 3
and head motion, we required participants to observe a fixation
cross displayed at eye level on a monitor in front of them.

MEG and MRI Recording
Cortical signals were recorded using a 306-channel Elekta
Neuromag TRIUX system, and digitally sampled at a rate of 1000
Hz. Head motion was monitored with continuous head position
indicator (cHPI) coils co-registered with digitized fiducial points
(nasion, bilateral pre-auricular points) and scalp contour. Eye
movement was recorded by placing two bipolar electrode pairs to
record vertical and horizontal electrooculogram (EOG). Structural
MRI was recorded with a Phillips Ingenia 3T scanner using the
following parameters: TR = 1630, TI = 0.8 s, TE = 2.48 ms, 8° flip
angle (maximizing gray/white contrast), 256 × 256 × 224 acquisition
matrixes, FOV = 205 × 205 mm2, 0.8-mm slice thickness, yielding
isotropic 0.8-mm3 voxels.

MEG Pre-Processing
Our MATLAB and Python code is available at (https://github.com/
NikMNclUth/MEG_CFC).MEGdata was processed using theMNE
Python toolbox (46, 47). To remove artifacts caused by external
interference with the cortical field, we applied temporal signal space
separation (TSSS) with a 10-s window (48–50). Bad channels were
identified and marked prior to this to improve the accuracy of the
estimation. Head motion was corrected by subtracting the
information provided by cHPI monitoring. The TSSS corrected
data were high pass filtered using a 0.1-Hz Butterworth filter, and
then entered into extended-infomax independent components
analysis (ICA) to identify and remove components representing
EOG and electro-cardiogram (ECG) noise. For each stimulus
condition, we created epochs of length −1500 to +1500 ms relative
to the stimulus onset, and subtracted the mean of the baseline period
from the post-stimulus data. Bad epochs were rejected if peak-to-
peak amplitude was beyond reasonable limits for that channel type
(>= 100e−12 fT for magnetometers and 4000e−13 fT/cm for
gradiometers). A final manual inspection was then performed to
review remaining bad epochs.

Source Localization
Using the FreeSurfer package (51, 52), we processed anatomical
MRI images using an automatic procedure to obtain the cortical
reconstruction (a high-resolution triangulation of the interface
between the white and the gray matter) and the inner skull
surface (53). We then co-registered the MEG data with the
structural MRI by aligning the high-resolution Freesurfer
surface model to the MEG data, guided by manually indicating
where the fiducial points, digitized at the MEG acquisition, were
located on the head surface data. We calculated the forward
model using a single compartment boundary element model
(BEM) and used the baseline period of the data (−1500 ms to 0
ms relative to the stimulus) to generate a noise covariance
matrix. To generate the inverse operator, we defined a surface
oriented source space with a depth-weighting coefficient of 0.8.
We then estimated source space signals using the dynamic
statistical parametric mapping (dSPM) method (54). Regions
of interest (ROI) were determined based on the Desikan-Killiany
atlas using Freesurfer labels for the combined region of bilateral
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transverse temporal cortex and superior temporal gyrus to focus
the spatial information on the anatomical locus of the ASSR (55).
See Figure 1. For group-level analysis, the “fsaverage” brain, a
template brain model, provided by FreeSurfer (52) was morphed
to each individual subject.

Time–Frequency Analysis
Oscillatory amplitude and inter-trial phase coherence (ITC) were
estimated for the average signal across all sources in the
functional label, using Morlet wavelets for the frequency range
1 to 60 Hz in a window of −1.5 to 1.5 s. The Morlet wavelets used
are described in Equations 1A, B where i is the imaginary
operator, f is the frequency in Hz, t is the time in seconds, s is
Frontiers in Psychiatry | www.frontiersin.org 4
the width of the gaussian, and n is the number of cycles. For
wavelet estimation we used n = 10 cycles at all values of f to
prioritize frequency resolution. Amplitude estimates were
baseline corrected by subtracting the average amplitude from
the window of −1300 to −500 ms.

W =   e2ip fte
−t2

2s2 Equation 1A
s =  
n

2p f
Equation 1B
Equation 1. (A) Time–frequency amplitude estimates for
linearly spaced frequencies between 1 and 60 Hz were
FIGURE 1 | Source Localization of the 40-Hz ASSR evoked data using dSPM. The source estimates are restricted to the anatomical label of bilateral transverse
temporal cortex and superior temporal gyrus and remapped (morphed) onto the FreeSurfer average brain.
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generated by convolving the evoked time series data with Morlet
wavelets. Here i is the imaginary operator, f represents the
frequency of interest, t is the time in seconds, n is the number
of cycles, and s represents the width of the gaussian. (B) For a
given wavelet the width of the gaussian used in (A) is equal to the
number of cycles over the product of 2pf.

Phase-Amplitude Coupling
To estimate PAC we used the method described in Canolty et al.
(56). In this approach the amplitude signal is multiplied by the
exponent of the phase signal to create a complex composite signal.
The mean vector length (MVL) is then derived from the modulus
of the mean across trials (see Equation 2), where n is the total
number of time points, t is the Nth time point, i represents the
imaginary operator, and Ф is the phase angle in radians.

PAC =   n − 1o
n

t=1
ate

ift
�
�
�
�

�
�
�
�

Equation 2

Equation 2. Phase amplitude coupling is estimated by
measuring the mean vector over across the trial dimension at
each sample in the time window and then averaging across the
time dimension.

Coupling was estimated using Morlet wavelet transforms of the
source time series for high frequencies (amplitude; fA) 13 to 60 Hz,
and low frequencies (phase; fP) 4 to 12 Hz, using a width of 10
cycles and 1-Hz intervals between frequencies. In addressing
frequency-time resolution tradeoffs due to the uncertainty
principle, the common methods of devising the bandwidth for
high-frequency vs. low-frequency filters (35, 56) suffer from an
unequal trade-off between temporal and spectral resolution across
bands (34, 57). The use of wavelets in place of conventional
filtering offers greater invariance to signal length (58, 59) and
addresses the problem of an unequal trade-off between resolutions
by increasing the bandwidth of the filter as the peak frequency of
the impulse response function increases (57). Coupling was
estimated using the steady state portion of the trials (200 ms to
1000 ms) and separately for the baseline portion of the trials
(−1300 to −500 ms). To reduce the bias produced by large trial-
wise variations in amplitude, the fA signals were normalized using
a min-max transform using the values between −1300 and +1300
ms, and the estimated coupling values were transformed to z-
scores using the PAC values derived from a distribution of 250
Frontiers in Psychiatry | www.frontiersin.org 5
surrogates. We generated surrogate time series by randomly
permuting segments of the original signal and then performing
the wavelet transform to measure the phase values (60).

For each stimulus condition, and hemisphere, significant
instances of coupling were identified by performing a cluster-
based permutation t-test (N = 5000 permutations) between the
ASSR period and the baseline period using data concatenated
across all three groups. The permutation test used routines from
the Mass Univariate toolbox (61), employing a one-tailed test
(ASSR > Baseline), family-wise error rate of 1%, and a cluster
inclusion p-value threshold of 0.01. A cluster was included in the
final analysis if its corrected p-value was less than 0.05. To gauge
the extent to which the presence of non-sinusoidal oscillations
might have biased coupling estimation we calculated the ratio of
the time taken for an oscillatory peak to be reached from a trough
relative to the time it took to reach a trough from a peak in the fP
signals, termed the rise-decay ratio (35). We compared this
between stimulation and baseline periods of coupling using a t-
test Bonferroni corrected for multiple comparisons.

Statistical Analysis
Continuous demographic and clinical data were compared using
univariate analysis of covariance (ANCOVA), with Bonferroni
corrected post hoc tests, and controlling for age. Since the lowest
group count for gender was less than five, differences in gender
distribution were tested using Fisher’s exact test. Amplitude and
phase-locking data were analyzed separately for each condition
using a mixed design ANCOVA (between-group factors of
group, within-group factor of hemisphere) controlling for
participant age. We used age as a covariate to control for
developmental effects on ASSR gamma synchronization
(62), and differences in symptomology based on the age of
onset (63–65). The distribution of genders by group is
described in the results section. We did not covary for gender
due to the uneven distribution and analytical power limitations.

We compared significant PAC clusters between groups using
an aligned rank transform Multivariate ANCOVA (66) with a
between subjects factor of group and age as a covariate. We used
Spearman’s rank correlation coefficient (Spearman’s Rho) to
measure any remaining influence of signal amplitude (for fA
and fP signals) on PAC strength. Significance across all tests was
defined as p <= 0.05.
TABLE 1 | Demographic and clinical information.

Item Controls (N = 17, 8 Female) Early Illness (N = 12, 0 Female) Chronic Illness (N = 16, 3 Female)

Age (years) 28.8 ± 5.9 27.5 ± 6.9 33.6 ± 6.9*
Brief Assessment of Cognition (BACS) 51.2 ± 9.2* 39 ± 13* 30.5 ± 13.8*
Age of Onset (years) – 24.9 ± 5.8 22.1 ± 6.4
Social Functioning Scale (SFS) – 19.7 ± 3.8 22.7 ± 4.8
Negative Symptoms Scale (SANS) – 8.6 ± 3.5 8.5 ± 4.5
Positive Symptoms Scale (SAPS) – 5.2 ± 2.2 6.6 ± 4.2
Clinical Global Impression 1 (CGI1) – 2.6 ± 0.6 3.4 ± 0.9
Clinical Global Impression 2 (CGI2) – 5.9 ± 1.6 6.4 ± 1.5
Global Assessment of Functioning (GAF) – 53.9 ± 13.6 54.7 ± 18.9
Global Functioning Scale (GFS) – 5.6 ± 1 5.7 ± 1.4
*Significant at p < 0.05.
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RESULTS

Demographic and Clinical Information
Demographic and clinical information are summarized in
Table 1. Groups were not matched on age (F (2, 41) = 3.48,
p = 0.04, h2 = 0.15); the post hoc follow-up to our ANOVA
revealed that CR were typically older than EA (mean difference =
6.13 years, p = 0.05) but not HC, and that HC and EA were not
different. This particular pattern is to be expected based on the
illness duration associated with respective staging (early, younger
vs. chronic, older). Gender was not equally distributed between
groups (HC: 9 males, 8 females; EA: 12 males, 0 females; CR: 13
males, 3 females; Fisher’s exact test p = 0.012). In our EA group,
all 12 patients reported currently taking antipsychotic
medication (1 typical, 11 atypical), and 4 patients reported
concurrent ly taking addi t ional medicat ions (3 on
antidepressants, 1 on benzodiazepine). In the CR group, 13
patients reported currently taking antipsychotics (3 typical, 10
atypical). Six patients within the CR group reported concurrently
taking other medications (5 on antidepressants, 1 on both
benzodiazepine and antidepressant). Total BACS showed a
main effect of group (F(3, 40) = 8.5, p < 0.001, h2 = 0.11) with
no effect of age. Post hoc follow-up indicated both patient groups
(EA and CR) having significantly lower BACS scores relative to
HC (EA: p = 0.31; CR: p < 0.001) but were not significantly
different from each other. Patient groups did not differ
significantly on SANS (F(2, 22) = 0.49, p = 0.61, h2 = 0.043),
or SAPS (F(2, 18) = 0.69, p = 0.51, h2 = 0.07).
Phase-Amplitude Coupling
Cluster analysis revealed three significant patterns of stimulus-
related coupling (ASSR > Baseline) between gamma amplitudes
(33 Hz to 49 Hz) and delta (4 Hz, cluster mass = 19.74, p =
0.02), theta (6 Hz, cluster mass = 20.94, p = 0.03) and alpha
phase (10 Hz, cluster mass = 43.7, p = 0.005) within the right
hemisphere source for the 40-Hz entrainment condition. There
were no significant clusters for the 30- or 20-Hz conditions (see
Supplement 1). Using Pillai’s trace there was no significant
effects of group membership on cluster coupling strength (V =
0.152, F(6,78) = 1.07, p = 0.39, h2 = 0.07). As a follow-up, we
also investigated coupling properties in the baseline period and
the difference between ASSR and baseline coupling strength to
determine whether any differences in functional activation in
response to entrainment might be present. Pillai’s trace
revealed that there was a significant main effect of group on
coupling strength (V = 0.36, F(6,78) = 2.85, p = 0.014, h2 =
0.18). Univariate follow-up tests revealed that there was a
significant effect of group for the theta-gamma (F (2, 40) =
3.77, p = 0.032, h2 = 0.16) and alpha-gamma (F (2, 40) = 5.32, p
= 0.009, h2 = 0.21) coupling driving the multivariate test
results. Post hoc pairwise comparisons for the univariate tests
demonstrated that for theta-gamma coupling there was a
marginal increase in baseline coupling strength in the chronic
illness group relative to the control group that did not achieve
Frontiers in Psychiatry | www.frontiersin.org 6
statistical significance (p = 0.054). In addition alpha-gamma
coupling in the baseline period was significantly higher in the
early illness group than in healthy controls (p = 0.008).To
account for potential inflation of the type one error rate by the
use of multiple univariate tests we performed a complimentary
discriminant analysis, which revealed two discriminant
functions. The first explained 62.4% of the variance
(canonical R2 = 0.46), while the second explained 37.6% of
the variance (canonical R2 = 0.37). Both functions were able to
significantly differentiate the treatment groups (combined
functions: L = 0.68, c2 (6) = 15.71, p = 0.015; removal of the
first function: L = 0.86, c2 (2) = 6.07, p = 0.048). By correlating
the outcomes with the discriminant functions we identified that
theta-gamma coupling loaded more strongly onto the first
function (r = 0.97), whereas alpha-gamma and delta-gamma
coupling were loaded more highly onto the second function (ag:
r = 0.862; dg: r = 0.29). The relationship of our functions to the
group centroids (see Supplement 1) showed that function 1
discriminated the control group from the early and chronic
illness groups, while function 2 discriminated the early illness
group from the control and chronic illness groups. The pattern
of group discrimination for the two functions supports the
trend seen in the univariate ANOVA post hoc tests. When
evaluating the resulting differences in PAC between conditions
(ASSR-BL) Pillai’s trace did not demonstrate a significant effect
of group membership for change in PAC strength between
states (V = 0.08, F (6, 78) = 0.51, p = 0.79, h2 = 0.04).

Across all subjects there was a significant positive correlation
between baseline PAC and high-frequency oscillation amplitude
for the alpha-gamma coupling (r = 0.38, p = 0.01), as well as for
low-frequency oscillation amplitude (r = 0.42, p = 0.004).
Stimulus period PAC was not correlated with high- or low-
frequency oscillation amplitudes. When this was tested at the
individual group level we found that there was a significant
positive correlation between alpha PAC and high-frequency
oscillation amplitude in both the baseline (r = 0.64, p = 0.006)
and stimulation periods (r = 0.72, p = 0.001) for healthy controls.
There was no relationship between PAC and high-frequency
oscillation amplitude for either patient group. There was no
relationship between PAC and low-frequency oscillation
amplitude for any of the groups. Our analysis of the rise-decay
ratios for each low-frequency oscillation demonstrated that there
was no significant differences in the presence of sinusoidal
waveforms between the baseline and stimulus conditions
(Figures 2–4).

Wavelet Analysis
In the 40-Hz condition, there was a significant interaction
between group and hemisphere for 40 Hz amplitude (F(2, 40) =
4.08, p = 0.02, h2 = 0.17) (see Figure 5). Post hoc comparisons
between left and right hemispheres on a per-group basis
highlighted that there was a significantly greater right
hemispheric power relative to left in HC (difference: 5.41 Uv ±
1.45 Uv; p = 0.001) but that this lateralization did not extend to EA
and CR groups (EA difference: 1.01 Uv ± 1.7 Uv, p = 0.56; CR
June 2020 | Volume 11 | Article 507
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difference: −0.32 Uv ± 1.51 Uv, p = 0.83). Post-hoc comparisons
between groups within each hemisphere highlighted a trend
towards significantly elevated gamma power in the right
hemisphere for the HC group relative to both the EA
(difference: 4.97 Uv ± 2.1 Uv, p = 0.07) and CR groups
(difference: 4.91 Uv ± 2.05 Uv, p = 0.06), but with no significant
differences between the EA and CR groups. Analogous
comparisons within the left hemisphere failed to find any
significant differences between groups. A similar qualitative
pattern occurred in the 40-Hz phase locking data; however,
Frontiers in Psychiatry | www.frontiersin.org 7
there were no significant effects or interactions. Amplitude and
ITC data for the 30- and 20-Hz conditions also showed no main
effects or interactions (see Supplements 2 and 3).

Clinical Correlations
Based on the direction of our group findings we performed post
hoc Spearman’s correlations to understand how variability in the
severity of the illness, using the BACS and GAF scores,
respectively, affected the distribution of our amplitude and
PAC data. We corrected for multiple comparisons using an
FIGURE 3 | (Top) Left hemisphere Phase-amplitude coupling T-maps demonstrating differences between stimulation and baseline periods of the trial, with subjects
pooled across groups. (Bottom) Left hemisphere PAC compared between groups.
FIGURE 2 | (Top) Right hemisphere Phase-amplitude coupling T-maps demonstrating differences between stimulation and baseline periods of the trial, with subjects
pooled across groups. (Bottom) Right hemisphere PAC compared between groups.
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adjusted alpha value of 0.025. There were no significant
correlations between PAC values or amplitude values with
BACS or GAF scores.
DISCUSSION

Disturbances in gamma oscillations are considered to be a core
feature of the pathophysiology that affects sensory and cognitive
processing in schizophrenia. Investigations of gamma
oscillations and PAC describe an interaction between multiple
networks with different spatial profiles (68–71) where one
network acts to rhythmically shift the membrane potential in
the neurons that regulate local gamma oscillations (69, 72). The
functional purpose of this interaction is believed to be the
enhancement of neurocomputational efficiency via dynamic
modulation of interneuron activity in a context dependent
fashion. In the primate auditory cortex, there is evidence of
theta/gamma PAC serving to optimize the processing of
rhythmic inputs (73). In the context of schizophrenia
Frontiers in Psychiatry | www.frontiersin.org 8
therapeutics, it is pertinent to consider that focusing narrowly
on the restoration of gamma oscillations without regard to their
interactions with lower frequency activity may be insufficient to
improve cognitive function. Previous studies of PAC in
schizophrenia have reported a relative sparing of PAC relative
to healthy controls (17, 27). However these studies are low in
number and due to the methodological differences, it is difficult
to conclude on findings.

Our aim was to study source localized PAC in the auditory
cortex in schizophrenia patients at early and chronic stages of the
disease to investigate the influences of disease progression and
medication on PAC. Our findings were consistent with previous
reports demonstrating an apparent sparing of ASSR-related PAC
in patients at both early and chronic stages of the illness, in
contrast with impaired cortical gamma oscillation amplitudes
and phase coherence. The distinction between the main effects of
pathology on neurophysiological processes supports the notion
that the generation and modulation of gamma oscillations are
related to distinct circuitry, which appears to be differentially
affected by schizophrenia neuropathology.
FIGURE 4 | Data visualization of cluster PAC information created using the PlotsOfData web app for data visualization (67). **Denotes significance at p < .05.
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Although it is possible to relate the contrast between ASSR
power and PAC findings in the auditory cortex to potential
nuances of pathophysiology, it is necessary to consider the
component processes. In particular, it will be useful to establish
generators for the low- and high-frequency oscillations that are
functionally relevant to the auditory cortex. The generators of
low-frequency oscillations, especially theta rhythms are associated
with somatostatin (SST)-expressing (74) and multipolar bursting-
type GABA interneurons (75). The interaction between SST and
pyramidal neurons may be responsible for impaired theta
frequency activity found in schizophrenia patients (10) and
could be implicated in impaired auditory N100 and MMN
generation (10, 76). More recently, a MEG study found some
evidence for theta oscillations to be involved in the generation of
early signatures of auditory prediction error (77). For gamma
oscillations, the evidence is plenty and points to impairments in
synchrony within auditory pyramidal–parvalbumin (PV) neuron
circuits (10, 78). Despite evidence of the individual components
involved in PAC being dysfunctional in schizophrenia, it is
possible that the mechanisms governing the interaction between
these neural generators could be intact in the disease. Further
study will be necessary to elucidate the cellular mechanisms that
may remain intact and support coupling, even in the face of
disturbed mechanisms that lead to impairments in the respective
coupled rhythms.

The gap in our understanding of specific low-level aspects of
PAC mechanisms means that conclusions regarding intact PAC
in schizophrenia will need to be qualified by further
considerations, such as regional specificity and task demands.
PAC impairments may be altered in other cortical regions or in
the context of active demands (79–81). Future studies could
systematically vary cortical regions and task demands to
elucidate this issue.
Frontiers in Psychiatry | www.frontiersin.org 9
Our analysis of the evoked ASSR properties support previous
findings of a reduction in right hemisphere lateralization of gamma
power (82, 83). The right auditory cortex may be more responsive
to pitch processing and sound periodicity as found by several
imaging and lesion studies (84, 85). Interestingly, it has been
reported that schizophrenia patients show pitch-change detection
deficits (83), which extends to findings of poorer auditory
perception in schizophrenia (10, 83, 86), and imply an absence of
appropriate task-related neural activation (82). As described above,
schizophrenia pathophysiology may involve diminished or reversed
brain asymmetry neuroanatomically and neurophysiologically (87).

In theoretical models of PAC, the strength of PAC reflects the
network activity regulating modulation at the point of
measurement (in this case the auditory cortex), which is scaled
relative to the information flow necessary for an operation to
function (88). In a recent comprehensive investigation of whole
brain connectivity patterns in schizophrenia, Vergara and
colleagues (89) noted a reduction in global connectivity
strength, as well as increased randomness (and lower
connectivity) between cognitive and sensory domains in patients
relative to controls. The mixture of findings from structural (10),
functional (89, 90), and neurophysiological (15, 91) studies in
schizophrenia suggests that findings of intact PAC with the ASSR
may be due to the paradigm being insufficiently sensitive to actual
functional impairments under more ecological conditions. While
the ASSR can be modulated by attention (92), it is largely a passive
response to an external periodically driven stimulus, whereas
working memory tasks require more active engagement and
engage endogenously generated oscillatory dynamics. In our
experiment, we couched our stimulus presentation in the
context of an oddball-counting task in attempts to control for
attentional effects across conditions and groups. Thus, while
attention was engaged, it was not the focus of investigation and
A B

FIGURE 5 | (A) Time–frequency plots of left and right auditory cortical 40 Hz ASSR amplitude. (B) 40 Hz evoked amplitude across groups.
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the oscillatory dynamics were primarily driven exogenously (as
evidenced by the entrained response being closely aligned with the
driving frequency). Accordingly, the differences in endogenous vs.
exogenous origins of oscillations, task demands and associated
cortical regions, may all contribute to whether cross-frequency
coupling is impaired or intact. To elucidate the functional and
spatial profile of cross-frequency coupling in schizophrenia, future
studies could systematically manipulate task demands across
sensory and cognitive domains and include both passive and
active elicitation of oscillatory dynamics.

Strengths and Limitations
Relative to previous studies our experimental approach provides
an improved spatial and spectral resolution with which to study
sensory gamma PAC in schizophrenia. The reduction of spatial
smearing compared to EEG (36) improves the accuracy with
which local estimations of time frequency resolved power and
phase can be estimated. In particular, the ability to accurately
derive the phasic properties of oscillations is important for
avoiding spurious coupling estimates, where the extent of the
coupling is inflated by irregular patterns in the signal that can
distort the derivation of the phase or amplitude time series.

In this study we chose to apply the mean vector length (MVL)
method (56) to estimate PAC as it would produce findings that
were directly comparable with the study by Kirihara and
colleagues (27). The estimation of PAC using the MVL
approach measures the uniformity of vector points around zero,
where deviation (long vector length) equates to phasic modulation
of the amplitude (93). While this makes for a sensitive measure of
detecting coupling that is robust to random noise; it is also
sensitive to the absolute amplitude of high-frequency signal (35,
93, 94). To combat this we followed guidelines for appropriate
estimation of PAC described in Seymour et al. (35), which
emphasizes a need for both surrogate and baseline correction
when possible. In the baseline period, we observed a trend for
greater PAC strength in patients relative to controls that was also
positively correlated with the amplitude of the low- and high-
frequency time series signals. Both patient groups demonstrated
potential signal to noise ratio declines relative to the control
group; however, due to their strict occurrence within the
baseline period they are unlikely to represent a confounding
factor in the outcome of our analysis.

The study has a few limitations, including the subjects
recruited, that had modest sample sizes and some gender
imbalance across the groups. Although schizophrenia
disproportionately affects males there is evidence of gender
differences in neural activity associated with gamma oscillations
(95) that should be considered in a larger, more representative
study sample. In a similar vein, the effects of medication over time
might contribute to a greater proportion of the variance than the
current design is powered to systematically investigate.

Conclusion
In this study, we investigated the hierarchical organization of
gamma oscillations within the auditory cortex of patients with
schizophrenia. Our findings are consistent with previous reports of
Frontiers in Psychiatry | www.frontiersin.org 10
intact cross-frequency coupling and further demonstrated that this
pattern is present in both early and chronic stages of the illness.We
believe that PAC should continue to be explored as a biomarker for
schizophrenia due to its ability to index a component of oscillatory
dynamics distinct from the basic mechanisms of those enabling
high-frequency cortical oscillations and potential for tracking and
predicting functional outcome. Future studies will more
systematically investigate the differential impacts and interactions
of task, cortical region, and illness phase (spanning prodromal to
chronic and late phase illness).
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