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Abstract

Background

The interaction between pathogenic bacteria and cholesterol crystals (CCs) has not been

investigated. However, CCs are found extensively in atherosclerotic plaques and sclerotic

cardiac valves. Interactions between pathogenic bacteria and CCs could provide insights

into destabilization of atherosclerotic plaques and bacterial adhesion to cardiac valves.

Methods

Staphylococcus aureus and Pseudomonas aeruginosa were used to assess in vitro bacte-

rial adhesion to CCs and proliferation in the presence of CCs compared to plastic micro-

spheres and glass shards as controls. Ex vivo studies evaluated bacterial adhesion to

atherosclerotic rabbit arteries compared to normal arteries and human atherosclerotic

carotid plaques compared to normal carotid arteries. Scanning electron microscopy (SEM)

was used to visualize bacterial adhesion to CCs and confocal microscopy was used to

detect cholesterol binding to bacteria grown in the presence or absence of CCs.

Results

In vitro, S. aureus and P. aeruginosa displayed significantly greater adhesion, 36%

(p<0.0001) and 89% (p<0.0001), respectively, and growth upon exposure to CCs compared

to microspheres or glass shards. Rabbit and human atherosclerotic arteries contained sig-

nificantly greater bacterial burdens compared to controls (4× (p<0.0004); 3× (p<0.019),

respectively. SEM demonstrated that bacteria adhered and appeared to degrade CCs.
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Consistent with this, confocal microscopy indicated increased cholesterol bound to the bac-

terial cells.

Conclusions

This study is the first to demonstrate an interaction between bacteria and CCs showing that

bacteria dissolve and bind to CCs. This interaction helps to elucidate adhesion of bacteria to

sclerotic valves and atherosclerotic plaques that may contribute to endocarditis and plaque

destabilization.

Introduction

Bacteria residing in atherosclerotic plaques has been reported but their role in atherosclerosis

has been unclear. Studies have focused primarily on a causal relationship between bacteria and

atherosclerotic plaque [1]. Despite evidence implying a bacterial-plaque interaction, inflamma-

tion triggered by cholesterol crystals (CCs) in the absence of detectable bacteria also promotes

atherosclerosis further complicating a clear connection between bacterial colonization and

arterial blockage [2, 3]. Moreover, treatment with antibiotics in patients with acute cardiovas-

cular disease did not provide a benefit [4]. However, systemic infections have been associated

with subsequent myocardial infarction [5, 6]. We previously discovered that as cholesterol

undergoes a phase change from a liquid to a crystalline state it occupies a greater volume. This

can cause volume expansion within the lipid core leading to perforation of the fibrous cap and

destabilization of the atherosclerotic plaque [7, 8]. A similar finding of CCs perforating the

valve surface was observed in human sclerotic valves and in atherosclerotic rabbit valves [9,

10]. In human coronary arteries during myocardial infarction scavenger cells, primarily mac-

rophages were present engulfing, degrading, and binding to CCs [11]. Since bacteria also scav-

enge host-derived metabolites [12, 13], we conducted this study to determine whether an

interaction between bacteria and CCs is observed. To test this, we evaluated Gram positive and

negative bacterial growth as well as adhesion to CCs in in vitro and ex vivo models.

Materials and methods

In vitro studies

Initial studies were conducted in vitro to evaluate the growth and adhesion characteristics of

clinical strains of Staphylococcus aureus (ATTC #43300) and Pseudomonas aeruginosa (ATTC

#27857) to CCs. Crystals were synthesized by dissolving cholesterol powder in methanol fol-

lowed by evaporation as previously described [14]. To validate S. aureus and P. aeruginosa
adherence to CC was specific and not related to the shape or hardness, we used plastic micro-

spheres (250 μm) and ground glass shards as controls glued to coverslips. For adhesion studies

all particulates (CC, glass shards, plastic microspheres, 2.5mg) were attached to glass coverslips

covered with epoxy resin which was also tested independently.

Overnight cultures of S. aureus and P. aeruginosa were diluted 10-fold in Mueller Hinton

Broth (MHB). The suspensions were further incubated for 2 hours on an oscillating shaker.

Bacterial concentration at this time (T1) was quantified using the spread plated method below

as starting concentration. Next, glass coverslips containing the indicated particulates were

incubated at 37˚C in a Petri dish containing 2 ml of bacterial suspension at T1 and 20 ml of

buffered saline. The Petri dishes were incubated for 1, 2, 3, and 4 h on an oscillating shaker.

Coverslips were then removed from the Petri dish washed 3 times and crushed in MHB
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creating a suspension. Quantification of bacterial cells adhered to the particulates was per-

formed using spread plate methods as below.

For growth studies, overnight suspensions of S. aureus or P. aeruginosa were adjusted to 0.5

Mcfarland concentration. Five ml of 1:20 dilution of 0.5 Mcfarland suspension in MHB was

prepared. Six replicates with (2.5 mg of CCs) and without CCs were incubated at 37˚C in oscil-

lating shaker for 3, 4, 5 and 6 h. Bacterial quantification was performed using spread-plate

method as below.

Spread plate method: 10 μl of serial 10-fold dilutions of MHB suspension was spread on

agar plate using a sterilized spreader. Agar plate was incubated at 37˚C overnight and bacterial

colonies were counted manually the next morning. This raw count was multiplied by dilution

factor and adjusted for weight of CCs and represented as CFU/mg of CCs.

Ex vivo rabbit arteries

Another set of experiments were conducted ex vivo to evaluate whether arteries containing CC

enriched atherosclerotic plaques enhance bacterial proliferation using arteries from an athero-

sclerotic rabbit model compared to normal arteries from non-atherosclerotic rabbits. Ten rab-

bits were made atherosclerotic by balloon de-endothelialization via femoral cutdown under

general anesthesia using ketamine (50 mg/kg, i.m.) and xylazine (10 mg/kg, i.m.) once for a

single procedure followed by feeding a cholesterol enriched diet alternating with normal chow

for six months [15]. Buprenorphine (0.01mg/kg) was injected subcutaneously every 12 hours

for 24 hours following the femoral cutdown to alleviate any discomfort. After euthanasia using

a combination of pentobarbital (390 mg/ml) and phenytoin (50 mg/ml) administered at a dose

of 100 mg/kg of pentobarbital via the marginal auricular vein, arterial tissue samples were then

obtained from the aortas and placed in a washer ring that only exposed the intimal surface of

the artery to a broth solution with S. aureus. The same was repeated for normal control rabbits

fed normal rabbit chow without intimal injury. Ten samples were obtained from each of 5 ath-

erosclerotic rabbits and 5 normal controls. For each group, five samples were incubated for 1 h

and another five samples were incubated for 3 hours. Arterial segments (normal and athero-

sclerotic) were then removed, washed with PBS and pulverized in an Eppendorf tube with

micro-pestle and resuspended and 10 μl of serial 10-fold dilutions of suspension was spread on

agar plate using sterilized spreader. These were then incubated overnight at 37˚C and bacterial

colonies counted the following morning. Bacterial colony counts were measured at each time

interval and SEM used to examine for presence of bacteria on the arterial samples.

Rabbits were housed in specifically designated unit and supervised by a veterinarian. They

were monitored daily and provided adequate feed and water and cages cleaned on a regular

basis by technical staff. Nesting materials and hay were provided for enrichment and engage-

ment. This protocol was approved by Michigan State University’s Animal Care and Use Com-

mittee following National Institute of Health guidelines (Institutional Animal Care and Use

Committee # 03/18-034-01).

Ex vivo human arterial plaque

Another set of experiments were conducted ex vivo to investigated bacterial growth on human

carotid arterial plaques rich in CCs compared to non-atherosclerotic carotid arteries. Seven

de-identified atherosclerotic carotid plaques were obtained from the operating room during

carotid endarterectomy. These were matched with seven normal carotid arteries obtained

from autopsy within 48 hours of death. Arterial tissue samples were placed in a washer ring

exposing only the intima as described above and then placed in broth solution with S. aureus.
The same was repeated for the normal control arteries. For each group, seven samples were
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incubated in broth for 1 h and then washed and processed for bacterial colony counts as

above. Bacterial presence on the intimal surface was examined by SEM. Both Michigan State

University and Sparrow Hospital institutional review boards approved this protocol (#

0518-exempt and no consent was required).

Scanning electron microscopy. For in vitro studies, samples were aliquoted from runs of

CCs with and without bacteria, fixed in 10% buffered formalin and examined by scanning elec-

tron microscopy (SEM). Aliquots were then placed on stubs and air dried for 48 hours. For ex
vivo studies, 5 mm segments of arterial tissue samples were fixed in 10% buffered formalin, air

dried and placed on stubs [7, 8]. The stubs are then coated with a NEOC-AT osmium plasma

coater (Meiwafosis Co, Ltd., Osaka, Japan) and examined using a JEOL SEM (JEOL 6610LV

SEM, JEOL Ltd., Tokyo, Japan).

Light microscopy. Carotid arterial plaque samples were fixed in 10% buffered formalin,

embedded in paraffin blocks, serially sectioned and mounted on glass slides. These were then

stained with trichrome and examined and photographed with a light microscope.

Confocal microscopy. S. aureus bacteria were incubated with and without CCs for 3 h at

37˚C in broth. After incubation, samples were fixed with 4% glutaraldehyde and then stained

for cholesterol using a green, fluorescent dye (cholesteryl BODIPY-C12, Invitrogen, Eugene,

OR) at a 1/100 dilution (75% ethanol) in a test tube for 3 minutes [7]. Samples were then trans-

ferred to a slide incubator chamber and visualized. Confocal fluorescence images of the bacte-

ria were acquired using a Zeiss Pascal LSM microscope (Carl Zeiss, Inc, Jena, Germany). The

green fluorescence was excited with the 488 nm argon laser line, and emission was collected

using a 505 to 530 nm band-pass filter.

Statistical analysis. Because the distributions of S. aureus and P. aeruginosa adhesion data

were skewed, a Box-Cox transformation was applied to mitigate skewness. We used two-way

analysis of variance (ANOVA) to the transformed data with factors GROUP (levels: plastic

microspheres, CCs, glass shards, glue) and HOUR (levels: 1, 2, 3, 4). Six replicate observations

were available for each of the 16 independent experiments. The crossed effect (GROUP×-
HOUR) was not significant. We estimated group-specific least-squares means, 95% confidence

intervals and assessed the significance of differences between estimates.

Two parallel groups (CC and Control) were used in the S. Aureus and P. aeruginosa growth

studies with outcomes at 3, 4, 5 and 6 hours, and six replicate observations. A relative response

was defined as the ratio of the outcome to the fixed baseline (hour 0) value. A log transforma-

tion was performed and the relative responses at hours 3, 4, 5 and 6 were analyzed as correlated

data with group and hour as factors in a repeated measures analysis.

The rabbit artery study was designed with two groups (normal and atherosclerotic), five

replicates per group and two incubation periods (hour 1, hour 3). A Box-Cox transformation

was applied to the 20 bacterial colony counts. Responses at hour 1 and 3 were analyzed as cor-

related data with group and period as factors.

In the human arterial studies bacterial counts were Box-Cox transformed and compared

between atherosclerotic and normal carotid samples by t-test.

Analyses were conducted in SAS software, ver 9.4 (SAS Institute Inc, Cary, NC).

Results

In vitro bacterial adhesion studies

Bacterial colony counts of S. aureus and P. aeruginosa were highest upon incubation with CCs

compared to glass shards, microspheres, and glue (S1 and S2 Tables in S1 File). After Box-Cox

transformation of bacterial count, significant differences were found (p<0.0001) between

groups except for the glass and microsphere pair (Fig 1). Bacterial adhesion was also
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significantly greater for CCs for each time interval compared to controls for both S. aureus and

P. aeruginosa. CCs vs. microspheres: 0.63, 95% CI:0.48,0.78 for SA; p<0.0001 and 1.71,95%

CI:1.19, 2.22 for PA; p<0.0001). S3 Table in S1 File summarizes the statistical comparison

based on the transformed data.

In vitro bacterial growth studies

For S. aureus, CCs compared to control was elevated but the ratio was not significant, 1.90

(95% CI: 0.23, 15.91), p = 0.514. For P. aeruginosa, CCs compared to control was elevated and

significant, 1.67 (95% CI: 1.05, 2.64), p = 0.032. However, growth over time in both studies was

significant (3 DF, p<0.0001). (Fig 2 and S4 Table in S1 File).

Ex vivo rabbit arteries

Rabbit arteries demonstrated that atherosclerotic samples had a 4 fold increased bacterial

counts compared with the normal control arteries (S5 Table in S1 File). After Box-Cox trans-

formation of bacterial count there was a significantly increased number of bacteria present in

atherosclerotic arteries compared with normal controls at one hour incubation (2100 ± 815.5

vs. 500 ± 418.3, p<0.0004) (Fig 3).

Fig 1. In vitro bacterial adhesion. (left) Box-Cox transformed graph of S. aureus bacterial count with glue, glass, plastic microspheres,

and cholesterol crystals (p<0.0001). (right) Box-Cox transformed graph of P. aeruginosa bacterial count demonstrating highest count

with cholesterol crystals (p<0.0001). P-values were obtained from analysis of variance and adjusted for multiplicity by the Bonferroni

method.

https://doi.org/10.1371/journal.pone.0263847.g001

Fig 2. In vitro bacterial growth. Log-transformed relative response of bacterial colony count with cholesterol crystals

and control at 3, 4, 5 and 6 hours of incubation. Left panel, S. aureus; Right panel P. aeruginosa. P-values were obtained

from t-tests in repeated measures analyses. For both studies the time effect was significant (P<0.0001). Group effect:

P = 0.514 for S. aureus, and P = 0.032 for P. aeruginosa.

https://doi.org/10.1371/journal.pone.0263847.g002
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Ex vivo human arterial plaque

The mean bacterial count was 3 times higher in atherosclerotic arterial plaques compared to

‘normal’ controls (S6 Table in S1 File). After Box-Cox transformation of the bacterial count a

significant difference was observed in atherosclerotic arterial plaques compared to normal

controls (18.4 ± 13.0 vs. 5.9 ± 6.4, p<0.019), (Fig 4).

Microscopy. Scanning electron microscopy. By SEM both S. aureus and P. aeruginosa were

found to be degrading CCs. Additionally, S. aureus were found attached to CCs (Fig 5), and on

CCs in atherosclerotic rabbit and human carotid arteries specimens (Fig 6). SEM of the

human carotid plaques reveals sheets of CCs with absence of fibrous caps.

Light microscopy. The carotid artery plaques were eroded without fibrous caps exposing

their lipid core and crystals (Fig 6). This is the surface that was exposed to the bacterial broth.

Confocal microscopy. S. aureus bacteria were seen mainly in clusters. Only the bacteria

exposed to CCs fluoresced green but not the control unexposed bacteria at the same light

intensity (Fig 7).

Discussion

To our knowledge, this is the first report to demonstrate a dynamic interaction between bacte-

ria and CCs. This interaction has clinical implications with regards to bacterial endocarditis as

well as the association of various systemic infections associated with heart attacks [5]. Adher-

ence of bacteria to the cardiac valve surface is the initial event in the development of infective

endocarditis. In experimental models of endocarditis studies have demonstrated that bacteria

selectively adhere to traumatized valvular surfaces [16]. Our study investigated the effect of

Fig 3. Ex vivo bacterial growth in rabbit arteries. Bacterial growth graph with bacterial counts in normal control and

atherosclerotic rabbit arteries using Box-Cox transformation. P- value was obtained from t-test in a mixed effects

model with group and hour as factors.

https://doi.org/10.1371/journal.pone.0263847.g003
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CCs on bacterial adherence and growth with a strong affiliation of both Gram positive and

negative bacteria to CCs. Furthermore, we have recently demonstrated the presence of exten-

sive CCs on heart valves from both human sclerotic valves and valves from an atherosclerotic

rabbit model [9, 10]. Given the current study it becomes plausible that CCs can act as a nidus

for bacteria to localize on the surfaces of abnormal valves. Staphylococcus and Gram-negative

pathogens adhere to host cells and tissues via dedicated adhesion molecules [17]; however, the

molecular nature of bacterial interactions with CCs has yet to be defined.

Cholesterol crystals have been found perforating the fibrous caps in patients who died with

acute myocardial infarction but not in those with coronary atherosclerotic plaques and had

died of other causes [8]. We have previously demonstrated that as cholesterol crystalizes it

increases in volume causing the plaque core to expand making the sharp tipped CCs perforate

the fibrous cap leading to plaque rupture [7, 8]. Other investigators have confirmed that when

cholesterol crystallizes from a liquid to a solid state, it forms sharp tipped crystals that have the

capacity to perforate fibrous tissue hence tearing the fibrous plaque cap [18]. Cholesterol crys-

tals are known to be abundantly dispersed in atherosclerotic plaques. Also, bacteria have been

found in atherosclerotic plaques however their role remains uncertain [19]. In this study we

have demonstrated an affinity of S. aureus and P. aeruginosa to CCs in vitro and ex vivo with a

Fig 4. Ex vivo bacterial growth in human arterial plaques. (a) Graphic of bacterial counts of normal control and

atherosclerotic human arterial plaques using Box-Cox transformation. P-value was obtained from a two-sample t-test.

(b) The arteries embedded in a washer ring exposing the intimal surface and covering the back of the washer. (c)

Bacterial count in human normal carotid tissue comparted to (d) bacterial count in atherosclerotic carotid tissue.

https://doi.org/10.1371/journal.pone.0263847.g004
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significantly increased bacterial growth rate in the presence CCs. Persistent inflammation and

mechanical injury associated with CC accretion within atherosclerotic plaques typically pre-

cedes plaque disruption (rupture and/or erosion) to cause thrombosis which is often the termi-

nal events of atherosclerotic cardiovascular disease. In addition to the established role of CCs

triggering a sterile inflammatory response, bacteria attached to the surface of the crystals could

be an additional contributor to the inflammatory response further destabilizing atherosclerotic

plaques.

In a previous study on aspirates from coronary arteries of patients during catheterization

for myocardial infarction we had demonstrated that macrophages were attached to CCs and

appeared to be binding and degrading them similar to what we found with bacteria in this

study [11]. Also, similar findings were noted during CCs emboli in muscle [14]. Other reports

have shown that S. aureus and Mycobacterium tuberculosis have the capacity to internalize and

metabolize cholesterol thus utilizing free and esterified cholesterol as a potential source of

nutrition and/or incorporation into the cell membrane as reported for mammalian cells [20,

21]. Specifically, in our study, both human carotid plaque and atherosclerotic rabbit arteries

demonstrated a 3- and 4-fold increase of bacterial colony count respectively compared to nor-

mal arterial tissue. It is unlikely that the crystal adhesion to atherosclerotic plaque was related

to the fibro-collagenous plaque cap since these plaques were totally eroded and had completely

lost their fibrous caps as seen by SEM (Fig 6). This provides additional support for the poten-

tial role of CCs in not only injuring the valve tissue but also to act as an attractant for bacteria.

Moreover, cholesterol seems to enhance bacterial resistance to antibiotics [22] while statins

have been found to reduce inflammation and enhance wound healing during infections [23–

25] suggesting that lowering LDLc as well as dissolving CCs with statins may contribute to

reduction in available substrate for bacterial growth [26].

In our study we demonstrated that bacteria dissolved CCs and confocal microscopy dem-

onstrated that bacteria exposed to CCs had stained green for the cholesterol dye, BODIPY,

implying adherence of cholesterol to bacteria. This finding suggests that bacteria are able to

Fig 5. Scanning electron micrograph of bacteria engaging cholesterol crystals. In vitro S. aureus incubated with
cholesterol crystals (top): (a) Cholesterol crystals incubated in broth without bacteria as control (b) Staphylococcus

bacteria engulfing and degrading crystal after 2.5 hours incubation. (c) Staphylococcus bacteria noted engaging and

punctating the crystal surface at 1 hour incubation. In vitro P. aeruginosa incubated with cholesterol crystals (bottom):
(d) Pseudomonas bacteria seen engulfing and eroding crystals forming wedges into the crystal body (e) higher

magnification demonstrates the detail of the bacterial and the crystal erosion with loss of crystal sharp edges; (f)

another example of eroding crystal with bacteria above and around the crystal.

https://doi.org/10.1371/journal.pone.0263847.g005
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degrade CCs [27, 28]. Thus, bacteria could be attracted to atherosclerotic plaques and cardiac

valves with CCs contributing to plaque destabilization and seeding of sclerosed cardiac valves.

Conclusions

This study demonstrates that bacteria associate with CCs in vitro, and ex vivo in rabbit and

human arterial plaques rich in CCs. Recently we had demonstrated that CCs are found perfo-

rating the surface of cardiac valves in an atherosclerotic rabbit model and in sclerotic human

Fig 6. Micrographs of ex vivo S. aureus bacteria on human plaques. (a) Scanning electron micrograph of normal

carotid artery with few bacteria attached to intimal surface; (b) atherosclerotic carotid plaque with many bacteria and

macrophages (white arrow) attached to cholesterol crystals; (c) bacteria attached and degrading crystal in human

plaque; (d) Scanning electron micrograph demonstrating extensive sheets of cholesterol crystals covering the plaque

surface with absence of any fibrous cap at this advanced stage of plaque disruption; (e) Example of an intact fibrous cap

(arrows) from a human carotid plaque; (f) Light microscopic image of a completely ruptured and eroded plaque with

cholesterol crystals filling the base and a remnant insertion site of a fibrous cap (arrow).

https://doi.org/10.1371/journal.pone.0263847.g006
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valves. Since bacteria appear to have affinity to CCs, then it would be reasonable to assume

that CCs can serve to adhere bacteria to valve tissue. Moreover, the presence of bacteria in ath-

erosclerotic plaques has the potential of destabilizing the plaque elucidating the association of

cardiovascular events following systemic infection. Further studies on the mechanism of inter-

action between bacteria and CCs are needed to explore these possibilities.

Limitations

This study was conducted in vitro and ex vivo but not in vivo. Bacterial transcriptional

responses were not evaluated to detect whether transcripts associated with cholesterol import

or degradation were differentially regulated in response to CCs.

Supporting information

S1 File.

(DOCX)

S2 File.

(DOCX)

Fig 7. Fluorescence microscopy of bacteria with adherent cholesterol. At same light intensity confocal microscopy

of S. aureus incubated with (a, b) and without (c, d) cholesterol crystals demonstrate binding of BODIPY stain to the

bacteria exposed to cholesterol crystals but not in the bacteria that were not exposed to crystals.

https://doi.org/10.1371/journal.pone.0263847.g007
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