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Differential microRNA (miRNA or miR) regulation is linked to the development and
progress of many diseases, including inflammatory bowel disease (IBD). It is well-
established that miRNAs are involved in the differentiation, maturation, and functional
control of immune cells. miRNAs modulate inflammatory cascades and affect the
extracellular matrix, tight junctions, cellular hemostasis, and microbiota. This review
summarizes current knowledge of differentially expressed miRNAs in mucosal tissues
and peripheral blood of patients with ulcerative colitis and Crohn’s disease. We combined
comprehensive literature curation with computational meta-analysis of publicly available
high-throughput datasets to obtain a consensus set of miRNAs consistently differentially
expressed in mucosal tissues. We further describe the role of the most relevant
differentially expressed miRNAs in IBD, extract their potential targets involved in IBD,
and highlight their diagnostic and therapeutic potential for future investigations.

Keywords: miRNA, ulcerative colitis, Crohn’s disease, inflammatory bowel disase, Transcriptomics
INTRODUCTION

Inflammatory bowel disease (IBD) is an idiopathic, chronic inflammation that primarily affects the
gastrointestinal tract. IBD patients experience frequent hospital admissions, many operations, and
poor quality of life due to the disease complications (1, 2). Like many other immune-related
diseases, the etiology of IBD is not well understood. However, it is generally believed to be a
multifactorial disease where environmental factors, genetics, immune dysregulation, and
microbiome dysbiosis trigger an inappropriate immune response in lamina-propria, which
challenges mucosal homeostasis (3).

Ulcerative colitis (UC) and Crohn’s disease (CD) are the two major types of IBD. While CD
shows a patchy transmural inflammatory pattern, UC is mainly limited to the innermost layers and
org June 2022 | Volume 13 | Article 8657771
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rarely affects other layers of the intestine wall (1, 2). CD is
associated with many pathophysiological complications, and its
clinical symptoms vary according to the disease location (4). UC
is more prevalent and mainly affects the colon (rectum) and
generally has a milder course, with patients less prone to disease
complications (5, 6). Genome-wide association studies (GWAS)
identified 245 unique IBD loci. These susceptible loci are crucial
in defining the disrupted intestinal immune system and disease
pathways and constitute a solid genetic component of IBD (7–9).

Advances in IBD genetics, high-throughput sequencing
technologies, and transcriptome studies provide new insights
associated with noncoding RNAs, including long noncoding
RNAs (lncRNAs) (10) and microRNAs (miRs or miRNAs) in
various diseases (11, 12). Differentially expressed miRNAs are
highly correlated with inflammatory and autoimmune disorders,
including psoriasis (13), rheumatoid arthritis (14), multiple
sclerosis (15), and IBD (16, 17). Mature miRNAs are short
(~22 nt long) single-stranded noncoding RNAs derived from
pre-miRNA hairpins (typically ~80 nt), and many of these are
further processed from primary miRNA transcripts (pri-
miRNA) of several hundred nucleotides when multiple pre-
miRNAs are contained. The pri-miRNA can be intergenic or
of intronic origin nucleotides and can be evolutionarily
conserved. MiRNAs are involved in regulating gene expression
post-transcriptionally (17–19), where the mature miRNA binds
to its target typically with a seed sequence of 6 nucleotides from
position 2-7 and with the remaining part binding often with a
few nucleotide bulges.

Various studies indicate that differentially expressed miRNAs
affect mRNA at several levels of regulation: transcriptional, post-
transcriptional, chromatin modification, and genomic imprinting.
miRNAs can affect biological processes through endogenous RNA
competition, regulation of RNA transcription, protein sponges,
and translation regulation. These regulations can cause decreased
stability and translational repression that affects various biological
functions, including proliferation, migration, cell signaling,
autophagy, and apoptosis (3, 17, 20, 21). It is estimated that
miRNAs regulate more than 60% of the mRNA through
complementary pairing at 3′ untranslated regions (UTRs) (20).
miRNAs are not only acting as local regulators within the cells;
they also can be found in places far from their origin and are
directly or indirectly involved in virtually all types of regulation of
biological processes in living organisms (17, 21).

Furthermore, some miRNAs are stable in body fluids such as
serum, plasma, urine, saliva, and other tissues (22–25). Many
efforts are currently ongoing to identify differentially expressed
miRNAs in IBD as biomarkers. Since the expression of
differentially expressed miRNA in IBD and many other
diseases seems to happen early in the disease, the evaluation of
circulating miRNA or tissue-specific levels could be helpful for
early diagnosis and successful treatments. Thus, it is highly
important to study miRNA-expression profiles and their target
genes as biomarkers for diagnosis, prognosis, progression, and
treatment response.

This review presents an overview of current knowledge on
differentially expressed miRNAs in IBD patients’mucosal tissues
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and peripheral blood. To enrich the findings from the literature,
we combined the literature curation with a meta-analysis of
publicly available miRNA high-throughput datasets in mucosal
tissues. We further discuss the importance of the most relevant
miRNAs in the disease based on the available knowledge and
suggest the miRNA participation role in developing chronic
inflammation that characterizes pathogenesis. Finally, we
discuss the relevance of miRNA differential expression for
prediction/early diagnosis, disease progression and treatment
responses, and the obstacles in the way.

Differentially Expressed miRNAs in IBD
Patient’s Mucosal Tissues
Ulcerative Colitis
The first miRNA profiling study in IBD was performed in 2008
and compared biopsy samples from patients with active UC
(aUC), inactive UC (iUC), chronic active CD (aCD), microscopic
colitis, infectious colitis, and irritable bowel syndrome with
healthy controls (26). Eleven miRNAs were differentially
expressed in patients with aUC compared to the controls. miR-
192-5p, miR-375-3p, and miR-422b-5p were significantly
downregulated, and miR-16-5p, miR-21-5p, miR-23a-5p, miR-
24-3p, miR-29a-3p, miR-126-3p, miR-195-5p, and let-7f-5p
were significantly upregulated (26).

Following this pioneering observation, subsequent studies
have identified many new miRNAs while reconfirming already
identified ones. It is not surprising that the findings are not
consistent as many variables differ between studies, including
treatment, inflammatory status, disease duration, anatomical
biopsy locations, different healthy control cohorts, and
miRNAs profiling platforms. Regardless of these differences,
several miRNAs are frequently reported as being differentially
expressed. miR-21-5p (26–32), miR-155-5p (27, 29, 33–35),
miR-31-5p (27, 31, 33, 36), miR-146a-5p (27, 30, 32, 34), miR-
126-3p (26, 28, 32), miR-29a-3p (26, 36), miR-16-5p (26, 28),
miR-223-3p (32, 35) and miR-24-3p (26, 30) showed to be
constantly upregulated while miR-192-5p (26, 28, 30), miR-
141-3p (32, 37), and miR-375-3p (26, 30) were downregulated
in UC biopsies when compared to control biopsies (in at least
two independent studies). Also, many miRNAs showed
differential regulation when inactive UC is compared with
active UC and control (Table 1).

Crohn’s Disease
In another pioneering study in 2010, Fasseu et al. identified 14 and
23 miRNAs differentially expressed (0.001< p <0.05) in iUC and
inactive CD (iCD) patients, respectively (Tables 1, 2). Among them,
8 were commonly differentially expressed in iUC and iCD (miR-
26a-5p, miR-29a-3p, miR-29b-5p, miR-30c-5p, miR-126-3p, miR-
127-3p, miR-196a-5p, miR-324-3p). Further analysis showed that
miR-26a-5p, miR-29b-5p, miR-126-3p, miR-127-3p, and miR-324-
3p had coordinated differential regulation in the non-inflamed and
inflamed colonic mucosa of IBD patients. On the other hand, miR-
196b-5p, miR-199a-3p, miR-199b-5p, miR-320a-5p, miR-150-5p,
and miR-223-3p demonstrated significant difference when non-
inflamed UC and CD colonic biopsies were compared. Based on
June 2022 | Volume 13 | Article 865777
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TABLE 1 | Differentially expressed miRNAs in human UC colonic tissue based on literature review.

Up-regulated Down-regulated Other finding/Comments Method Source Group/N Country Ref

miR-16-5p, -21-5p, -23a-5p,
-24-3p, -29a-3p, -126-3p,
-195-5p, let-7f-5p

miR-192-5p, -375-3p,
and -422b-5p

Macrophage inflammatory peptide (MIP)-2 alpha which
is a chemokine expressed by epithelial cells showed to
be the target of miR-192-5p.

Microarray
qRT-PCR

Sigmoid
and
colon

aUC/15
iUC/15
CO/15

USA
(26)

miR-21-5p, -203-5p, -126-3p
and 16-5p

miR-320-5p, -192-5p miR-16, -143, and -145 are expressed in response to
DNA damage

qRT-PCR Colon UC/5
CO/5

USA
(28)

Non-inflamed: miR-15a-5p,
-26a-5p, -29a-3p, -29b-5p,
-30c-5p, -126-3p, -127-3p,
-324-3p
Inflamed: miR-7-5p, -26a-5p,
-29a-5p, -29b-5p, -31-5p,
-126-3p, -127-3p, 135b-5p,
324-3p

miR-199b-5p, -370-5p
in both aUC and iUC

Commonly dysregulated in UC and CD: miR-26a-5p,-
29a-3p,-29b-5p,-30c-5p,-126-3p,-127-3p,-196a-5p,-
324-3p

qRT-PCR Colon iUC/8
CO/10

France
(36)

miR-21-5p, -155-5p – Other up-regulated miRNAs are (not significant): let-
7a-5p,l et-7c-5p, let-7d-5p, let-7g-5p, miR-923-5p

Microarray
qRT-PCR

Colon Microarray:
UC/2
qRT-PCR:
UC/12
CO/12

Japan
(29)

aUC vs iUC:
miR-650-5p, -548a-3p

aUC vs iUC:
miR-630-5p, -489-5p,
-196b-5p

– Microarray
qRT-PCR

Sigmoid
and
colon

aUC/9
iUC/9
CO/ 33

Italy
(38)

aUC vs CO:
miR-21-5p, -31-5p, -146a-
5p, -155-5p, -650-5p
aUC and iUC vs CO:
miR-675-5p

aUC vs CO:
miR-196b-5p, -196b-
3p, -200c-3p
aUC and iUC vs CO:
miR-378a-5p, -196b-
5p, -10b-5p

miR-200c-3p directly regulates IL8 and CDH11
expression (regulators of immune and barrier integrity)
and can be used for therapeutic purposes.

Affymetrix
qRT-PCR

Colon UC/17
CO /10

Belgium
(27)

miR-24-3p, -142-3p, -146a-
5p, -21-5p, let-7i

miR-192-5p, -194-5p,
-200b-5p, -375-3p

Rectal miR-24-3p was increased 1.47-fold in UC
compared to CD samples.

qRT-PCR Rectum UC/18
CO/20

Netherlands
(30)

miR-19a-3p, -21-5p, -31-5p,
-101-5p

– miR-21-5p, -31-5p, and -142-3p were significantly
upregulated and miR-142-5p was significantly
downregulated in saliva of UC patients.

Microarray
qRT-PCR

Colon UC /41
CO/35

USA
(31)

miR-155-5p, -146a-5p miR-122-5p – qRT-PCR Colon UC/10
CO/23

Hungary
(34)

miR-18a-5p, -21-5p, -31-5p,
-99a-5p, -99b-5p, -125a-5p,
-126-3p, -142-5p, -146a-5p,
-223-3p

miR-141-3p, -204-5p Upregulation of miR-31-5p, -125a-5p, -146a-5p and
-223-3p, and downregulation of miR-142-3p in the
inflamed mucosa of pediatric UC compared to children
with CD was observed

qRT-PCR colon
biopsies

UC/32
CO/11

Hungary
(32)

– miR-141-3p miR-141-3p is important in inflammation by inducing
CXCL5 upregulation in UC patients

qRT-PCR
Western
Blot

sigmoid
and
colon
biopsies

aUC /15
CO/ 13

china
(37)

miR-125b-5p, -155-5p, -223-
3p, -138-5p

miR-378d-5p miR-200a-5p did not change significantly in the
inflamed samples when compared with non-inflamed
and controls.

Microarray
qRT-PCR

colon
biopsies

UC/8
CO/8

India
(35)

miR-31-5p, -155-5p – IL13Ra1 is downregulated in the inflamed UC mucosa
and both miRNAs are targeting its 3UTR

qRT-PCR
Western
Blot

sigmoid
and
colon
biopsies

aUC/11
CO/11

UK
(33)
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TABLE 2 | Differentially expressed miRNAs in human CD colonic tissue based on literature review.

Up-regulated Down-regulated Other finding/Comments Method Source Group/N Country Ref

Non-inflamed miR-7-5p, -26a-5p,
-30b-5p, -30c-5p, -155-5p, -127-
3p, -223-3p, -324-3p
Inflamed: miR-26a-5p, -29b-5p,
-126-3p, -155-5p, -127-3p, -185-
5p, -196a-5p, -324-3p, -378-5p

miR-130b-5p in inflamed CD Commonly dysregulated in UC and
CD: miR-26a-5p, -29a-3p, -29b-5p,
-30c-5p, -126-3p, -127-3p, -196a-
5p,-324-3p

qRT-PCR Colon iCD/8
CO/10

France
(36)

colonic CD vs CO:
miR-23b-3p, -106a-5p, and -191-
5p
active ileal CD vs CO:
miR-16-5p, -21-5p, -223-3p and
-594-5p

colonic CD vs CO:
miR-19b-3p, -629-5p

Ten intestine region-specific miRNAs
were identified.
miR-22-5p, -31-5p, and -215-5p
were
significantly increased in the terminal
ileum as compared
to all four colonic regions

Microarray
qRT-PCR

Terminal
ileum,
cecum,
transverse
colon,
sigmoid,
and
rectum

Sigmoid CD/
5
Terminal
ileum CD/6
CO/13

USA
(39)

aCD versus iCD:
miR-18a-3p, -629-3p,
, let-7b, -140-3p

aCD versus iCD:
miR-422a-5p, -885-5p, -328-5p

Microarray
qRT-PCR

Colon aCD/9
iCD/9

Italy
(38)

miR-19b-3p, -23b-3p, -106a-5p,
-629-5p

– CD vs UC: Significant differential
expression of miR-19b-3p, -106a-
5p, -629-5p
Average expression of these three
miRNAs and miR-23b-3p and -191-
5p was significantly different between
intermediate colitis and CD
No significant difference was
detected between UC, intermediate
colitis and controls

qRT-PCR Colon CD/14
UC/12
Intermediate/
16
CO/11

USA
(40)

miR-142-3p, -146a-5p, -21-5p,
let-7i

miR-194-5p, -200b-5p, -192-5p
and -375-3p

Rectal miR-24-3p correctly classified
84.2% of patients, with a sensitivity
of 83.3% and specificity of 85.7%.

qRT-PCR Colon CD/12
CO/20

USA
(30)

Non-inflamed vs CO:
miR-495-5p
Inflamed vs non-inflamed:
miR-361-3p

Inflamed vs CO:
miR-192-5p
Non-inflamed vs CO:
let-7b-5p
Inflamed vs non-inflamed:
miR-124-3p

Microarray
qRT-PCR

Terminal
ileum

CD/16
CO/10

China
(41)

In B2 and/or B3:
miR-31-5p, -215-5p, -223-3p

In B1:
miR-150-5p
In B2 and/or B3:
miR-149-5p, -196b-5p, -203-5p

B1: nonstricturing and
nonpenetrating (n=8)
B2: structuring (n=6)
B3: penetrating/fistulizing (n=7)
The expression level of miR-31-5p
was the most significant in both B2
and B3

RNA-Seq
qRT-PCR

Colon Sequencing:
CD/21
CO/14
Validation:
CD/20
CO/15

USA
(42)

miR-31-5p, -101-5p and -146a-
5p

miR-375-3p miR-101 in CD patients’ saliva was
significantly upregulated.
ATG16L1 as a regulatory target of
miR-142-3p and miR-93-5p

Microarray
qRT-PCR

Colon CD /42
CO/35

USA
(31)

miR-146a-5p and -155-5p
Inflamed CD vs CO:
miR-122-5p (not significant)

Inflamed CD vs intact CD:
miR-122-5p

miR-146a and -155 have also
been connected to TLR pattern
recognition receptor family.
TNF-a treatment in HT-29 cells
increased the expression of miR-
146a-5p and -155-5p, but not miR-
122-5p.

RNA-Seq
qRT-PCR

Colon Intact pCD/
14
Inflamed
pCD/24
CO/23

Hungary
(34)

(Continued)
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this screening, the authors suggested an important role of miRNAs
in the inflammation at onset and/or relapse of IBD patients with
quiescent mucosal tissues (36).

Succeeding studies have identified several miRNAs
consistently shown to be differentially expressed between CD
and control biopsies, including always upregulated miR-146a-5p
(30–32, 34, 43), miR-21-5p (30–32, 39, 47), miR-31-5p (31, 32,
42, 45, 46), miR-223-3p (32, 39, 42, 48), miR-142-3p (30, 32, 45),
let-7i-5p (30, 44), miR-23b-3p (39, 40), miR-106a-5p (39, 40)
and constantly downregulated miR-192-5p (41, 44, 48), miR-
194-5p (30, 48) and miR-375-3p (30, 31). There are also miRNAs
with conflicting results including miR-150-5p (up in (32, 45),
down in (42)), miR-19b-3p (up in (40), down in (39)), miR-215-
5p (up in (42), down in (48)), and miR-629-5p (up in (40), down
in (39)). Moreover, several miRNAs showed differential
regulation when iCD compared with aCD and control (Table 2).
Frontiers in Immunology | www.frontiersin.org 5
Differentially Expressed miRNAs in IBD
Patient’s Peripheral Blood
Ulcerative Colitis
Similar to the findings in tissue biopsies, miRNAs are also
differentially expressed in the peripheral blood of UC patients.
In a first study, Wu et al. compared the circulating miRNA profile
of whole blood of aUC and iUC patients and healthy individuals
(49). Their microarray investigation showed a significant increase
in the expression level of twelve miRNAs, while one, miR-505-3p,
showed a significant decrease when comparing patients with aUC
with healthy controls. miR-505-3p expression was decreased
around 7-fold in active outpatient blood. In contrast, 3.1- and
5.2-fold expression increases were demonstrated in the blood of
the active UC patients for miR-103-2-3p and miR-362-3p,
respectively. Furthermore, a comparison between the circulating
miRNA in the peripheral blood of UC patients with healthy
TABLE 2 | Continued

Up-regulated Down-regulated Other finding/Comments Method Source Group/N Country Ref

inflamed vs intact duodenal
mucosa:
miR-146a-5p
inflamed CD vs CO duodenal
mucosa:
miR -155-5p

TGF-b treatment had no effect on
miR-146a-5p miR-122-5p
expression in duodenal epithelial
cells, while significant downregulation
was detected for miR-155-5p.

qRT-PCR Duodenal intact CD/
10
inflamed CD/
10
CO/10

Hungary
(43)

Inflamed vs CO:
miR-18a-5p, -21-5p, -31-5p,
-99a-5p, -99b-5p, -100-5p,
-125a-5p, -126-3p, -142-5p,
-142-3p, -146a-5p, -150-5p,
-185-5p, and -223-3p
Non-inflamed vs CO:
miR-18a-5p, -20a-5p, -21-5p,
-31-5p, -99a-5p, -99b-5p, -100-
5p, -125a-5p, -126-3p, -142-5p,
-146a-5p, -185-5p, -204-5p,
-221-5p, and -223-3p

Inflamed vs CO:
miR-20a, -141-3p, -204-5p
Inflamed vs non-inflamed and CO:
miR-141-3p, miR-204-5p

miR-31-5p, -125a-5p, -142-3p-5p,
and -146a-5p showed alter
expression between the inflamed
mucosa of CD and UC

qRT-PCR Colon RNA-Seq:
CD/4
CO/4
Validation:
CD/15
CO/11

Hungary
(34)

miR-193b-3p, -19a-3p, let-7I, let-
7I-3p, -1273D-5p, -886-5P, -668-
5p, -720-5p, -455-3P, -3138-5p,
-612-5p, -551B-5p, -4264-5p,
-24-3p

miR-3194-5p, -196A-5p, -192-
5p, -200A-5p, -192-3p, -1913-
5p, -378b-5p, -323b-3P, -3150-
5p, -422A-5p, -611-5p, -3184-
5p, -4284-5p, -129-3p

miR-4284-5p, -3194-5p and -21-5p
interact with JAK-STAT signaling and
innate immune system

Microarray
qRT-PCR

Colon CD/15
CO/15

Italy
(44)

miR-144-5p, -451-5p, -31-5p and
-142-3p
iCD vs CO:
miRplus-F1195 and -150-5p

miR-1973-5p, -1205-5p, -5481-
5p, -491-5p -3p
CD and iCD vs CO:
miR-1205-5p downregulation

Inhibition of C10orf54 expression by
miR-16-1-5p is one of the main
causes of CD

Microarray
qRT-PCR

Ascending
colon

CD/7
iCD/7
CO/7

USA
(45)

miR-31-5p a dramatic and highly significant
upregulation (~60-fold) of miR-31-5p
in IL patients compared with control

RNA-Seq
qRT-PCR

Ascending
colon

CD/76
CO/51

USA
(46)

miR-21-5p, -223-5p, -1246-5p miR-30c-5p, -378-3p Microarray
qRT-PCR

Ileal colon CD/18
CO/12

Belgium
(47)

miR-223-3p miR-194-5p, -10b-5p, -215-5p,
-192-5p, -10a-5p, -582-5p

miR-31-5p expression was location
driven suggest a CD location
subtypes

NanoString Ileal
Colon

CD/23
CO/ 38

Canada
(48)
June 2022
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All miRNAs are from comparison between the disease and healthy individual, unless otherwise stated.
aCD, active CD; iCD, inactive CD; CO, Control; N, Numbers per Group.
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TABLE 3 | Differentially expressed miRNAs in human UC peripheral blood based on literature review.

Up-regulated Down-regulated Other finding/Comments Method Source Group/N Country Ref

miR-28-5p, -151a-5p, -199a-5p, -340-
3p, and
miRplus-E1271
aUC and iUC: miR-103-2-3p, -362-3p,
and -532-3p

aUC and iUC: miR-505-3p
UC vs CD: miR-505-3p

UC specific: miRplus-E1153
miRs-28-5p, -103-2-3p, -149-3p,
-151a-5p, -340-3p, -505-3p, -532-3p,
and miR-plus-E1153, were able to
distinguish aCD from aUC

Microarray
RT-qPCR

Peripheral
blood

aUC/13
iUC/10
CO/13

USA
(49)

miR-188-5p, -422a-5p, -378-5p, -500-
5p, -501-5p, -769-5p, -874-5p

Classifier measurements demonstrated
a predictive score of 92.8% accuracy,
96.2% specificity and 89.5% sensitivity
in stratifying UC patients from controls
using these miRNAs panel.

Microarray
RT-qPCR

Peripheral
blood

UC/20
CO/20

USA
(57)

miR-16-5p, -21-5p, -28-5p, -151a-5p,
-155-5p and -199a-5p

RT-qPCR Peripheral
blood

UC/88
CO/162

Greece
(54)

miR-760-5p, -423-5p, -128-5p, -196b-
5p, -103-5p, -221-5p, -532-5p, -15b-5p,
-27a-5p, let-7g-5p, -93-5p, let-7d-5p,
-598-5p, -142-5p, let-7e, -223-3p,
-374b-5p, -19a-3p, -345-5p, -199a-3p,
-24-3p, -30e-5p, -29a-3p, -28-3p
aUC vs iUC: miR-650-5p and -548a-3p

miR-150-5p
aUC vs iUC: miR-630-5p,
-489-5p, and -196b-5p

miR-127-3p, -491-5p, -18a-5p, -145-
5p, let-7b-5p, -185-5p, -29c-5p, -19b-
3p, -20b-5p, -106a-5p, -17-5p, -222-
5p, -135a-3p were common between
CD and UC

TaqMan
human
miRNA
array
RT-qPCR

Serum aUC/9
iUC/9
CO/33

Italy
(38)

miR-16-5p, -34b-3p
UC vs CD: miR-377-3p, -1247-5p
miR-34b-3p, -484-5p, -574-5p in both
CD and UC

miR-99b-5p miR16-5p regulates HMGA1/2 and
ACVR2a while miR-34b regulates
HNF4A, NOTCH1, c-MET/HGFR and
CAV1 and miR-99b-5p regulates
RAVER2 and mTOR which are all IBD-
risk genes

Microarray Peripheral
blood

UC/36
CO/38

Germany
(53)

miR-595-5p, -1246-5p, -142-5p, -143-
5p, -24-3p
aUC vs iUC: miR-1246-5p and miR-595-
5p

NCAM-1 and FGFR2 are two potential
targets of miR-595
miR-1246 indirectly activates the
proinflammatory nuclear factor of
activated T cells

Microarray
RT-qPCR

Serum UC/62
CO/58

New
Zealand (52)

miR-223-3p, -23a-3p, -302-3p, -191-5p,
-22-3p, -17-5p, -30e-5p, -148b-3p,
-320e-5p

miR-1827-5p, -612-5p,
-188-5p
UC vs iUC: miR-4454-5p,
-223-3p, -23a-3p, -148b-
3p, -320e-5p, -4516-5p

Positive disease severity correlation of
miR-223-3p, -4454, -23a-3p, -148b-
3p, -320e-5p, and -4516-5p
miR-4454-5p, -223-3p, -23a-3p, and-
320e-5p showed higher sensitivity and
specificity values (70% and 68%, 79%
and 72%, 79% and 68%, and 67%
and 67%, respectively) than C-reactive
protein (37% and 95%)

Nanostring
Analysis

Peripheral
blood and
serum

UC/24
iUC/22
CO/21

USA
(51)

miR-19a-3p, -101, -142-5p, -223-3p,
-375-3p, and -494-5p

miR-21-5p, -31-5p, and
-146a-5p

miR-21-5p, -31-5p, and miR-142-3p
were significantly upregulated and miR-
142-5p was significantly
downregulated in saliva of UC patients.

Microarray
qRT-PCR

Peripheral
blood

UC /41
CO/35

USA
(31)

miR-223-3p miR-223-3p demonstrated high
Spearman r value in
detecting the disease activity

RT-qPCR
FC: 2.8

Serum UC/50
CO/50

China (3)

miR-29b-3p, -122-5p, -150-5p, -192-5p,
-194-5p, -146a-5p, -375-3p

miR-199a-3p, -148a-3p miRNA used in this study were
discovered in IL10−/− mice model of
UC and tested for orthologues in
human.
UC stratified from CO with 83.3%
prediction rate

miRCURY
LNA
RT-qPCR
Prediction

Serum UC/12
CO/12

USA
(56)
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individuals revealed a significant increase in the expression level of
the miR-28-5p, miR-151a-5p, miR-199a-5p, miR-340-3p, and
miRplus-E1271 in patients with aUC but not in iUC. Wu et al.
further demonstrated that miRs-103-2-3p, miR-362-3p, and miR-
532-3p are upregulated in both aUC and iUC. Following this
initial study, in attempts to identify circulating miRNAs that
contribute to UC development and to find proper biomarker
candidates, many studies have been performed. From these studies
miR-223-3p (3, 31, 38, 50, 51), miR-142-5p (31, 38, 52), miR-16-
5p (50, 53, 54), miR-151a-5p (49, 54), miR-199a-5p (49, 54), miR-
19a-3p (31, 38), miR-24-3p (38, 52), miR-28-5p (49, 54), miR-30e-
5p (38, 51), miR-362-3p (49, 55) showed consistent upregulation
in at least two independent studies, whereas none of the
downregulated miRNAs had been validated in more than one
study (possibly due to biases in which miRNAs are picked for
validation). Moreover, miR-21-5p (up in (49, 50), down in (31)),
miR-146a-5p (up in (56), down in (31)), miR-150-5p (up in (56),
down in (38)), miR-188-5p (up in (57), down in (51)), miR-199a-
3p (Up in (38), down in (56)) showed inconsistent differential
regulation between different studies. miRNAs differential
regulation was also detected when iUC was compared with aUC
and control. miR-362-3p is the only miRNA that shows
upregulation in two independent studies when iUC was
compared with healthy control (49, 55) (Table 3).

Crohn’s Disease
One of the first studies using whole blood for distinguishing CD
patients from normal healthy individuals using miRNA profile
was done byWu et al. (49). Comparing the circulating miRNA of
the aCD patients with healthy controls showed a significant
increase in the expression of five miRNAs and a significant
decrease in two others. Among them, miR-362-3p showed the
most significant difference in expression of a 4.7-fold increase.
Interestingly the expression of miR-340-3p showed a significant
increase, and miR-149-3p showed a significant decrease in both
active and inactive CD patients compared to the healthy controls.

Subsequent studies found miR-16-5p (38, 50, 54, 58), miR-
484-5p (53, 58, 59), miR-362-3p (49, 54, 55), miR-106a-5p (54,
55, 58), miR-532-3p (49, 54), miR-30e-5p (58, 60), miR-223-3p
(3, 50), miR-21-5p (50, 58), miR-200c-3p (54, 61), miR-199a-5p
(49, 54), miR-195-5p (38, 58), miR-142-5p (52, 53), miR-140-5p
(38, 58) to be consistently upregulated in CD patients in
Frontiers in Immunology | www.frontiersin.org 7
comparison with healthy controls (in at least two independent
studies). However, similar to the UC studies, based on the lists
manually curated from literature, no circulating miRNA is
always downregulated when CD is compared to healthy
controls (in more than one study). This could be because the
main focus for blood-based biomarker discovery is on the
upregulated miRNAs, not the downregulated ones. There are
also miR-574-5p (up in (53), down in (60)) and miR-192-5p (up
in (58), down in (60)) that were shown to be differentially
expressed inconsistently between studies. Moreover, several
circulating miRNAs showed differential regulation when iCD
compared with aCD and control (Table 4).

Computational Meta-Analysis of Publicly
Available High Throughput Studies
In addition to the literature curation, we also performed a meta-
analysis of publicly available high throughput studies
(microarray and RNA-Seq), including 3 UC (27, 62, 63) and 4
CD (42, 47, 62, 64) patient cohorts (Table 1). All included studies
contained expression profiling at the level of the intestinal
mucosa (colon or ileum). We combined the results of
differential expression analysis between the UC or CD and the
control group from each study as described in the supplementary
section. The three UC datasets are consistent with each other,
with most differentially expressed miRNAs being changed in the
same direction, in contrast to the CD datasets, where many
miRNAs are differentially expressed in opposite directions
between the datasets (Supplementary Figure 1). The higher
heterogeneity observed in the expression profiles from CD
patients might be consistent with the more heterogeneous
nature of CD compared to UC. There might also be other
explanations, including different patients’ demographics,
different sample handling, and data generation in different labs.

We obtained a final set of 158 miRNAs consistently
differentially expressed between UC patients and controls and
69 miRNAs between CD patients and controls (p-value < 0.05 in
at least two datasets and a global adjusted combined logit p-value
< 0.05) and consistent in the direction of regulation
across al l datasets (Supplementary Files 1, 2 and
Supplementary Figure 2).

The meta-analysis confirms most of the literature-curated
miRNAs and at the same time provides dozens of other miRNAs
TABLE 3 | Continued

Up-regulated Down-regulated Other finding/Comments Method Source Group/N Country Ref

aUC vs CO:
miR-106a-5p
iUC vs CO:
miR-106a-5p and -362-3p

The expression level of miR-362-3p
showed to be higher in UC vs CO but
not significant.

RT-qPCR Peripheral
blood

aUC/20
iUC/12
CO/32

Iran
(55)

miR-16-5p, -21-5p and -223-3p – miR-155 expressed higher in CD than
UC
In remission group expression of
miRNAs was dependent on disease
activity

RT-qPCR Serum UC/15
CO/20
Remission
UC/8

Germany
(50)
J
une 2022 |
 Volume 13 |
 Article 865
All miRNAs are from comparison between the disease and healthy individual, unless otherwise stated.
aUC, active UC; iUC, inactive UC; aCD, active CD; iCD, inactive CD; CO, Control; N, Numbers per Group.
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TABLE 4 | Differentially expressed miRNAs in human CD peripheral blood based on literature review.

Up-regulated Down-regulated Other finding/Comments Method Source Group/N Country Ref

miR-199a-5p, -362-3p, -532-3p, miRplus-
E1271
aCD and iCD: miR-340-3p

miRplus-F1065
aCD and iCD:
miR-149-3p

miR-199a-5p, -362-3p, -340-3p, -532-
3p and miRplus-E1271 common in
both CD and UC

Microarray
RT-qPCR

Peripheral
blood

aCD/14
iCD/5
CO/13

USA
(49)

miR-16-5p, -195-5p, -106a-5p, -20a-5p,
-30e-5p, -140-5p, -484-5p, -93-5p, -192-
5p, -21-5p and let-7b-5p

Area under the ROC curve values
of 0.82 to 0.92 sensitivities of 70% to
83% and specificities of 75% to 100%

TaqMan
Human
MicroRNA
Arrays
RT-qPCR

Serum CD/46
CO/32

USA
(58)

miR-16-5p, -23a-5p, -29a-3p, -106a-5p,
-107-5p, -126-3p, -191-5p, -199a-5p,
-200c-3p, -362-3p and -532-3p

RT-qPCR Peripheral
blood

CD/128
CO/162

Greece
(54)

miR-27a-5p, -140-3p, -140-5p, -16-5p,
-195-5p
aCD vs iCD: miR-188-5p, -877-5p

miR-877-5p
aCD vs iCD: miR-
140-5p, miR-145-
5p, -18a-5p, -128-
5p

miR-127-3p, -491-5p, -18a-5p, -145-
5p, let-7b, -185-5p, -29c-5p, -19b-3p,
-20b-5p, -106a-5p, -17-5p, -222-5p,
-135a-3p are common in CD and UC
miR-877-5p has role in disease
remission

TaqMan
human
miRNA
array
RT-qPCR

Peripheral
blood and
Serum

aCD/9
iCD/9
CO/33

Italy
(38)

miR-34b-3p, -142-5p, -205-5p, -424-5p,
-885-5p
CD vs UC: miR-656-3p, -744-5p, -1908-5p
miR-34b-3p, -484-5p, -574-5p common in
both CD and UC

miR-570-3p,
-1301-3p

miR-205-5p targets LRRK2, SHIP2/
INPPL1, ZEB1, E2F1, ERBB3 and miR-
142-5p targets NFE2L2/NRF2 and miR-
424-5p targets MYB, CUL2, PU.1
which are either IBD-risk loci or IBD-
related known genes

Microarray Peripheral
blood

CD/40
CO/38

Germany
(53)

miR-200c-3p, -181a-2-3p, and -125a-5p miR-369-3p,
-376a-5p, -376c-
5p, -411-3p,
-411-5p, and
mmu-miR-379-5p

Validation cohort: Only miR-16 was
significantly downregulated in patients
(fold change 0.83, P=0.02).

OpenArray
miRNA
profiling
RT-qPCR

Plasma CD/6
CO/6
Validation
CD/102

Denmark
(61)

miR-595-5p, -1246-5p, -142-5p, -143-5p
aCD vs iCD:
miR-1246-5p, -595-5p and -142-5p

Validation cohort: Only miR-1246-5p,
-142-5p and -143-5p were upregulated
and only miR-143-5p is significant.
UC vs CD: miR-16-5p

Microarray
RT-qPCR

Serum CD/57
CO/58
Validation
CD/10
CO/10

New
Zealand (52)

miR-101-5p and -375-3p miR-21-5p, -31-
5p, -146a-5p, and
-155-5p

miR-101-5p in CD patients’ saliva was
significantly upregulated.

Microarray
RT-qPCR

Peripheral
blood

CD /42
CO/35

USA
(31)

miR-30e-5p miR-1183-5p,
-1827-5p, -1286-
5p, -504-5p,
-188-5p, -574-5p,
-192-5p, -149-5p,
and -378e-5p

Downregulated miR-1286 and miR-
1273d-5p correlated with CD disease
activity higher than C-reactive protein
and calprotectin

Nanostring
nCounter

Serum aCD/21
iCD/24
CO/21

USA
(60)

miR-223-3p 2.2-fold upregulation in CD
2.8-fold upregulation in UC
miR-223-3p has higher Spearman r
value in IBD detection than hCRP and
ESR.

RT-qPCR Serum CD/50
CO/50

China (3)

miR-631-5p, -4521-5p, -562-5p, -766-3p,
-302b-3p, -423-3p, -484-5p, -4707-3p,
-483-3p, -4516-5p, -665-5p, -1260b-5p,
-2117-5p, -216b-5p, -296-5p, -27b-3p,
-188-3p, -770-5p, -1233-3p, -4755-5p,
-627-3p, -767-3p, -339-5p

miR-874-3p targets ATG16L1 and
reduces its expression and dysregulates
autophagy by a reduction
of LC3 in vitro
Upregulated in iCD vs CO:
miR-548g-3p, -4536-5p, -4448-5p,

NanoString Peripheral
blood
mononuclear
cells

aCD/35
iCD/10
UC/46
CO/39

Canada
(59)

(Continued)
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not previously reported in UC or CDmucosa (e.g., miR-378a-3p,
miR-191-5p, miR-92a-3p in UC; miR-30e-5p, miR-26b-5p, let-
7f-5p, let-7g-5p, in CD; miR-146b-5p, miR-30d-5p, miR-148a-
3p, miR-151a-5p in both UC and CD). In addition, few miRNAs
Frontiers in Immunology | www.frontiersin.org 9
showed different or no significant differential regulation
compared to what was found in the literature, including miR-
142-3p (30, 32, 45) in CD, which in literature curation showed to
be constantly upregulated, while in the meta-analysis, it was
constantly downregulated.

Moreover, miRNAs reported in the literature are
predominantly upregulated (specifically for UC); however, the
meta-analysis indicates an almost equal number of up- and
downregulated miRNAs. This might be ascribed to the ease/
bias of validation for the upregulated miRNAs for diagnostic
purposes with available techniques. Furthermore, the
downregulated miRNAs showed a higher average expression,
possibly indicating a more substantial functional role of these
miRNAs (65) (Supplementary Figure 3).

One of the studies (GSE89667) contained both UC and CD
cohorts (62), and we used the UC versus CD comparison
(adjusted p-value < 0.05), in conjunction with the results of the
meta-analysis, to find a set of 18 miRNAs differentially expressed
between UC and CD. Among these, e.g., miR-29a-3p, miR-155-
5p, or miR-454-3p are upregulated in UC compared to CD, while
miR-28-3p, miR-378a-5p or miR-422a are downregulated in UC
compared to CD (Supplementary Data, Sheet 3).

Overlap of Colon and Blood miRNAs in UC
and CD
There is great potential in identifying disease-specific miRNAs
for diagnosis, progression, and therapeutic response.
Consistently differentially expressed miRNAs in the colon and
blood may have the highest clinical potential. From literature
curation, 29 miRNAs were consistently differentially expressed in
at least two studies in colon or blood of UC or CD (Figure 1).

Ulcerative Colitis
From the miRNAs with consistent differential regulation in at least
two independent studies, miR-223-3p, miR-16-5p, and miR-24-3p
showed upregulation in both mucosa and blood of UC patients
compared with healthy individuals. miR-21-5p and miR-146a-5p
FIGURE 1 | Dot-plot of the 29 differentially expressed miRNAs (at least two
studies) in either colon or blood of UC or CD from literature. The node size
represents the number of studies, and the node color corresponds to the
expression statues, where red means upregulation and blue
means downregulation.
TABLE 4 | Continued

Up-regulated Down-regulated Other finding/Comments Method Source Group/N Country Ref

aCD and iCD vs CO:
miR-1268a-5p, -1297-5p, -1909-3p, -197-
3p, -197-5p, -410-3p, -936-5p, -542-5p,
-549a-5p, -603-5p, -874-3p, -92a-3p, -933-
5p, -941-5p

-30a-3p, -548q-5p, -4461-5p, -133a-
3p, -597-5p, -619-3p, -644a-5p

aCD and iCD vs CO:
miR-106a-5p and -362-3p

RT-qPCR Peripheral
blood

aCD/22
iCD/10
CO/32

Iran
(55)

miR-16-5p, -21-5p and -223-3p Upregulated miRs were detected in
both IBD type, but were higher in CD
No significant miR-155-5p expression
In remission group miRNAs expression
is disease activity dependent

RT-qPCR Serum CD/35
CO/20
Remission:
CD/15

Germany
(50)
June 2022 |
 Volume 13 |
 Article 865
All miRNAs are from comparison between the disease and healthy individual, unless otherwise stated.
aCD, active CD; iCD, inactive CD; CO, Control; N, Numbers per Group.
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were also shown to be differentially expressed in both tissues.
However, the blood data for these two miRNAs were
inconsistent. Considering only one study, 18 miRNAs were
commonly differentially expressed in both tissues (Supplementary
Data, Sheet 4).

Crohn’s Disease
From the miRNAs with consistent differential regulation in at least
two independent studies in CDmiR-223-3p andmiR-21-5p showed
upregulation in both mucosa and blood of patients compared with
healthy individuals. miR-192-5p was also common and frequently
downregulated in the mucosa; however, since the data for this
miRNA in the blood is inconsistent, it was excluded. Finally,
considering miRNAs differentially expressed in only one study, 13
miRNAs were shown to be commonly differentially expressed in
both tissues (Supplementary Data, Sheet 5).

UC and CD miRNA Profile Similarities and
Differences
Even the most experienced clinicians have problems in the initial
diagnosis of IBD and stratifying its subtypes. Stratifying UC and CD
has always been a challenge ascribed to their overlapping features.
Although these IBD subtypes have common characteristics,
significant genetic and clinical differences exist. Consequently,
different transcriptome profiles, specifically distinct miRNAs
signatures, might improve IBD subtype classification.

Colon
Many studies compared individuals with and without the
diseases to stratify UC and CD based on mucosa biopsy
Frontiers in Immunology | www.frontiersin.org 10
miRNA signature (30–32, 34, 36, 38). Considering miRNAs
validated to be differentially expressed in at least two studies in
both UC and CD mucosa, miR-21-5p, miR-31-5p, miR-146a-5p,
miR-223-3p showed to be commonly up- and miR-192-5p and
miR-375-3p downregulated in both phenotypes.

Furthermore, considering miRNAs with consistent
differential regulation in at least two independent studies, miR-
155-5p, miR-126-3p, miR-29a-3p, miR-141-3p, miR-16-5p and
miR-24-3p showed to be differentially expressed mainly in UC
mucosa, while miR-142-3p, miR-150-5p, let-7i-5p, miR-23b-3p,
miR-19b-3p, miR-215-5p, miR-629-5p, miR-194-5p and miR-
106a-5p showed to be more frequently differentially expressed in
CD mucosa.

To confirm the above observation, these miRNAs (from at
least two studies) were more intersected against the literature
miRNA lists, this time one study and more. The comparison
showed that miR-29a-3p is only reported as significantly
differentially expressed (SDE) in UC, and miR-23b-3p is only
reported as SDE in CD. Moreover, the results for miR-150-5p
and miR-215-5p were inconsistent.

Blood
Similar attempts to stratify UC and CD based on the blood
miRNA profile of patients versus healthy individuals were made
(3, 31, 38, 49, 50, 52–55). Considering frequently differentially
expressed miRNAs in UC and CD blood, miR-223-3p, miR-142-
5p, miR-16-5p, miR-199a-5p, miR-30e-5p, miR-362-3p were
significantly differentially upregulated and were common
between both phenotypes and thus could be considered as
IBD biomarkers.
June 2022 | Volume 13 | Article 8657
A B

FIGURE 2 | Network representations of the 28 miRNAs with at least one experimentally determined target known to be related to IBD. (A) Network of miRNAs
only. Dark gray nodes represent miRNAs detected by literature curation, while light gray nodes were not identified in the literature, but only in the meta-analysis.
The size of each miRNA node corresponds to the number of IBD targets this miRNA has, and the width of the edges represents the number of shared IBD
targets. The mean logFC of each miRNA, according to the meta-analysis, is shown for CD (left) and UC (right) using a blue-white-red gradient on the node border.
(B) Network of miRNAs (oval nodes) and their target genes (rectangle nodes). miRNAs are colored based on their mean expression rank. Target genes that code
for proteins with a clinically approved drug according to the Pharos database are highlighted by dark gray node border color.
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Furthermore, considering miRNAs with consistent differential
regulation in at least two independent studies, miR-146a-5p,
miR-150-5p, miR-151a-5p, miR-188-5p, miR-199a-3p, miR-
19a-3p, miR-24-3p, miR-28-5p showed to be mainly
differentially expressed in UC. miR-484-5p, miR-106a-5p, miR-
574-5p, miR-532-3p, miR-200c-3p, miR-195-5p, miR-192-5p,
miR-140-5p showed to be more frequently differentially
expressed in CD blood.

To confirm this observation, these differentially expressed
miRNAs (from at least two studies) in each phenotype were once
more intersected against the literature miRNA lists, this time one
study and more. The results showed miR-146a-5p, miR-150-5p,
miR-151a-5p, miR-199a-3p, miR-19a-3p, miR-24-3p were only
SDE in UC. The results for miR-150-5p and miR-199a-3p were
inconsistent. Furthermore, miR-200c-3p, miR-195-5p, and miR-
140-5p showed only SDE in CD.

Most Relevant Differentially
Expressed miRNAs
To develop miRNA-based novel diagnostics and therapeutics
for IBD, it is vital to understand the miRNAs expression
changes in correlation with the disease phenotype, underlying
mechanisms that regulate miRNAs, the target genes, and their
interplay. Despite the heterogeneity of differentially expressed
miRNAs in IBD, 66 miRNAs were identified from literature
curation and meta-analysis as relevant candidates for
diagnostic or therapeutic purposes that might also represent
causative agents in disease development (Supplementary data,
Sheet 6). For this set of miRNAs, we extracted “experimentally
observed targets” from QIAGEN Ingenuity Pathway Analysis
(IPA) software program v70750971 (66) and intersected these
targets with genes related to IBD extracted from IPA and
literature (Supplementary data, Sheet 7). This resulting list of
28 miRNAs with at least one IBD target was visualized in
Cytoscape (67) (Figure 2). In the following, we discuss most of
these miRNAs in more detail.

Let-7i-5p: Let-7i-5p is the regulator of TLR4, which is
important in cytokine-mediated responses and a regulator of
IL-6 (68). In THP-1 cells transfected with let-7i-5p mimics, both
mRNA and protein levels of TLR4 showed downregulation (69).
Let-7i-5p seems to assist cells in resetting their protein profile in
response to external stimuli in allergic inflammation; the exact
mechanism is not yet clear (70). Let-7i-5p regulates collagens, IL-
6, TGF-bR1, IGF-1, and caspase-3 as primary regulators of
inflammation, fibrosis, hypertrophy, and apoptosis (68).

miR-16-5p: miR-16-5p in the colonic UC mucosa partly
regulates the inflammatory responses through negative
regulation of A2aAR (NF-kB inhibitor) expression. miR-16-5p
mimics transfection in colonic epithelial cells, demonstrated to
increase nuclear translocation of NF-kB p65 protein and thus
increase the expression of IFN-g and IL-8 as important pro-
inflammatory cytokines (71).

miR-19a-3p: Serum miRNA profiling of CD patients with
and without strictures showed miR-19a-3p and miR-19b-3p as
potential pathogenic markers (72). Low levels of miR-19a-3p and
miR-19b-3p were strongly correlated with stricturing CD and
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independent of site, gender, age, disease duration, and activity
(72). Moreover, it has been reported that miR-19a-3p decreases
the SOCS3 expression, which consequently enhances IFN-a and
IL-6 signal transduction (73).

miR-21-5p: miR-21-5p showed an essential role in colon
epithelial cell hemostasis (74), adaptive immune responses
(75), cytokine regulation (76), and IBD-related complications
(77). It has been demonstrated that in response to epithelial
damage, miR‐21-5p causes more intestinal permeability.
Transfection of miR-21-5p mimics resulted in the loss of
tight junction proteins, increased barrier permeability (74),
and decreased CD3 and CD68 positive cells in the UC mouse
model (78). The miR-21-5p knockout mice model also showed
high resistance to dextran sulfate sodium (DSS) induced
colitis, suggesting the pro-apoptotic effect of this miRNA.
miR-21-5p also demonstrated an essential role in adaptive
immune responses in T-cell function, with the highest
detected expression in effector T cells, memory T cells, and
the lowest in naive T cells (75). miR-21-5p has a regulatory
role in innate immunity and is involved in TLR4 activation
and monocyte differentiation. It is also induced by danger
signals, such as activators of NF-kB in a negative feedback
loop, to prevent damage (79). miR-21-5p is associated with
disease activity in UC patients (80). Moreover, this miRNA
regulates IL-12 release from dendritic cells and macrophages
by targeting the IL-12p35 receptor (76). On the other hand,
the association of this miRNA with irreversible IBD fibrosis
and its increased level was observed in serum of humans with
significant fibrosis (77) and development of dysplasia (81). It
is noteworthy that several cellular injury models have shown
to be TNF-a dependent with subsequent miR-21-5p induction
(77, 82).

miR-23b-3p: miR-23b-3p represses autoimmune
inflammation by suppressing (IL-17, TNF-a, IL-1b)-induced
NF-kB activation, inflammatory cytokine expression by
targeting TGF-b-activated kinase 1/MAP3K7 binding protein 2
(TAB2), TAB3 and inhibitor of NF-kB kinase subunit a.
Conversely, IL-17 contributes to autoimmune pathogenesis by
suppressing miR-23b-3p expression and promoting
proinflammatory cytokine expression (83).

miR-24-3p: miR-24-3p is reported to be involved in T cells
proliferation, differentiation, and immune response (84). It is also
reported that miR-24-3p targets Bcl-2 and PAK4 as prosurvival
genes, thus, inducing cell death (85). Overexpression of PMS2L2
prompts miR-24-3p gene methylation, resulting in its inhibition.
PMS2L2 overexpression, stimulated by LPS, is shown to promote
Bcl-2 expression and to inhibit Bax, cleaved-caspase-3, and
cleaved-caspase-9 expressions (86). Furthermore, miR-24-3p
regulates the processing of latent TGF-b1 release by furin
targeting (87). miR-24-3p is reported to downregulate not only
TGF-b1, furin, and TNFAIP3 (88).

miR-28-5p: miR-28-5p are shown to be involved in cell
proliferation, migration, invasion, and epithelial to
mesenchymal transition (EMT) (89). miR-28-5p can silence
PD1 genes and regulate the PD1, Foxp3 positive and TIM3,
Foxp3 positive, exhaustive Treg cells (90).
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miR-29a-3p: miR-29a-3p has a seven-nucleotide wide
binding site on the 3’UTR of the MCL-1 gene and could be
involved in the UC pathogenesis through regulating this gene.
Mcl-1 gene knockout is shown to cause apoptosis in the colonic
epithelial HT29 cells (91). Increased expression of miR-29a-3p in
the colon tissues of patients with irritable bowel syndrome
increased intestinal membrane permeability, regulating the
GLUL gene (92). Moreover, miR-29a-39 is reported to regulate
pro-inflammatory cytokine secretion and scavenger receptor
expression via LPL targeting in ox LDL-stimulated dendritic
cells (93).

miR-30d-5p and miR-30c-5p: Oral administration of miR-
30d-5p mimic ameliorates experimental autoimmune
encephalomyelitis (EAE) through expansion of Tregs. In
Akkermansia muciniphila, miR-30d-5p regulates lactase
expression and increases Akkermansia abundance in the gut.
Consequently, Akkermansia increases Tregs to suppress EAE
symptoms (94). miR-30c-5p regulates ATG5 expression by
targeting the 3’UTR (95). The inverse correlation between miR-
30c-5p and ATG5 is not only observed in CD patients and
intestinal epithelial T84 cells infected with the adherent-invasive
Escherichia coli (AIEC) (95). The NF-kB pathway was shown to be
activated in AIEC infected T84 cells, which induced the up-
regulation of miR-30c-5p and consequently inhibited the ATG5
expression (95). It has further been reported that the autophagic
activity inhibition by miR-30c-5p increased AIEC persistence
within T84 cells and increased pro-inflammatory cytokines
production (95). miR-30c-5p is also believed to regulate Th17
cells differentiation by targeting its negative regulators such as
SMAD2, SMAD4, TGFbR2, SOCS3, FOXO3, and TSC1 (96).
Thus, their differential regulation might cause an increase or
decrease in Th17 cell numbers. ETS1, BCL6, and STAT1 are
also among the important targets of miR-30c-5p (96).

miR-31-5p: miR-31-5p showed a gradual upregulation from
normal to IBD conditions and seemed to target FIH-1, the
inhibitor of HIF-1a protein (97). Also, in psoriasis, miR-31-5p
inhibition in keratinocytes was shown to suppress NF-kB–driven
promoter-luciferase activity and production of IL-1b, CXCL1,
and CXCL5. miR-31-5p regulates these cytokine and chemokine
expressions in endothelial cells and attracts leukocytes via STK40
as its primary target (98). miR-31-5p also targets Gprc5a, which
is shown to be a critical regulator for peripherally derived
regulatory T cells generation. miR-31-5p conditional deletion
enhances induction of these regulatory T cells and decreases the
severity of experimental autoimmune encephalomyelitis (99). IL-
13 is a necessary type-2 T-helper cytokine, controlling
epithelium function through the IL-13 receptor -A1. It has
been shown that the transfection of miR-31-5p and miR-155-
5p mimics reduces the expression of the IL-13 receptor, increases
and blocks the phosphorylation of STAT6, and the expression of
SOCS1 and CCL26 in the gut epithelium cell line, and therefore
may contribute to disease aggravation (33). Furthermore, miR-
31-5p is differentially expressed in post-ablation epithelium with
increased barrier permeability (100).

miR-106a-5p: Serum level of miR-106a-5p in both CD and
UC patients correlates with disease severity (55). Upon T cell
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activation, while most miRNAs are downregulated, miR-106a-5p
is upregulated (101). In addition, in macrophages, miR-106a-5p
can regulate SIRPa synthesis and, therefore, SIRPa-mediated
inflammatory responses (102). miR-106a-5p deficiency showed
to promote Treg induction IL-10 production and attenuate
adoptive transfer colitis in T cell restricted deficiency (103). In
non-colonic cell lines, miR-106a-5p regulates IL-10 expression
(103). Moreover, in CD4+ T cells, miR-106a-5p miRNA family
deletion also attenuated the inflammation in lymphopenic
recipients. Global knock-out of miR-106a-5p was also shown
to attenuate chronic murine ileitis (104). TGFb appears to
suppress miR-106a under physiological conditions to aid Treg
induction. TNFa, on the other hand, appears to drive
upregulation of miR-106a-5p under inflammatory conditions
through NF-kB-dependent induction of the miR-106a-5p
promoter, resulting in temporary suppression of normal
immune regulation (104).

miR-126-3p: IkBa as the inhibitor of NF-kB was shown to be
markedly decreased in active UC tissues (105). miR-126-3p and
IkBa expression are inversely correlated in patients with active
UC. miR-126-3p is shown to contribute to UC pathogenesis
through binding to the 3′- UTR of IkBa and inhibiting the NF-
kB signaling pathway (105). Anti-inflammatory activities of the
red wine polyphenols were partly mediated through miR-126-3p
induction (106). Polyphenolic red wine extract (WE) inhibited
inflammation in LPS-stimulated human colon-derived CCD-
18Co cells by inhibiting NF-kB and down-regulating pro-
inflammatory agents, including TNF-a, IL-6, and CAMs. miR-
126-3p was upregulated upon WE treatment in these cells, and
NF-kB and VCAM-1 showed downregulation (107). VCAM-1 is
one of the miR-126-3p targets (108). miR-126-3p knockdown is
reported to up-regulate the PIK3R2 in CD8+ T cells (109) and
alter the PI3K/Akt pathway activation responsible for regulatory
T cells reduced induction and suppressive function (109).
Moreover, IkB, an inhibitor of NFkB, is another target of miR-
126-3p (109).

miR-140-5p:miR-140-5p is shown to downregulate TLR4 by
being directly bound to its 3′UTR, which inhibits inflammatory
cytokines secretion (110). Moreover, it has been demonstrated
that miR-140-5p inhibited IL-6 and IL-8 secretion by regulating
TLR4 expression (110).

miR-141-3p: miR-141-3p is aberrantly expressed in IBD and
other autoimmune diseases, including lupus and psoriasis (111,
112). miR-141-3p targets CXCL12b (113), an epithelial cell-
expressed chemokine whose inverse correlation with miR-141 is
shown in the inflammation. Therefore, it is suggested that
targeting CXCL12b by miR-141-3p might influence
inflammatory cell trafficking into the inflamed sites. Thus,
inhibiting colonic CXCL12b expression and blocking immune
cell recruitment might be valuable for the CD treatment (113).
miR-141-3p is also reported to suppress STAT4, thus, inhibiting
inflammatory factors (114). miR-141-3p upregulation reduces the
IL-1b, TNF-a, and IL-6 levels, consequently attenuating the
chronic inflammatory pain severity (115). Furthermore, during
Th17 cell induction, miR-141-3p expression is reported to be
significantly upregulated (116). miR-141-3p can also exert
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protective effects on cell damage (114). It is also reported that miR-
141-3p alleviates LPS-induced intestinal epithelial cell injury by
inhibiting RIPK1-mediated necroptosis and inflammation (117).

miR-142-5p(-3p): In thymically derived Tregs, miR-142-5p
is the predominant isoform. Tregs limit the development of
autoimmunity by suppressing self-reactive peripheral T effector
cell responses (118). miR-142-5p is shown to target SMAD3,
CYR61 (119), and PD-L1 (120). Regulation of PD-L1 expression
is through binding to its UTR and inversely correlated with miR-
142-5p (121). TNF-a, IFN-g, and IL-10, as prominent players in
the immune response, are related to the PD-L1/PD-1 pathway. It
has been shown that miR-142-5p overexpression results in TNF-
a and IFN-g upregulation and IL-10 downregulation (121).
ATG16L1, as one of the most commonly detected genetic
variations in CD patients, is predicted to be the target of miR-
142-3p (122, 123). miR-142-3p negatively regulates ATG16L1 in
CD colon epithelial cells. Upregulation of miR-142-3p reduced
the autophagic activity of thymic-derived regulatory T cells by
decreasing the expression of ATG16L1 (124). miR-142-3p binds
directly to KDM6A (a lysine demethylase), resulting in the
demethylation of H3K27me3, an epigenetic modification to the
DNA packaging protein Histone H3. This, in turn, upregulates
the expression of the anti-apoptotic protein Bcl-2. It has also
been shown that antagomir-mediated knockdown of miR-142-
3p can affect the induced regulatory T cells regulatory function,
cytokine expression, and apoptosis through Foxp3 expression
(125). Moreover, downregulation of miR-142-3p in macrophages
of aged mice contributed to IL-6-associated aging disorders and
consequently age-related inflammatory diseases (126).

miR-146a-5p and miR-146b-5p(-3p): miR-146a-5p has
previously been shown to regulate the innate immune
responses and TNF-a pathway in skin inflammation (127).
miR-146a-5p deficient mice also develop immune disorders
(128). In IBD, this miRNA regulates NOD2 derived gut
inflammation and promotes proinflammatory cytokines
released from activated macrophages (129). Moreover,
upregulation of miR-146a-5p in monocytes in response to LPS
resulted in the downregulation of TLR4 signaling pathway
downstream genes (130). On the other hand, in mouse colitis,
miR-146b-5p overexpression was shown to alleviate intestinal
injury via NF-kB activation, epithelial barrier function
improvement, and increased survival rate (131). miR-146b-5p
seems to up-regulate NFkB via siah2 suppressing. Siah2 prompts
TRAF proteins ubiquitination which is upstream of NFkB (131).
miR-146b-3p, another member of the miR-146 family, is shown
to negatively regulate lipid kinase PI3Kg in (132), suppress
proinflammatory ADA2, and block TNF-a secretion (133).
Furthermore, miRNA-146b-3p expression is significantly
downregulated by increased STAT3 activation (134).

miR-149-5p: Through targeting MyD88, miR-149-5p
negatively regulates TLR triggered inflammatory cytokine
production (135). MyD88 is involved in the TLR/NF-kB
pathway. miR-149-5p is also associated with an increased IBD
risk in the Chinese population (136).

miR-150-5p: miR-150-5p is proposed as one of the primary
regulators of immune diseases (137), mainly through inhibiting
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inflammatory cytokines including IL-6, IL-1b, and TNF-a (138).
It is also reported that the miR-150-5p upregulation in immune
cells promotes the proliferation and maturation of myeloid cells
and lymphocytes (139). c-Myb, a target of miR-150-5p, is
reported to be significantly downregulated in UC patients’
colon and DSS-treated mice. miR-150-5p overexpression is
reported to enhance apoptosis through targeting c-Myb, which
damages the intestinal epithelial barrier (140).

miR-155-5p:miR-155-5p has shown a central regulatory role
in innate and acquired immune systems. miR-155-5p is
expressed in response to inflammatory mediators such as LPS,
TLR ligands, and IFN-b and is induced in antigen-presenting
cells, including plasmacytoid dendritic cells and macrophages. It
has also been found that antigen-stimulated B and T cells induce
miR-155-5p expression (141). Moreover, SOCS1, a negative
regulator for activation of LPS-induced macrophage, JAK/
STAT signal pathway, and antigen presentation by dendritic
cells, is one of the main targets of miR-155-5p (142). In addition,
Anti-miR-155-5p has been reported to suppress G-CSF, a
regulator of granulopoiesis produced by macrophages during
acute inflammation (143). Increasing expression of the level of
this miRNA has also been shown in other inflammatory
disorders, such as rheumatoid arthritis (144), atopic dermatitis
(145), and multiple sclerosis (146). In addition, it has been
reported that miR-155-5p is an oncogene (147).

miR-192-5p: miR-192-5p is shown to target MIP-2a
(CXCL2), a CXC chemokine expressed by epithelial cells and
essential in murine and human IBD. miR-192-5p is
downregulated in inactive UC and demonstrated an inverse
correlation with MIP2-a. miR-192-5p mimic was reported to
inhibit MIP2-a induced MIP-2a expression (26). miR-192-5p is
induced by TGF-b and TNF-a (26, 39) and regulates the collagen
and chemokine expression, which are critical in inflammation
and fibrosis (148). miR-192-5p is also identified as a tumor
suppressor that can induce cell cycle arrest (149).

miR-193b-3p: miR-193b-3p differential regulation has been
detected in several autoimmune diseases (150), mainly through
inflammatory chemokines regulation (151). miR-193b-3p has
been shown to target TGF-b2 and TGFBR3 3′-untranslated
regions (152) and contribute to Th17 cells differentiation by
inhibiting the negative regulators of Th17 differentiation
expression and possibly through regulating TLR and Notch
signaling pathways. Thus, suggesting the possible involvement
of miR-193b-3p in the inflammatory response and Th17
function (153).

miR-194-5p: miR-194-5p is abundant in intestinal epithelial
cells (39) and is shown to regulate the MAP4K4/c-Jun/MDM2
signaling pathway (154). Overexpression of miR-194-5p in the
liver mesenchymal cells reduced the N-cadherin (155). In the
Caco-2 intestinal epithelial cell model, HNF-1a induced miR-
194-5p suggest ing the influence on epithel ia l ce l l
differentiation (156).

miR-195-5p: miR-195-5p is shown to correlate with IBD
severity. An increase in miR-195-5p level can decrease c-Jun and
p65 expression. Instead, miR-195-5p decreased expression
increases Smad7 expression and consequently p65 and the AP-
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1 upregulation, which might explain the steroid resistance
mechanism in some UC patients (157). miR-195-5p
overexpression was shown to reduce M1-like macrophage
polarization. miR-195-5p levels are reported as upregulated in
M2c macrophages. LPS and IFN-g stimulated THP-1
macrophages had reduced TLR2 levels following miR-195-5p
overexpression. miR-195-5p also significantly decreased IL-1b,
IL-6, and TNF-a levels in M1-stimulated macrophage
supernatant cultures. In addition, levels of phosphorylated
forms of p54 JNK, p46 JNK and p38 MAPK were shown to
decrease by adding miR-195-5p in M1 macrophages upon
stimulation. Altogether it seems like miR-195-5p is involved in
macrophage polarization by inhibiting TLR2 inflammatory
pathway mediators (158).

miR-199a-5p: miR-199a-5p showed significant upregulation
in blood from UC patients compared with healthy controls (54).
miR-199a-5p seems to suppress HIF-1a and SIRT1 and play a
role in Treg cell differentiation by inhibiting genes involved in
Th17 differentiation while activating others in Treg development
(159, 160). RORgt is a lineage-specific transcription factor for
Th17 differentiation. In multiple sclerosis, RORgt expression, a
predicted target for miR-199a-5p (using miRWalk, miRTarBase,
DIANA miRPath, UniGene), showed a significantly higher level
in the relapsing phase versus remitting phase. This is consistent
with the upregulation of miR-199a-5p, which correlates with
lower Th17 cells and lower expression of RORgt in remitting
phase (96). It has also been reported that miR-199-5p targets the
activin A receptor type 1B gene that causes decreased CCAAT/
enhancer-binding protein a expression and eventually
monocyte/macrophage differentiation inhibition (161).

miR-200c-3p: miR-200c-3p plays a role in the FN1 post-
transcriptional regulation; hence, EMT triggers by their
downregulation (162, 163) most probably by regulating the E-
cadherin transcriptional repressors ZEB1 and SIP1 (164). miR-
200c-3p is reported to suppress the IL-6, CXCL9, and TNF-a
expression (165). IL-6 intensifies inflammation through miR-
200c-3p downregulation (166). In a macrophage-like human
monocytic cell line exposed to the TLR4 ligand LPS, miR-200c-
3p inhibits NF-kB activation in response to a TLR4 agonist. miR-
200c-3p is known to regulate the TLR4 signaling efficiency
through the MyD88-dependent pathway (167).

miR-223-3p: miR-223-3p is shown to be involved in the
activation of granulocytes and is overexpressed in naive CD4+ T-
lymphocytes (168). Furthermore, the downregulation of miR-
223-3p in primary macrophages increased TLR4 and STAT3
basal expression and LPS-stimulated TLR4, STAT3, and NOS2
expression. On the contrary, miR-223-3p mimics treatment in
primary macrophages has decreased TLR4 expression while
negatively regulating FBXW7 expression, a well-known
suppressor of TLR4 signaling. Based on these outcomes, it is
concluded that miR-223-3p abundance in macrophages can
change macrophage activation and modulate the response to
stimuli via effects on the TLR4/FBXW7 axis (169). It has also
been shown that miR-223-3p mediates the cross-talk between the
intestinal barrier and the IL-23 pathway by targeting CLDN8, a
claudin protein that constitutes the backbone of the intestinal
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barrier (170). miR-223-3p has also been used as a biomarker in
IBD (3). Thus, the evidence suggests its proinflammatory role
and highlights its potential as a RNA biomarker that seems to be
conserved between different species. miR-223-3p is also
produced by neutrophils and monocytes and acts as a
controller of NLRP3 inflammasome activity, regulating the
intes t ine inflammatory process by affect ing IL-1b
production (171).

miR-375-3p: miR-375-3p is reported to be downregulated in
the intestinal mucosa of UC and CD patients. TLR4 is one of the
main targets of miR-375-3p with inverse correlation. miR-375-
3p mediated upregulation of TLR4 induces NF-kB activation,
which leads to an increase in pro-inflammatory factors (172).
Intestines show a high level of miR-375-3p expression. Cell
death, including apoptosis and/or necrosis, results in the miR-
375-3p leak from cellular to extracellular space, eventually
ending in the blood. Therefore, it is suggested that elevated
miR-375-3p in serum may be a predictor of tissue damage (173).

miR-378a-3p: miR-378a-3p expression is reported to be
inversely correlated with IL-33 expression; IL-33 is a predicted
target of miR-378a-3p (174). miR-378a-3p is highly conserved
between species, but not IL-33 (175). The miR-378a-3p is located
in intron 1 of the PPARGC1B gene that is differentially regulated
in UC patients’ intestinal mucosa 26. PPARGC1B protein is
highly expressed in the intestinal epithelium (176) and is
involved in the control of mitogenesis and mitochondrial
metabolism (177), energy production, and biogenesis (178).
Therefore, it can be concluded that in inflamed mucosa, the
miR-378a-3p decrease might reflect a metabolic shift, possibly
related to the increment of energy expenditure and ROS
overproduction (179).

miR-424-5p: miR-424-5p is shown to control monocyte/
macrophage differentiat ion. miR-424-5p expression
upregulation is regulated by transcription factor PU.1. When
upregulated, miR-424-5p induces monocyte differentiation via
NFI-A inhibition (180) as its main target.

miR-532-3p:miR-532-3p acts as an antagonist for LPS/TNF-
a stimulated macrophages by targeting the ASK1/p38 MAPK
signaling pathway, thus suppressing the inflammation, which is
mediated through this pathway. Thus, it has been suggested as a
potential target for treating autoimmune inflammatory
diseases (181).
CONCLUDING REMARKS

Early diagnosis and treatment are vital in IBD, as induction of early
remission and maintenance can prevent long-term complications
and eliminate the need for surgery. However, due to insufficient
clinical sensitivity and specificity of current biomarkers and a large
population of patients with functional bowel disorders, there is often
a delay in the confident diagnosis of IBD and its sub-classification
into either UC or CD (182). At the same time, the primary way to
overcome IBD is to induce and maintain early remission. Most
current IBD diagnostic tests reflect generalized inflammation and
do not discriminate between IBD subtypes (182).
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Since their discovery, thousands of miRNAs have been
identified. Accumulating evidence suggests that specific
miRNA expression signatures contribute to the IBD
development and progression. Most studies reveal correlations
between IBD and differentially expressed miRNAs instead of
causal relationships. As discussed above, only a few studies
investigate the underlying molecular mechanisms of the
disease; thus, the precise function of most miRNAs in IBD has
yet to be clarified. Furthermore, there has been a lack of
reproducibility between studies, partly ascribed to a lack of
standardized study designs and different approaches.

Moreover, many variables differ between studies, including
age, sex, various treatment regimens, disease activity level and
duration, having different control groups, sampling from
different anatomic locations, sampling method, preservation
and processing of the samples, and the different criteria for
measuring expression fold change and significances (e.g.,
different FC, log FC, p-value and p-adj criteria). Thus, it is
essential to understand the conditions under which a
differentially expressed miRNA was discovered. For instance,
epigenetic regulations are among the primary factor stimulated
by the environment. Stimuli such as diet, lifestyle, work
condition, and stress are elements as important as the clinical
and technical manifestations of signs of disease. Regardless of
these differences, while being aware of them, in this review, we
attempted to identify and give an overview of the most frequently
differentially expressed miRNAs in colon and blood of both UC
and CD across multiple studies from literature and meta-analysis
and further described the roles of selected miRNAs in the disease
pathogenesis and their connection to IBD.

For biomarker studies, circulating miRNAs (of saliva, serum,
urine, plasma, and other body fluids) attracted great interest as
non- or semi-invasive clinical biomarkers mainly due to ease of
access, stability, conserved structure, and ease of detection by
quantitative approaches like real-time PCR. The need for
endoscopic examination and invasive sampling of biopsies
limit the use of colonic miRNAs as biomarkers. Thus, if a
miRNA demonstrates a similar consistent differential
regulation in colonic biopsies and blood of the IBD patients
compared with healthy control, it can be used as a proper disease
biomarker signature. miR-223-3p, in this case, might be an
excellent example of such miRNAs. This miRNA is
significantly differentially expressed in both UC and CD in
blood and tissue biopsies and thus can be considered a reliable
IBD biomarker candidate.

Anti-cytokines therapies have been relatively successful;
however, not all patients respond to these treatments. As
important post-transcriptional gene regulators, miRNAs were
shown to contribute to disease aggravation through immune
responses, inflammation, mucus barrier, and epithelium function
dysregulation; thus, miRNA-based therapy might be developed
as a potential therapeutic approach. In this case, miRNAs
complementary antisense oligonucleotides or miRNA mimics
can be potential therapeutics that abolish or mimic miRNA’s
function and, therefore, block inflammatory progression,
modulate cytokines or chemokine hemostasis and increase the
Frontiers in Immunology | www.frontiersin.org 15
treatment sensitivity of conventional therapies. As such, miRNAs
are used for modulating hypoxia (183, 184) and the
inflammatory response by targeting major inflammatory
pathways (185–189) and essential molecules, including tight
junction proteins that maintain the integrity of the membrane
(74, 190, 191).
FUTURE PERSPECTIVES

Although progress has been made towards understanding the
role of miRNAs in IBD pathophysiology, many conditions and
many more miRNAs remain insufficiently characterized for
diagnostic and therapeutic applications, partly as it is still a
relatively young field. Also, as a chronic disease with flare-ups
and remission, besides comparing disease versus control, it is
relevant to look at disease subgroups, e.g., the differences
between active/inactive and inflamed/not inflamed intestinal
regions. While some studies grouped patients into active UC,
inactive UC, inflamed UC, and non-inflamed UC, still further
studies are needed to improve our understanding. In addition, it
remains to be determined how associations with IBD risk loci
might affect miRNA’s expression and the disease phenotype.
Moreover, although it has been less focused on, the disease
activity index can also be assessed by profiling miRNA
specifically at different disease stages while maintaining that
miRNA expression is often tissue or pathology specific.

Due to the IBD complexity and the lack of consistency
between miRNA signatures, it is difficult to diagnose the
disease, identify the subtypes, and monitor the disease status or
location using a single or even a panel of miRNAs. Although
there is an imperious need for faster ways to validate miRNAs as
biomarkers, the sensitivity and specificity of miRNA candidates
should be checked in large-scale studies to avoid false positive or
false negative diagnosis.

Differentially expressed miRNAs profiling can be a valuable
indication of phenotypic changes in IBD, showing an obvious
correlation with disease evolution. However, differential
expression per se does not indicate the ultimate role of the
identified miRNAs in disease pathophysiology, as there are
complex networks of interaction between miRNAs and their
targets that also depend on the cell type, location, and tissue
condition. It is noteworthy that many miRNAs might have the
same target. Thus, when it comes to the therapeutic interventions
using the miRNAs, the main issue is the side effects of miRNA-
based drugs that need to be considered in extensive validation
studies before miRNAs can enter the market and be incorporated
into clinical practice. Also, miRNA expression as measured on
high-throughput platforms, e.g., RNA-sequencing, has
limitations. For example, if a highly expressed target is
downregulated, the expression of the miRNA will appear as
increased despite the miRNA being processed at the same rate,
i.e., miRNA itself is not directly regulated. Extending miRNA
analysis to be “target context-aware” rather than looking at
miRNA solely from small RNA-sequencing will likely shed
more nuances on to cause and effect of regulated miRNAs and
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thereby pave the way for considering miRNAs in diseases.
Despite the present limitations, we anticipate that miRNAs
application and targeting will become routine diagnostic and
therapeutic approaches in clinical settings as current techniques
evolve rapidly.
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