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Abstract—Species tree inference from gene family trees is a significant problem in computational biology. However, gene
tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of
species trees very challenging. While there have been several species tree estimation methods introduced in recent years
to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-
Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach,
DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously
designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL
(i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags
each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes
(e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be
obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using
M]I, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy,
most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis;
gene duplication and loss; species tree inference; summary method.]

The estimation of species trees is a basic step in
biological discovery, but it is challenged by gene
tree heterogeneity (i.e., when there is a difference
between the evolutionary trees of genes and species).
These differences can be caused by a variety of
factors, including incomplete lineage sorting (ILS), gene
duplication and loss (GDL), and horizontal gene transfer
(HGT).

Many methods have been developed to estimate
species trees in the presence of ILS, with the major
current approach (due to its computational tractability)
being methods, such as ASTRAL (Mirarab et al. 2014),
that operate by first inferring a tree for each gene family,
then combining gene trees into a species tree based on
some optimization criterion; many of these methods,
which are called “summary methods” have been proven
to be statistically consistent under the multispecies
coalescent (MSC) model (Takahata, 1989; Hudson, 1983)
(an extension of Kingman’s coalescent (Kingman, 1982)
to the multi-species case); see Allman et al. (2016), Roch
and Warnow (2015), Liu et al. (2010), and Larget et al.
(2010) for an entry to this literature. Other approaches
for species tree estimation in the presence of ILS include
*BEAST (Heled and Drummond 2009), which is a
Bayesian method that coestimates gene trees and the
species tree from the multilocus set of gene sequence
alignments, and SVDquartets (Chifman and Kubatko
2014), which takes as input a concatenation of the gene
sequence alignments, estimates quartet trees (one tree
for every four species) and then combines the quartet
trees using a quartet amalgamation heuristic. Finally,
another well-established approach is to concatenate the
alignments of all the gene families and then infer a
tree using techniques such as maximum likelihood (e.g.,

RAXML; Stamatakis 2014). However, these techniques
require genes with at most one copy in each species, and
so cannot be used directly in the presence of another
primary source of heterogeneity—GDL.

The introduction of gene duplication and loss adds
paralogs alongside orthologs, where paralogs are genes
that have evolved from a common ancestor via a
duplication event, whereas orthologs evolved from a
speciation event (Fitch 2000; Yang and Smith 2014).
Thus, gene families can contain multiple genes with the
same species label. One way to address this problem
is to first determine which gene copies are orthologs
and then use this information in a subsequent analysis.
However, while several techniques have been developed
to improve orthology detection (surveyed in Altenhoff
et al. (2019)), current methods can fail to correctly
detect orthology under some conditions. As an example,
reconciliation methods (which compare a provided gene
tree to an established species tree) can have errors
when either the gene tree or species tree have errors.
More accurate methods exist that depend on external
information (e.g., functional annotations and synteny),
but can still make mistakes. In general, orthology
detection is challenging and not yet considered solved.

Several methods have been developed to infer species
trees from multicopy gene families without requiring
orthology determination. For example, Boussau et al.
(2013) presented Phyldog, a Bayesian method that
coestimates the species tree and gene family trees, and
De Oliveira Martins et al. (2016) presented guenomu, a
Bayesian supertree method that combines gene family
trees into a species tree. Other approaches that are better
able to scale to large data sets have been developed,
including iGTP (Chaudhary et al. 2010), DupTree
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(Wehe et al. 2008), DynaDup (Bayzid et al. 2013), STAG
(Emms and Kelly 2018), and MulRF (Chaudhary et al.
2015b), as well as newer methods such as FastMulRFS
(Molloy and Warnow 2020), ASTRAL-Pro (Zhang et al.
2020), SpeciesRax (Morel et al. 2021), and MiniNJ (Morel
et al. 2021). These methods construct species trees by
combining estimated gene family trees, some using
parsimony-style approaches (e.g., minimizing the total
number of duplications and losses). Finally, as studied
in (Yan et al., 2022), species tree estimation can also be
accomplished by treating multi-copy gene families as
multi-individual inputs. For example, ASTRAL, which
has an implementation (Rabiee et al. 2019) suitable to
multi-allele data sets, can be used with multicopy gene
family trees.

The theoretical properties of species tree estimation
methods when GDL is present have not yet been
fully established. However, ASTRAL-multi, which is
designed to infer species trees from multi-individual
trees (not multicopy trees) in the presence of ILS,
was proven (Legried et al. 2021) to be statistically
consistent under the (Arvestad et al. 2009) GDL model
and subsequently also proven consistent (Markin and
Eulenstein 2021) under the Rasmussen and Kellis (2012)
DLCOAL model. ASTRAL-Pro, a variant of ASTRAL
developed to explicitly address GDL, was proven
consistent under the Arvestad ef al. GDL model under
the assumption that it correctly “roots and tags” each
gene family tree (thus correctly identifying orthologs).
FastMulRFS was also proven statistically consistent
under fairly generic GDL models but only under
the assumption that no “adversarial” GDL occurs, a
property achieved under duplication-only or loss-only
models (Molloy and Warnow 2020).

Of equal interest is the empirical performance of
species tree estimation methods when paralogy is
present. Many different approaches have been proposed
that vary in terms of how multicopy gene families are
handled in order to enable species tree estimation from
gene family trees (Smith and Hahn 2021). Evaluation
of these methods and preprocessing strategies on
simulated data sets have generally shown encouraging
results and suggested that relying on correct orthology
detection is not necessary for highly accurate species
trees (Yan et al. 2022). Several studies have nevertheless
found differences between species tree estimation
methods and preprocessing strategies. For example,
Zhang et al. (2020), Molloy and Warnow (2020), and
Legried et al. (2021) have shown that ASTRAL-multi
(a method established to be statistically consistent
under standard GDL models) is more accurate than
DupTree and STAG but not as accurate as many other
methods, including MulRF, FastMulRFS, ASTRAL-Pro,
and ASTRID-multi. In addition, Chaudhary et al
(2015a) found NJst to be less accurate than gene tree
parsimony and MulRFE. Zhang et al. (2020), Willson
et al. (2021), and Yan et al. (2022) have also shown that
ASTRAL-Pro matches or improves on the accuracy
of FastMulRFS and ASTRID-multi under conditions

with GDL and ILS. Finally, Morel et al. (2021) has
shown SpeciesRax and MiniN]J to be more accurate than
ASTRAL-Pro under conditions with GDL, ILS, and HGT.

Another approach is to detect orthologs and discard
paralogs by decomposing multicopy gene family trees
into single copy trees. Several methods of this type have
been proposed (Hejnol et al. 2009; Dunn et al. 2013; Kocot
etal. 2013; Yang and Smith 2014; Ballesteros and Hormiga
2016; Thalén 2018). The PhyloPyPruner website (Thalén
2021) provides an implementation and review of many
of these techniques.

Some of these decomposition techniques have been
used in biological data sets and have been shown to
be promising when combined with multilocus species
tree estimation methods (e.g., see Yang and Smith 2014;
Cheon et al. 2020). As found in Cheon et al. (2020),
one of the most promising such techniques repeatedly
finds and extracts a “maximum inclusive” subtree (i.e.,
the largest subtree possible without including two or
more leaves labeled with the same species). Some of the
variants of this approach require that the gene family
tree be rooted (e.g., the “treeprune” script from the
Agalma pipeline (Dunn et al. 2013) which is based on an
approach from Hejnol et al. (2009) and PhyloIreePruner
(Kocotetal.2013). Some remove only one single copy tree
per gene family tree while others iteratively remove the
maximally inclusive subtrees and return all the extracted
trees. The iterative use of the Maximum Inclusive
approach, applied to unrooted gene family trees, is one of
the techniques provided in Yang and Smith (2014), where
it is referred to as “MIL.” However, these decomposition
strategies have not been explored on simulated data
sets; hence, their relative performance is not yet fully
evaluated.

Here, we introduce Decomposition Into Single COpy
gene trees (DISCO), a new method for decomposing
multicopy gene family trees that takes advantage of
ASTRAL-Pro’s “rooting and tagging” algorithm. Our
method decomposes the input in such a way as to
prioritize creating at least one large single copy tree,
while also retaining single copy subtrees that are split
off. We prove that ASTRAL-DISCO, the combination of
DISCO with ASTRAL, is statistically consistent under
GDL models provided that ASTRAL-Pro correctly roots
and tags each gene family tree. We compare DISCO to MI,
another decomposition strategy (Yang and Smith 2014)
and show that pairing ASTRAL with DISCO instead
of MI produces more accurate species trees, and that
DISCO’s decomposition strategy covers more of the
input gene family tree leafset than MI's. We find through
a simulation study that the DISCO decomposition
paired with ASTRID (a pipeline that we refer to as
ASTRID-DISCO) performs surprisingly well, generally
performing the best in cases where the gene trees have
acceptable accuracy. Another technique we examine
is the use of concatenation analysis enabled using
our decomposition approach (CA-DISCO); this method
gives the species tree with the best accuracy in many
cases, especially in instances where the initial gene
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trees have low accuracy. We also test our methods on
several published empirical data sets (some of which are
too large for CA-DISCO) and find that ASTRID-DISCO
produces reasonable results, agreeing with reference
trees for established clades, and comparable to ASTRAL-
Pro in terms of accuracy while being much faster.

MATERIALS AND METHODS

Multicopy Gene Tree Decomposition

When a duplication event occurs, the gene is copied to
another locus in the genome, and after that, genes both
from the parent locus and the child locus are subject
to further duplication and loss events as well as ILS.
As a multicopy gene tree accounts for the evolutionary
history (including duplication events) of all the copies
of a specific gene over the whole taxon set, its leaves
are spread across multiple loci. The subtrees rooted at
the children of each duplication node correspond to the
evolutionary history of the gene on different loci. We
note also that some models of gene duplication and loss
make the simplifying assumption that the gene copies
evolve independently.

To run summary methods designed for single copy
gene family trees such as ASTRID and ASTRAL, we
introduce a method for decomposing these multicopy
gene family trees into single copy trees. The input of the
decomposition algorithm is a set of multicopy, unrooted,
gene family trees, and for each tree the method produces
multiple single copy trees. The decomposition algorithm
attempts to break each multicopy gene tree spreading
across differentloci into smaller subtrees containing only
orthologs (Fig. 1). The method works in two steps as
follows:

In the first step, we root the gene trees then label
the internal vertices of the tree as either duplication
events or speciation events (a process called “tagging”).
To accomplish this we use ASTRAL-Pro’s rooting and
tagging algorithm (Zhang et al. 2020). The algorithm
scores each edge in the gene tree based on the minimum
number of duplication or loss events that would be
required to explain a tree rooted on that edge, then roots
the tree on the edge with the minimum score. Once
rooted, the internal vertices that are the least common
ancestor of two copies of the same species are considered
to be duplication events. For example, suppose internal
node v has species A as a leaf in both the right subtree
and the left subtree; then v is labelled (“tagged”) as
a duplication event. For this step, the gene trees are
assumed to be binary (if the input contains polytomies,
they are randomly resolved).

The second step is to decompose the rooted and tagged
gene family trees (Algorithm 1). We visit each vertex with
postorder traversal (this means we visit child vertices
before their parents, traversing the tree from the bottom
up); when we reach a vertex tagged as a duplication, we
resolve it by separating one of the two child clades below
the vertex (we choose the one containing the smallest
number of species).

Algorithm 1 is guaranteed to decompose the input
gene family tree into leaf-disjoint subset trees, each
of which is single copy. This set of single copy trees
will contain one (possibly large) tree as well as
all the clades separated during the decomposition.
Furthermore, assuming correct rooting and tagging,
these subtrees only contain orthologs as all duplication
vertices have been eliminated.

This set of single copy gene trees can then be given
as input to a summary method, such as ASTRAL or
ASTRID, thus producing a pipeline we refer to as
ASTRAL-DISCO or ASTRID-DISCO, respectively. To use
this pipeline with concatenation, we make the following
modification. We follow the first two steps (i.e., using
ASTRAL-Pro to root and tag the gene family trees,
and then decompose the gene family trees into single
copy gene trees). Then, we separate the sequences
for each gene family based on the decomposition,
placing the sequences corresponding to leaves in each
decomposed tree into separate sets of sequences. These
sequence alignments are then concatenated into a large
supermatrix, and the desired concatenation analysis
method can be run to obtain the species tree. For our
study we used the maximum-likelihood method IQ-
TREE (Nguyen et al. 2015), and refer to this pipeline as
concatenation analysis with DISCO (CA-DISCO).

Algorithm 1: DISCO Step 2

NOTES: If t is a tree, then we define L(t) to be leafset
of the tree. Also given a vertex from ¢, say v, we
define t;; and t,, to be the left and right subtrees of
vertex v respectively. We delete a subtree from a tree
by removing the edge above the root of the subtree.
We obtain the tagged and rooted multicopy gene
tree used as the input by running the ASTRAL-Pro
rooting and tagging algorithm.

input : ¢ — atagged and rooted multi-copy gene
tree
output: S — a set of single copy trees
S<o
for v in g (postorder) do
if v is duplication then
if |L(g0,)] > |L(g0,)| then
delete gy, from g
‘ S < SU{gv,}
else
‘ delete gy, from g
S<SU{gy)
end
end
end
S<«SU{g}
return S

Statistical consistency properties of ASTRAL-DISCO.—
Here, we establish statistical consistency for ASTRAL-
DISCO under GDL-only models, and compare this
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FIGURE 1.
to speciation events and green nodes (filled-in nodes in print) denote duplication events. The genes a;,b;, ...,

a) Species Tree
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b) Gene Tree

ar by ¢1 dy a2 by c2 dy e fi a3 by dz €2  fo 91 hy 101 j1 ki

c) Decompositions

&&K%\A
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Decomposition algorithm. In a), the gene tree is shown inside the species tree. White nodes (open circles in print) correspond
k; belong to species A,B, ...,

K

respectively. The resulting multicopy gene tree is shown in (b). The decomposition method deletes the child edge corresponding to the smallest
subtree for each duplication node and outputs subtrees generated after the edge deletion process. This is done postorder (bottom up). In our
example b), we have two duplication vertices. First, we examine the duplication vertex closest to the bottom of the tree, v1; it has two child clades,
both containing four species, so we arbitrarily split off the right one. When we examine the next duplication vertex, v2, we now have six species
in the left subtree and seven in the right subtree, so we disconnect the left one. The resulting decomposition is shown in (c), which is the result
of deleting the dashed edges in (b).

statistical consistency guarantee to what has been

established for ASTRAL-Pro in (Zhang et al., 2020). trees.

Theorem 1. Under a model of gene evolution in which the
only cause for gene tree heterogeneity is GDL and the true
species tree has strictly positive probability of appearing as a
genetree, ASTRAL-DISCO is statistically consistent provided

that ASTRAL-Pro correctly roots and tags the gene family

Proof. We let T denote the unrooted species tree
topology, let f be one of the gene family trees, and let
t be any DISCO tree produced by applying DISCO to
f (so that t is one of the trees in the decomposition
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of f). Under the assumption that ASTRAL-Pro has
correctly rooted and tagged f, the leaves in t are all
orthologs and hence the species tree T will induce the
subtree t when restricted to the leaves of t. Therefore,
T will be a compatibility supertree of the DISCO trees.
Furthermore, when restricting to a set of four leaves
a,b,c,d in t, the species tree T and the DISCO tree ¢
will induce the same quartet tree topology. Therefore,
the true species tree T will have the maximum possible
score with respect to the Maximum Quartet Support
Species Tree (MQSST) problem (Mirarab et al. 2014) on
the decomposed DISCO trees. As the number of genes
goes to infinity, almost surely a gene tree topologically
identical to the species tree topology T will appear in
the input. With T in the input, the only optimal solution
to the MQSST problem on the decomposed trees is the
species tree, as any other solution will disagree with T
in at least one quartet. Furthermore, with T in the input,
the species tree will also be a feasible solution to the
constrained-MQSST problem solved by ASTRAL-DISCO
as the bipartitions of T will appear in the constraint set
computed by ASTRAL (which always includes all the
bipartitions from the input gene trees). Hence, under
the conditions of the theorem, for every model species
tree, as the number of genes increases, almost surely
ASTRAL-DISCO will return the unrooted species tree
topology as its unique solution. 0

Comments: There are two specific requirements on
the gene evolution model stated in the theorem: i) the
only cause for discord between the topologies of the
unrooted gene trees and the species tree is GDL and ii)
the unrooted topology of the true species tree has strictly
positive probability of appearing as a gene tree. These
two properties hold for the Arvestad et al. (2009) GDL
model. Furthermore, these conditions are very mild and
so will hold for other GDL models as well.

We now consider the requirement that ASTRAL-
Pro correctly roots and tags every gene family tree.
This requirement, which is also stated in the theorem
in Zhang et al. (2020) for ASTRAL-Pro’s statistical
consistency under GDL, is not likely to hold on many
conditions, since gene family trees that are single copy
butnotidentical to the species tree will occur with strictly
positive probability, and ASTRAL-Pro will not consider
any node in such a tree to be a duplication node. Hence,
ASTRAL-Pro is not able to correctly root and tag such
gene family trees. Thus, this requirement is nontrivial,
and far more restrictive than the two requirements on
the GDL model.

We now compare the theoretical guarantees
established here for ASTRAL-DISCO, and compare
these guarantees to those established for ASTRAL-Pro.
The conditions required in (Zhang et al., 2020) under
which ASTRAL-Pro is statistically consistent are the
same as the ones we state in Theorem 1 under which
ASTRAL-DISCO is statistically consistent: GDL is the
only cause for gene tree discord, the true species tree
has strictly positive probability of appearing as a gene
tree, and ASTRAL-Pro correctly roots and tags every

gene family tree. Hence, the two methods have the same
theoretical guarantee.

Although theresultis trivially true, (Zhang et al., 2020)
also note that ASTRAL-Pro is statistically consistent
under the multispecies coalescent (MSC) model (which
addresses incomplete lineage sorting) and the same
guarantee holds for ASTRAL-DISCO since in that case
the ASTRAL-DISCO is identical to ASTRAL. (Zhang
et al.,, 2020) also specifically discuss the question of
ASTRAL-Pro consistency under models where gene
duplication and loss as well as incomplete lineage
sorting occur. They conjecture that ASTRAL-Pro might
be consistent under such models (provided, of course,
that ASTRAL-Pro correctly root and tag each gene family
tree), but have not yet been able to establish this property.

In sum, to date there are no statistical consistency
guarantees established for ASTRAL-Pro that do not also
hold for ASTRAL-DISCO. Both methods are proven
statistically consistent when GDL is the only cause
for gene tree discord (provided correct rooting and
tagging) and unknown statistical consistency for other
models. The dependency of all these proofs on correct
rooting and tagging is a significant one, but it is
possible that with random but low probability of error
in rooting and tagging that each method will be proven
statistically consistent under a GDL-only model. The lack
of distinction between the two methods with respect
to theoretical guarantees means that the empirical
performance must be evaluated, which is the subject of
the next section.

Experiment Overview

Full details (including software version numbers
and commands necessary to reproduce the
experiment) are provided in Sections S1 and S2 of
the Supplementary material. Data sets used in this
study are available from the Illinois Databank at
https:/ /databank.illinois.edu/datasets /IDB-4050038,
and the DISCO algorithm is freely available at
https:/ /github.com/JSdoubleL/DISCO. Here, we
provide an overview of the experimental design, which
included three main experiments.

Experiment 1 has two parts. In Experiment 1(a), we
compare DISCO and MI to evaluate the relative benefits
of these two decomposition strategies. This experiment
shows that DISCO provides better accuracy than MI, and
covers more of the input gene family tree leafset in its
decomposed subset trees. Experiment 1(b) provides an
initial evaluation of a collection of species tree estimation
methods, some using DISCO with ASTRAL or ASTRID,
on a number of different simulation model conditions.
This experiment provides us with a list of species tree
estimation methods we then explore more fully in the
next experiments. In Experiment 2, we explore a larger
number of simulated model conditions, and we include
a comparison to CA-DISCO. Finally, in Experiment 3,
we examine the most accurate and scalable methods on
three empirical data sets of increasing size.
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For all the experiments, we compare the species tree
estimation methods with respect to their topological
error (measured by the normalized Robinson-Foulds
[RF] distance (Robinson and Foulds 1981) between the
true or reference species tree and the species tree
returned by the method) as well as the wall-clock
running time (starting at the beginning of each pipeline
or method and ending once the species tree is obtained;
time spent estimating the gene family trees is not
included). For Experiments 2 and 3, we also record the
peak memory usage of the respective methods. Finally,
in comparing MI and DISCO, we report the coverage of
the decomposed trees, which is the proportion of the
number of leaves in the full set of decomposed trees out
of the original gene family tree.

For each experiment, we compare methods only on
those replicate data sets on which all the methods
complete analyses. We omit a method from a figure if it
fails to complete on 50% or more of the replicates; these
cases are reported in each figure.

We run our experiments on the Campus Cluster
at the University of Illinois Urbana-Champaign. The
Campus Cluster has a four-hour time limit on jobs and
is heterogeneous, with a minimum of 64 GB of memory.
Additionally, for Experiment 3, we use the Tallis queue,
which has 256 GB of available memory and effectively
no time constraints.

Methods Compared

DISCO creates a set of single copy gene trees from
the input set of gene family trees. Thus, we can pair
DISCO with any existing multilocus species tree
estimation method, including ASTRID, ASTRAL,
and concatenation analysis (CA). Here, we compare
ASTRID-DISCO, ASTRAL-DISCO, and CA-DISCO to
existing methods that can analyze multicopy gene
family trees. Note that CA-DISCO works from the
concatenation of the multiple sequence alignments
rather than the gene trees.

In addition to these combinations of DISCO
with ASTRAL, ASTRID, and CA, we examine the
performance of the following leading methods for
species tree inference under gene duplication and loss.

FastMulRFS.—FastMulRFS is an extension of FastRFS
(Vachaspati and Warnow, 2017) that allows it to work
for multicopy gene family trees. It accomplishes this by
adding a preprocessing step that compresses multicopy
gene family trees into single copy trees by collapsing
any edge in the tree separating two leaves with the
same label. In Molloy and Warnow (2020), it was shown
to be statistically consistent under a model of gene
duplication and loss that assumes a lack of adversarial
GDL (this is when specific sequences of gene duplication
and loss events create bipartitions that conflict with
the species tree). FastMulRFS was shown to exhibit
equivalent accuracy to MulRF and to be more accurate
than ASTRAL-multi in Molloy and Warnow (2020); it

also significantly outperformed both methods in terms
of speed.

ASTRAL-Pro.—ASTRAL-Pro is an extension of ASTRAL
designed for multi-copy gene trees. ASTRAL-Pro uses
a multistep process: first, it roots and tags the gene
trees, selecting a root that minimizes the number of
duplication and loss events necessary to explain the tree,
and then it runs standard ASTRAL, but only counting
quartets where the least common ancestor (LCA) for any
three out of the four leaves is a speciation vertex and
the four leaves of the quartet all refer to different species
(also these “speciation-driven quartets” are counted as
equivalent if they cover the same four species and
share the same LCA; for more details see Zhang et al.
(2020). In Zhang et al. (2020), ASTRAL-Pro was shown
to be statistically consistent under a model of gene
duplication and loss with the added assumption that
the rooting and tagging is correct; it was also shown
to be more accurate and faster than MulRF, DupTree,
and ASTRAL-multi. Further, we found that ASTRAL-
Pro outperformed FastMulRFS and ASTRID-multi in
Willson et al. (2021).

ASTRID-multi—ASTRID-multi is an extension of
ASTRID (Vachaspati and Warnow, 2015). ASTRID
creates a distance matrix with the average inter-node
distance between every pair of species over all the input
trees. This matrix is then used as the input to a distance-
based method that can produce a tree (by default it
uses FastME; Lefort et al. 2015). ASTRID-multi allows for
multi-individual trees using a technique from Allman
et al. (2016); it was shown to be competitive with other
methods for inferring species trees with gene duplication
and loss in Legried et al. (2021), where it performed
better than STAG, DupTree, ASTRAL-multi, and
MulRF.

SpeciesRax and MiniN].—SpeciesRax (Morel et al. 2021) is
a new maximum likelihood-based species tree inference
method. The program begins by generating a starting
species tree; from that tree, it begins a search for a
tree that maximizes the probability of observing the
input trees under the undatedDTL model (Morel et al.
2020). The starting tree can be randomly generated
or computed from the input trees using MiniNJ, also
introduced in Morel et al. (2021). MiniN]J uses internode
distances like ASTRID; however, when building its
distance matrix, it takes the minimum distance between
each pair of species averaged across all the gene family
trees, then from the distance matrix it estimates the tree
using Neighbor Joining (Saitou and Nei 1987).

Data Sets

We use both simulated and biological data sets
to evaluate methods; high-level descriptions of these
data sets are provided here; see Section S3 of
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the Supplementary material for additional empirical
statistics.

For our simulation study, we use SimPhy (Mallo
et al. 2016) to generate species trees and true gene
trees under the DLCOAL model (Rasmussen and Kellis
2012), a model including both ILS and GDL; we ran
SimPhy with parameters which avoid a strict molecular
clock. SimPhy first evolves a locus tree within the
species tree with gene duplications and losses, and
then evolves the true gene family tree within the locus
tree under the MSC model. Thus, the locus tree differs
from the species tree due to GDL but not ILS, and
the true gene family tree differs from the locus tree
due to ILS. We then use INDELible (Fletcher and Yang
2009) to simulate sequence evolution (with different
sequence lengths) under the GTR (Tavaré 1986) model of
sequence evolution with gamma distributed rates (Table
S1 of the Supplementary material). From these sequence
alignments, we estimate gene trees using FastTree2 (Price
et al. 2010). We simulate these data sets under various
model conditions to produce a range of data sets that
vary in terms of ILS, GDL, average gene family size,
number of species per gene family tree, and mean gene
tree estimation error (MGTE); see Tables S2 and S3 for
these properties. The MGTE is the average Robinson-
Foulds (RF) distance between the estimated gene family
tree and the true gene family tree (Robinson and Foulds
1981) divided by 2n —6, where 7 is the number of leaves
in the gene family tree. The ILS level is reported using
the average distance (AD), computed using RF distances
between the locus tree (which has no ILS) and the true
gene family tree, divided by 21 —6. When computing the
RF distance between two multi-copy trees, unique leaf
labels are used for every copy of a species.

Default Conditions.—Our default values for the
parameters not actively being examined are: 101 species
(100 in-group species and one outgroup species), 50
genes trees estimated from 100bp alignments (43%
MGTE), a moderate level of ILS using a haploid effective
population size of 5.0x 107 (20% AD), and a moderate

duplication rate of 5.0 x 1071° with an equal loss rate.

Varying MGTE.—Keeping the default parameter values
otherwise fixed, we vary the mean gene tree estimation
error (MGTE) by creating sequences of different lengths
with INDELible. We create datasets with sequences 500
bp, 100 bp, and 50 bp long, which correspond to 19%,
43%, and 56% MGTE, respectively.

Varying ILS.—Keeping the default parameter values
otherwise fixed, we changed the amount of discord
due to ILS by varying the haploid effective population
size, choosing values of 1.0 x 10%, 5.0x 107, and 2.0 x
108, which correspond to an average distance (AD—the
normalized RF distance between the true species trees
and the true gene trees) of 0%, 20%, and 50% respectively

TABLE 1.  Average number of leaves in the true gene family trees
for model conditions with 101 species and differing amounts of gene
duplication and loss. Results shown are averaged across 1000 genes
and 10 replicates each.

L/D=0 L/D=0.5 L/D=1
1x10~10 145.1 128.0 116.6
5x 10710 550.0 290.6 165.3
1x107° 3727.8 993.0 228.5

(higher precision AD values are provided in Table S2 of
the Supplementary material).

Varying GDL.—Keeping the default parameter values
otherwise fixed, we also varied the amount of gene
duplication as well as the relative probability of gene

loss. We chose duplication rates of 1.0x 10710 (low),

5.0x 10710 (moderate), and 1.0x 10~ (high) as well as
relative loss rates of 0, 0.5, and 1 times the duplication
rate, for a total of nine model conditions. This resulted in
trees that varied significantly in size (number of leaves),
as shown in Table 1.

Varying number of genes and missing data.—Keeping the
default parameter values otherwise fixed, we created
data sets with 10, 50, 100, 500, 1000, and 10,000 genes,
some also with “clade-based” missing data (Nute et al.
2018). For ~60% of the gene family trees, a random clade
containing 20% or more of the species was selected from
the species tree; all the species not contained in this
clade were then deleted from the gene tree. This way
of deleting species is equivalent to having the selected
gene being born below the root of the species tree. This
process removed an average of 41.8% of the species from
each of the selected gene family trees.

Large number of species.—Keeping the default parameter
values otherwise fixed, we also created a simulated data
set with 1001 species (1000 in-group species and one
outgroup) in order to test the scalability of the methods.

Empirical data sets.—For Experiment 3, we examine three
empirical data sets: (1) a 16-species fungi data set from
Rasmussen and Kellis (2012), (2) the plant data set
studied in Zhang et al. (2020) containing 9237 multi-
copy gene trees and 83 species, and 3) an 188-species
vertebrates data set with 31,612 gene families taken from
(Morel et al. 2021) (who obtained their data from the
NCBI Taxonomy Database; Federhen 2012). Each of these
data sets is provided with estimated trees for each of the
gene families. In addition, Rasmussen and Kellis (2012)
and Morel et al. (2021) each provide a reference tree for
their data set. For the reference tree on the plant dataset,
we use the ASTRAL analysis of a larger plant data
set from Leebens-Mack et al. (2019) to take advantage
of denser taxon sampling used in Leebens-Mack et al.
(2019) compared to Zhang et al. (2020). These reference
trees provide a framework for evaluating the estimated
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species trees, but cannot be considered completely
correct since some of the evolutionary relationships
for these groups are still under debate. Details about
the data sets and reference trees are available in the
Supplementary material.

RESsuULTS

Experiment 1

In Experiment 1, we have two separate experiments:
1(a) compares DISCO to MI and 1(b) evaluates different
species tree estimation methods (some using DISCO).
Both these experiments are based on simulated data sets.

Experiment 1(a): Comparing DISCO and MI—Here, we
compare two tree decomposition strategies, DISCO and
MI, on simulated data sets that evolve under one GDL
model condition and with varying number of genes.

We first report statistics regarding DISCO
decompositions, including average and maximum
size (number of leaves) of the DISCO trees, average
coverage of the gene family tree leafset, and number
of DISCO trees across the different model conditions;
see Table 2, Tables S4 and S5 and Figures S1 and S2 of
the Supplementary material. These analyses show that
the largest DISCO tree contains on average 79% of the
species in the average gene family trees. These analyses
also show that DISCO also produces many small trees
and that the average size of a DISCO tree is under
8. (However, when DISCO is paired with summary
methods, such as ASTRAL or ASTRID, DISCO trees
with 3 or fewer leaves are discarded, which increases
the average size of the DISCO tree to between 13 and
50, depending on the duplication rate.) Furthermore,
after removing subset trees with fewer than 4 leaves,
DISCO achieves coverage of 85%. In comparison, MI has
a much smaller maximum tree size (17.3% compared to
57.9%) and lower coverage (62% compared to 85%).

We now evaluate species tree estimation using
ASTRAL or ASTRID applied to the single copy gene
trees produced by these two decompositions. As seen in
Figure 2, using the DISCO decomposition instead of the
MI decomposition produces much more accurate species
trees for both ASTRAL and ASTRID. To understand
these trends, we explore the decomposition statistics
directly between DISCO and MI. As seen in Table 2,
DISCO produces larger subset trees than MI and covers
more of the input leafset across the gene family trees.
Thus, there is more information in the set of single
copy gene trees given to ASTRAL or ASTRID when
using DISCO decompositions compared to using MI
decompositions.

Experiment 1(b): Varying numbers of gene trees—In our
first experiment we examine summary methods that
can estimate trees from multicopy gene family trees—
FastMulRFS, ASTRAL-Pro, ASTRAL-DISCO, ASTRID-
multi, ASTRID-DISCO, SpeciesRax, and MiniNJ—and
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FIGURE 2.  Comparison of the topological error of the species trees

produced by ASTRID and ASTRAL paired with either DISCO or ML
All model conditions have 10 replicates with 101 species, 20% AD, 43%
MGTE, and a duplication rate of 5 x 10~ with an equal loss rate.

TABLE2. Maximum tree size and coverage (proportion of leaves in
the gene family tree that are contained in the decomposition method
output set) produced by DISCO and MI, averaged across the gene
family trees after removing the gene family trees with fewer than 4
species. For context, the average number of species in the gene family
trees is 73.1, so that on average the largest DISCO tree has 79% of the
species and the largest MI tree has 24% of the species. The model
conditions have 101 species, 100 genes per replicate, 20% AD, 43%

MGTE, and a duplication rate of 5 x 10710 with an equal loss rate.

Method Maximum Size Tree Coverage
MI 17.3 0.62
DISCO 579 0.85

explore performance (both accuracy and running time)
on data sets with varying numbers of gene trees
(Fig. 3). Given high numbers of gene trees, most
methods have about the same accuracy; however, as
the number of gene trees decreases, the differences
between the methods become more pronounced.
Notably, FastMulRFS, ASTRID-multi, and MiniNJ seem
to degrade the most (with FastMulRFS exhibiting
exceptionally poor accuracy when given 100 or fewer
gene trees), while ASTRAL-Pro, ASTRID-DISCO, and
SpeciesRax perform well. ASTRAL-DISCO performs
well, but is not quite as accurate as ASTRAL-Pro.
In contrast, ASTRID-DISCO distinctly improves on
ASTRID-multi. The running times for all methods seem
to increase with the number of genes at the same rate,
with distance-matrix methods running the fastest and
SpeciesRax running the slowest.

Experiment 1(b): varying gene duplication and loss rates.—
We compare methods when running them on our nine
data sets that vary gene duplication rates as well as
the relative probability of gene loss (Fig. 4). The highest
duplication rate shows the most difference between the
methods, with SpeciesRax, MiniNJ, and FastMulRFS
performing noticeably worse than the other methods.
The running times reveal differences. ASTRID-multi
is the slowest method at the highest duplication rate;
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FIGURE 3. Experiment 1(b). Impact of number of genes on species tree error (RF error rates) and wall clock running time (seconds); results

across 10 replicates per model condition are shown. All the data sets have 101 species (100 in-group species and one outgroup), gene trees
estimated from 100bp alignments (43.3% MGTE), AD = 20%, a duplication rate of 5.0 x 107 and an equal loss rate. ASTRAL-Pro failed to
complete on 6/10 replicates for the 10,000-gene replicates, so it was omitted; FastMulRFS also failed on two replicates; results shown here are
for the eight replicates on which FastMulRFS completed. All other methods completed on every replicate. The boxes stretch from the 1st to 3rd
quartile and the lines through the boxes show the medians and the dots show means.

ASTRID-DISCO and MiniN]J are the fastest by a large
margin.

Experiment 2

In this experiment, we continue to compare summary
methods; however, we exclude summary methods
that performed poorly in the previous experiment,
limiting our focus to ASTRAL-Pro, ASTRID-DISCO,
and SpeciesRax. We also include a comparison with
CA-DISCO.

Varying numbers of gene trees.—First we extend our results
from Experiment 1 that explored data sets with differing
numbers of gene trees (Fig. 3) to include CA-DISCO
and an examination of the methods’ peak memory
usage (Fig. 5). CA-DISCO seems to have slightly better
accuracy under most conditions; however, it fails to
complete under our time constraints (4 h) with 1000
gene trees. CA-DISCO is also the slowest method. In
most cases, ASTRAL-Pro is the least memory efficient;
however, with 1000 gene trees, SpeciesRax exhibits high
memory usage as well. The memory usage trends on
the other conditions are very similar to the trends for

this experiment, and are reported in Figures S3-S5 of
the Supplementary material.

Varying GTEE.—We run our methods on data sets with
gene trees estimated from sequences of varying lengths
(Fig. 6). Shorter sequences provide less information for
estimating the gene trees, leading to gene trees with
more estimation error; conversely longer sequences lead
to less error. All methods have similar accuracy on long
(500 bp) sequences, while CA-DISCO (closely followed
by ASTRID-DISCO) performed the best out of the three
methods on the data set with the shortest sequence
lengths (50 bp). Running times remained fairly low for all
methods summary methods; however, CA-DISCO uses a
large amount of time, especially with longer sequences.
ASTRAL-Pro and SpeciesRax take longer as sequence
lengths decrease, while ASTRID-DISCO exhibits similar
running times on all sequence lengths.

Varying ILS.—CA-DISCO exhibits better accuracy than
the other three methods with no ILS (Fig. 7); however,
as the ILS increases, ASTRID-DISCO shows the best
accuracy when CA-DISCO loses its advantage, taking
much more time than all other methods and delivering
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gene trees, gene trees estimated from 100 bp alignments (43.3% MGTE), and AD=20%. ASTRAL-DISCO failed on 90% of the replicates with
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results shown here are for the replicates on which these methods completed.
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FIGURES. Experiment 2. Impact of number of genes on species tree error (RF error rates) and wall clock running time (seconds); peak memory
usage is also given in gigabytes. Results across 10 replicates per model condition are shown. All the data sets have 101 species (100 in-group
species and one outgroup), gene trees estimated from 100 bp alignments (43.3% MGTE), AD = 20%, a duplication rate of 5.0 x 107° and an equal
loss rate. CA-DISCO (IQ-TREE) timed out on all ten of the 1000-gene replicates, and so CA-DISCO is omitted from the 1000-gene results shown
here.

equivalent results to SpeciesRax and ASTRAL-Pro. Both  Varying duplication rate—Varying the duplication rate
SpeciesRax and CA-DISCO take a long time to complete, has little impact on any of the methods” accuracy with
while ASTRID-DISCO is the fastest. only 50 genes (Fig. 8). At the lowest duplication rates
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Experiment 2. Impact of ILS level on tree error (RF error rates), wall clock running time (s), and peak memory usage (gigabytes);

results across 10 replicates per model condition are shown. All the data sets have 100 species, 50 gene trees estimated from 100 bp alignments

(43.3% MGTE), a duplication rate of 5.0 x 10-19, and an equal loss rate.

both of the decomposition-based methods (CA-DISCO
and ASTRID-DISCO) give trees with the best accuracy;
as the duplication rates increase the differences fade,
leaving CA-DISCO with only slightly better accuracy.
Notably, with only 50 genes, SpeciesRaxaL.™s accuracy
is much more competitive with other methods than it
was under the similar high duplication rate conditions
with 1000 genes (Fig. 4). Running times exhibit similar
trends to previous figures: ASTRID-DISCO is the fastest
and SpeciesRax and CA-DISCO are the slowest.
Clade-based missing data.—On our data sets with missing
species (Fig. 9), we see that ASTRID-DISCO and CA-
DISCO have much better accuracy with only 10 genes
than other methods. As the number of genes increases,
differences in accuracy between methods become less
noticeable. The methods’ running times continue to
exhibit the same trends.

1001 species.—With 1001 species (1000 in-group species
and one outgroup), we found that ASTRAL-Pro
and ASTRID-DISCO gave the best accuracy, with
ASTRID-DISCO utilizing significantly less memory
and running time (Fig. 10). SpeciesRax was noticeably
slower than ASTRAL-Pro and also less accurate. The
peak memory usage is also higher for both ASTRAL-
Pro and SpeciesRax than it is for ASTRID-DISCO.
CA-DISCO failed to complete under our four-hour time
constraints.

Experiment 3

In Experiment 3, we examine the performance of
ASTRAL-Pro, ASTRID-DISCO, and SpeciesRax on
three empirical data sets: a 16-taxon fungi data set,
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Experiment 2. Impact of number of gene trees on species tree error (RF error rates) and wall clock running time (seconds) under

the missing data condition. For selected gene family trees, we selected a random clade containing at least 20% of the taxa from the species tree;
species not found in this clade were deleted from the gene family tree. All data sets contain 101 species (100 in-group species and one outgroup)
and gene trees estimated from 100bp alignments (43.3% MGTE). All the data sets have AD=20%, a duplication rate of 5.0 x 1071, an equal loss
rate, and 10 replicates for each condition. CA-DISCO exceeded our four-hour time limit on 6 out of 10 of the 1000-gene replicates but completed
on all replicates under all other conditions; hence, we removed CA-DISCO from the results shown for the 1000-gene replicates. All other methods
complete on all replicates. Results shown here are averaged across only those replicates where all methods complete.

an 83-taxon plant data set, and a 188-taxon vertebrate
data set. To evaluate these estimated trees, we compute
branch support on the estimated trees using ASTRAL's
posterior probability branch support technique (i.e.,
localPP) (Sayyari and Mirarab 2016). Full details
and discussion are provided in Section S6 of the
Supplementary material, and briefly summarized here.

Results on the 16-taxon fungal data set from
Rasmussen and Kellis (2012) (Fig. S7 of the
Supplementary material) show that all methods gave
identical trees (the same tree returned by FastMulRFS

on this data set in Molloy and Warnow (2020)) and
in a reasonable amount of time. We compared it
with the species tree given in Butler et al. (2009)
and found that it disagreed on two branches. In
contrast, the methods present different trees on the
plant data set with 83 species and 9237 genes from
Zhang et al. (2020) (Figs. S8-510 and Table S8 of the
Supplementary material) and the vertebrate data set
with 188 species (Figs. S11-S13 and Table S9 of the
Supplementary material). On the plant data set, all
methods output a plausible species tree, disagreeing
with the ASTRAL tree presented in the 1KP paper
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in-group species and one outgroup) and 50 gene trees estimated from 100bp alignments (44.4% MGTE). All the data sets have AD = 20%, a
duplication rate of 5.0 x 10719, and an equal loss rate. CA-DISCO exceeded our 4-h time limit on all 10 of the replicates and is therefore omitted.

(Leebens-Mack et al. 2019) on only two to four
branches, but in cases where the ground truth is not
clear.

We ran ASTRAL-Pro, ASTRID-DISCO, and
SpeciesRax on a vertebrate data set containing 188
species from Morel et al. (2021). ASTRAL-Pro and
SpeciesRax both failed due to memory issues on Tallis
(with 256 GB of available memory). ASTRID-DISCO
finished and returned a tree that disagreed with the
reference on five branches. Morel et al. (2021) reported
in their analysis that ASTRAL-Pro and SpeciesRax
disagreed on five branches as well.

We also examined the running times and peak
memory usage of the methods on the plant data set
(Fig. 11). We see that ASTRID-DISCO requires less
running time and memory compared to the other two
methods (completing in about 90 s vs. approximately 45
min and almost 5 h for ASTRAL-Pro and SpeciesRax,
respectively). Notably, we had an issue with SpeciesRax
where it threw out of memory exceptions when we
attempted to run it with parallelization (on a node with
256 GB of memory); this issue did not persist when we
ran it serially, and thus we report those running times
here.

Failures to Complete

ASTRID-DISCO never failed on any data set,
simulated or empirical. However, we observed several
cases where ASTRAL-Pro, ASTRID-multi, or SpeciesRax
failed to complete, either due to crashing or time
constraints (Table 3). We examine these cases here.

For our simulation study, we use the Campus Cluster,
which is a heterogeneous computing cluster with a
minimum memory of 64 GB and a time constraint of
four hours. We found that ASTRAL-Pro failed several
times due to memory given 10,000 gene trees and once
with 1001 species; it also took too long (4 h) on the
condition with the highest duplication rate and no loss
(the condition yielding trees with the highest number

of leaves). SpeciesRax almost always outputted a result
(with the exception of one replicate with the highest
duplication rate and no loss) as it computes a starting tree
then proceeds to incrementally improve on this starting
tree; any halts in its execution will just yield the tree in its
current state instead of failing to give a result. However,
there were several cases where SpeciesRax did not run
to completion and failed to improve its starting MiniNJ
tree. For example, in Experiment 1, there are several 1000-
gene replicates on which SpeciesRax halts after a short
period of time, returning a tree identical to the MiniNJ
tree. For 10,000 genes this happens for all ten replicates.
CA-DISCO (IQ-TREE) timed out on many replicates with
large numbers of gene trees or species and also failed
on one replicate 10 genes and missing species due to
“problematic sequences.”

Both ASTRID-multi and ASTRAL-DISCO had issues
on data sets with high duplication rates and low to
moderate loss rates. ASTRAL-DISCO failed due to
memory on nine out of ten replicates in two such cases.
ASTRID-multi on the other hand fared a bit better, timing
out on one replicate with no loss and one replicate with
moderate loss and also running out of memory on two
replicates with no loss.

When running our methods on empirical data sets,
we used a node that has 256 GB of available memory
and effectively no time constraints (i.e., the Tallis
queue). Every method completed on the fungi data
set (16 species) and also on the plants data set (83
species); however, on the vertebrates data set (188
species), only ASTRID-DISCO completed (SpeciesRax
successfully computed its starting tree with MiniNJ, but
halted soon afterward due to the memory constraints).

DiscussiION

Overview

DISCO is a new method for decomposing multicopy
gene family trees into single copy trees. Its approach
for decomposing the gene family trees relies explicitly
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Time (in hours)

ASTRAL-Pro  ASTRID-DISCO

Methods

SpeciesRax

FIGURE 11.

TABLE 3.

60

50

10

ASTRAL-Pro  ASTRID-DISCO

Methods

SpeciesRax

Experiment 3. Running time (h), and peak memory usage (GB) for the 1KP data set with 83 species and 9,237 gene family trees.

Failures to complete on simulated data. If model condition or method is not listed, it completed on all replicates. Timeouts are

due to methods exceeding the Campus Cluster 4 h time limit. Memory means that the method’s memory requirements exceeded the amount of

memory available (which was at least 64 GB).

Model Condition Timeouts Memory Other Total
ASTRAL-Pro

(Fig. 3) 10,000 Gene Trees 10% 50% 0% 60%

(Fig. 4) Dup Rate 1 x 1072, 1oss 0 20% 0% 0% 20%

(Fig. 10) 1001 Species 0% 10% 0% 10%

ASTRAL-DISCO

(Fig. 4) Dup Rate 1x 107, loss 0 0% 90% 0% 90%

(Fig. 4) Dup Rate 1x 1077, loss 0.5 0% 90% 0% 90%
ASTRID-multi

(Fig. 4) Dup Rate 1x 10, loss 0 10% 20% 0% 30%

(Fig. 4) Dup Rate 1x 1077, loss 0.5 10% 0% 0% 10%

SpeciesRax
(Fig. 4) Dup Rate 1x 107, loss 0 0% 10% 0% 10%
CA-DISCO (IQ-TREE)

(Fig. 5) 1000 Gene Trees 100 % 0% 0% 100%

(Fig. 9) 1000 Gene Trees Missing Species 60% 0% 0% 60%

(Fig. 9) 10 Gene Trees Missing Species 0% 0% 10% 10%

(Fig. 10) 1001 Species 100% 0% 0% 100%

on ASTRAL-Pro, which is used to “root and tag”
the input gene family trees (and hence effectively
predict orthology relationships) and then operates
by splitting the tree into disjoint subtrees using the
ASTRAL-Pro rooting and tagging. This decomposition
produces subset trees that contain only orthologous
genes when ASTRAL-Pro’s rooting and tagging is
correctly performed, which enables us to prove that
ASTRAL-DISCO is statistically consistent under GDL-
only models. Moreover, our empirical study shows that
even though DISCO does not have very high accuracy in
its orthology determination, the species trees produced
using DISCO in conjunction with several species tree
estimation methods designed for single copy gene
data sets are very accurate. Thus, DISCO is useful in
phylogenomic species tree estimation when analyzing
multicopy gene family data sets.

Although our study focused on the use of DISCO
with ASTRAL, ASTRID, and concatenation analysis,
it could be used with any species tree estimation
method that is designed for single copy gene trees. For
example, we studied concatenation analyses performed
using maximum likelihood (under IQ-TREE) following
DISCO decomposition, but other types of concatenation
analysis could be performed, including distance-based
methods. In addition, supertree methods, such as
Matrix Representation with Parsimony, could be used
to assemble a species tree from the decomposed single
copy trees. Furthermore, under the assumption that
the rooting and tagging is correctly performed, the
decomposed single copy DISCO trees will only contain
orthologous genes, and hence will be topologically
identical to the species tree if GDL is the only
cause for gene tree discord. Therefore, using DISCO
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with supertree methods such as MRP would also be
statistically consistent under GDL-only models.

ASTRID-DISCO and CA-DISCO

Our study specifically showed value for two
applications of this method: ASTRID-DISCO and CA-
DISCO. We found that ASTRID-DISCO was both
accurate and extremely scalable. We found that
it exhibited better accuracy than ASTRAL-DISCO,
especially under conditions with few genes, where
accuracy differences between methods are more
pronounced. In our extensive simulation study, we
did not find any condition where it performed worse
than other methods (with the exception of CA-DISCO),
and several where it performed better. For instance,
it performed better than all other methods, including
ASTRAL-Pro, under conditions with very few genes
or very short sequence lengths (high MGTE). Its
running times were far less than any other method
with comparable accuracy, often ten times faster or
more. Additionally, it is far more memory efficient,
never exceeding peak memory of one gigabyte for
any condition we measured. Finally, ASTRID-DISCO
produced reasonable trees on the biological data
sets, differing from those computed by ASTRAL-
Pro or SpeciesRax only with respect to evolutionary
relationships that are still under debate.

CA-DISCO typically tied for most accurate, but was
strictly more accurate than the other tested methods
(all of which are summary methods, and so operate by
combining estimated gene trees) on conditions with high
GTEE. In addition, when there was no heterogeneity
due to ILS, CA-DISCO yielded better accuracy than all
other methods; however, at high ILS it was less accurate
than the best summary method (ASTRID-DISCO).
A surprising finding is that CA-DISCO remained
very accurate even when the concatenated alignment
produced using DISCO was extremely gappy (typically
above 90%, as shown in Table 54 of the Supplementary
material). This robustness to missing data for IQ-TREE
is noteworthy, given the general concerns raised about
the impact of missing data on phylogenomic analyses
(although see Molloy and Warnow (2018), which showed
that several species tree estimation methods were able
to recover highly accurate trees even given high levels
of missing data). However, the robustness to missing
data demonstrated by IQ-TREE may not hold for other
maximum likelihood heuristics, and so future work
is needed to explore this issue. Finally, we note that
if missing data is of concern, the user can decide to
limit the DISCO single copy gene trees to those that
are sufficiently large, and hence reduce the degree of
missing data in the input given to the species tree
estimation method (whether concatenation analysis or
some summary method).

We also saw that as the number of genes or the
duplication rate increases, the size of the CA-DISCO
data matrix (specifically in terms of the number of
columns) increases. Even with relatively few sites per

gene (as in our study), the total number of columns
in the CA-DISCO matrix can be in the millions when
the duplication rate is high enough (Table S4 of the
Supplementary material). For instance, with a moderate
duplication rate and 1000 genes (each gene alignment
with length 100), we obtained concatenated alignments
with 2.7 million columns on average (Table S4 of
the Supplementary material). This presents significant
runtime challenges to CA-DISCO and can make it
infeasible to use under some conditions (especially when
there is a large number of species). Moreover, it was
under some of these challenging conditions where we
were unable to estimate a tree under the 4-h time
constraint in our experiment.

ASTRAL-DISCO versus ASTRAL-Pro

Given that ASTRAL-DISCO wuses DISCO to
decompose the ASTRAL-Pro rooted-and-tagged gene
family trees, it is interesting to compare ASTRAL-Pro
and ASTRAL-DISCO. Note that while they are often
similar in accuracy (and ASTRAL-DISCO is generally
faster than ASTRAL-Pro), there are conditions with low
numbers of genes where ASTRAL-Pro is more accurate
(Fig. 3). Why is this?

Given a rooted and tagged gene tree, ASTRAL-Pro
scores a quartet tree g if this quartet is speciation-driven
(meaning that it has four distinct species labels and
the least common ancestor (LCA) of any three leaves
is a speciation node). Since DISCO uses the rooting
and tagging provided by ASTRAL-Pro, this implies
that every quartet tree used by ASTRAL-DISCO is also
considered by ASTRAL-Pro. However, in Figure S6 of
the Supplementary material, we show an example of an
input gene family tree on six species with one duplication
event where ASTRAL-DISCO does not consider all of
the quartet trees considered by ASTRAL-Pro. Hence,
ASTRAL-Pro but not ASTRAL-DISCO makes full use
of the speciation-driven quartet trees. This may explain
why ASTRAL-Pro is more accurate than ASTRAL-
DISCO when the number of genes is sufficiently small.

ASTRID-Multi Running Time

A comparison between methods with respect to
running time shows that ASTRID-multi is slower than
ASTRID-DISCO and MiniN]J, the other two distance
matrix methods we explore, when there are high rates
of duplication and low rates of loss. Recall that ASTRID-
multi is designed for multi-individual inputs, and that
the matrix it computes has a row and column for each
leaf in each gene family tree (which are interpreted as
individuals). Hence, with high duplication rates and no
loss, the number of leaves in the gene family trees is
extremely large, leading to a large matrix. This problem
is resolved by both MiniNJ and ASTRID-DISCO, as both
their distance matrices scale only with the number of
species.
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Causes of Missing Data

Analyses using DISCO decompositions tend to have
substantial amounts of missing data: the individual
single copy DISCO trees are in many cases much smaller
than the gene family trees from which they are derived
and the concatenation analyses are based on very gappy
CA-DISCO alignments (Table S4 of the Supplementary
material). Here we explore the causes for these high
levels of missing data, focusing on gappiness in the
CA-DISCO matrix (see Section 54 of the Supplementary
material for further discussion).

Under all model conditions we explored, the CA-
DISCO matrices are highly gapped (typically more than
93% gapped), as shown in Table S4 of the Supplementary
material. Recall that the number of rows in the CA-
DISCO matrix is the number of species and that each
DISCO subset (i.e., leafset from a DISCO tree) contributes
its associated set of columns in the matrix. Hence, the
average size of the DISCO subsets (i.e., the average
number of leaves in the DISCO trees), relative to the
total number of species, determines the degree to which
the CA-DISCO matrix is occupied by gaps. By Table
S4 of the Supplementary material, the average size of
the DISCO trees is typically between 4 and 7 for 101-
species data sets (the one exception where the average is
larger is the model condition with a low duplication rate,
which is also the least gappy condition). We also note
that the CA-DISCO matrix gappiness is not particularly
large (compared to the other model conditions) for
the Missing Data conditions (and correspondingly the
average DISCO tree size is also not particularly small for
that condition).

To understand why the typical DISCO tree is so
small, we first consider the size of the gene family
trees from which they are derived. As seen in Table
S2 of the Supplementary material, gene family trees
can have large numbers of leaves (averages as high as
3728 for the model condition with 101 species and high
rates of duplication but no losses). Gene family trees
also tend to have fewer than the full set of species,
but a large reduction only appears under high rates of
duplication and where loss also occurs (Table S3 of the
Supplementary material). Furthermore, as noted earlier,
the average DISCO tree size is not very affected by the
Missing Data process implemented in Experiment 3.

Based on these trends, we conclude that the major
cause for the CA-DISCO matrix to be so gappy is the
decomposition strategy itself. This makes sense, when
the DISCO decomposition strategy is considered. Recall
that DISCO tries to produce at least one very large single
copy tree, but this does not mean all (or even most) of its
decomposed trees will be large. Also, when a duplication
occurs close to the leaves, then unless a large number of
losses also occurs (sufficient to remove at least one copy
of each duplicated gene), the DISCO decomposition will
by necessity produce a small tree. Furthermore, when
used with concatenation, no DISCO trees are filtered
out, and so DISCO has 100% coverage (i.e., every leaf
in the input gene family tree is included in an output

DISCO tree). This combination of seeking at least one
very large single copy tree and also having 100% coverage
results in a large number of DISCO trees (Table S5 of the
Supplementary material), most of which are very small
(Table S4 of the Supplementary material).

When using DISCO with summary methods such
as ASTRAL or ASTRID that use single-copy unrooted
gene tree topologies to estimate the species tree, we
filter out all DISCO trees that have fewer than four
species; in that case, the average size of the DISCO trees
is much larger (approximately 50 species for the low
duplication rate conditions, and decreasing to about 13
for the high duplication rate conditions, as seen in Table
S5 of the Supplementary material). Thus, unfiltered
DISCO decompositions produce small trees and result
in CA-DISCO matrices that are very gappy; filtering the
CA-DISCO analysis pipeline (by removing genes that are
smaller than four species) would reduce gappiness but
would still result in a gappy matrix.

In sum, by far the major cause for “missing data” in
our study is the use of the DISCO decomposition, which
produces large numbers of single copy trees, many of
which are small. Filtering would increase the size of the
trees and reduce gappiness, but the impact on accuracy
resulting from filtering is unknown.

DISCO Orthology

The set of leaves in each DISCO tree can be considered
a set of putative orthologs, and the set of DISCO trees
produced by decomposing a gene family tree defines
disjoint orthogroups. This estimation of orthology
relationships can then be compared to the true pairwise
orthology relationships (known when performing a
simulation) and evaluated for accuracy. We refer to
the true relationships defined by the simulation as
“actual orthologs” and “actual paralogs,” and then use
these to specify whether DISCO’s orthology assessment
is accurate (i.e., true positives are for pairs where
DISCO predicts orthology and the pair are actual
orthologs and true negatives are for pairs where DISCO
predicts paralogy and the pair are actual paralogs)
or inaccurate (i.e., false positives and false negatives,
defined similarly) for each pair of gene copies. However,
since this decomposition depends on ASTRAL-Pro’s
rooting and tagging, to understand the orthology
estimation accuracy obtained using DISCO, we consider
the orthology accuracy for ASTRAL-Pro separately as
well. We report both precision (i.e., TP/(TP+FP)) and
recall (i.e., TP/(TP+FN)) for both ASTRAL-Pro and
DISCO in Table S6 of the Supplementary material.

Given true gene trees, ASTRAL-Pro ranges from 0.35
to 1.0 for precision and from 0.65 to 0.92 for recall. The
failure to achieve perfect precision and recall is due
to both the existence of ILS in the gene trees and also
to the rooting and tagging performed by ASTRAL-Pro
since its optimization criterion (gene tree parsimony)
may make mistakes. On estimated gene trees, ASTRAL-
Pro orthology precision changes very little, but the
recall drops (ranging now from 0.50 to 0.90). Thus,
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gene tree estimation error hardly impacts precision but
substantially impacts recall.

Comparing DISCO to ASTRAL-Pro on true gene trees,
we note that DISCO has better precision but lower
recall than ASTRAL-Pro. For example, on true gene
trees, DISCO precision values range from 0.45 to 1.0
(ASTRAL-Pro’s range from 0.35 to 1.0) and its recall
values range from 0.33 to 0.86 (ASTRAL-Pro’s ranged
from 0.65 to 0.92). On estimated gene trees a similar
trend is seen, with DISCO precision improved but
recall reduced, relative to ASTRAL-Pro. These changes
are to some extent expected because orthology is not
transitive, and DISCO can only recover some of the
relationships because it partitions the leafset into disjoint
sets. However, it is noteworthy thatby decomposing gene
family trees using ASTRAL-Pro’s rooting and tagging,
DISCO retains most but not all of the accurate orthology
relationships (thus reducing recall) and loses some of
the incorrect orthology relationships (thus improving
precision).

We now compare MI'’s orthology accuracy to DISCO,
as computed on estimated gene trees (Table S7 of the
Supplementary material). MI has higher precision (0.76
compared to 0.53) but lower recall (0.32 compared to
0.41) than DISCO. Thus, MI misses more of the true
orthologous relationships but the relationships it infers
are more likely to be correct. This difference between MI
and DISCO is explained in part by the trend for MI to
make smaller trees and to cover less of the gene family
tree leafset; by being more conservative in producing
orthologous groups, MI makes fewer mistakes but also
misses some of the true relationships.

Even so, the species trees produced using DISCO
with different species tree estimation methods have
higher accuracy than species trees estimated using
MI decompositions, perhaps suggesting that DISCO
benefits more from its larger coverage of the gene family
trees and larger recall than it is hurt by the reduction
in precision. These results also demonstrate the general
robustness to errors in these orthology estimates (a trend
that has been noted already in Yan et al. (2022)).

Previous Studies

Five recent studies—Molloy and Warnow (2020),
Zhang et al. (2020), Legried et al. (2021), (Willson
et al., 2021), Yan et al. (2022), and Morel et al. (2021)—
explored different multilocus species tree estimation
methods on simulated data sets that evolved with GDL
and potentially other sources of discord. Although the
specific methods and model conditions varied between
the studies, in most cases the trends in these studies are
consistent with the trends that we also find.

The one study that reported different relative
performance between methods than we find in this study
is Morel et al. (2021), who found SpeciesRax and MiniNJ
to be more accurate than ASTRAL-Pro under most
conditions and only less accurate on a few conditions
in which the differences were very small. Given that we

found SpeciesRax and ASTRAL-Pro to be very close in
accuracy, withno significantadvantage to either method,
we consider the relative performance reported in the
two studies to be different enough to require some
discussion.

The most likely explanation for the differences in
trends between our study and Morel et al. (2021) is that
the model conditions explored in the two studies are
different. Specifically, most of the conditions explored
in Morel et al. (2021) have only 25 species, whereas
our study explored data sets with 101 species or 1001
species. Other studies (e.g., Nakhleh et al. 2001) have
also shown that relative performance between methods
can change with the number of species, and so this a
distinct possibility. Although Morel et al. (2021) explored
a range of model conditions, their default condition was
very different from our default condition. Specifically,
their default condition has high HGT and GDL but
no ILS, uses only 100 genes, and has only 25 species;
in contrast, our default model condition has ILS and
GDL but no HGT, and 101 species. These differences
may also have contributed to this relative performance
advantage for SpeciesRax in their study. Significantly, the
experiments they performed that did not have high HGT
showed little difference between the two methods under
most conditions, and no difference with 500 or more
genes. Since ASTRAL-Pro performs its search within a
constrained search space that is defined by the set of
input gene family trees, this suggests that ASTRAL-Pro
may not be as accurate as SpeciesRax when the number
of genes is small. Overall, we conjecture that it is likely
that SpeciesRax may have an advantage over ASTRAL-
Pro for high HGT conditions and for conditions with no
HGT but small numbers of genes and species.

A discussion of prior work examining concatenation
in the presence of GDL is difficult since concatenation
cannot be applied directly to multicopy gene families.
However, comparisons of concatenation analyses using
maximum likelihood to summary methods have been
made for the specific case where ILS is the only
cause for gene tree discordance. These studies have
consistently shown that concatenation analyses can be
more accurate than summary methods under some
conditions (namely high gene tree estimation error and
at most moderate ILS), while they can be less accurate
under conditions with low gene tree estimation error
and high ILS (see Kubatko and Degnan 2007; Leaché and
Rannala 2011; Patel et al. 2013; DeGiorgio and Degnan
2014; Mirarab et al. 2016; Molloy and Warnow 2018 for
an entry to this literature). The trends in our study
for CA-DISCO in comparison to ASTRID-DISCO and
ASTRAL-Pro are consistent with these prior studies and
suggest the interesting potential for CA-DISCO to be a
valuable method for species tree estimation under many
conditions.

Distance-Matrix Methods in the Presence of GDL

One consistent trend in our study is the good accuracy
of summary methods that use distance matrices to
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estimate species trees in the presence of GDL. Overall,
we have found ASTRID-DISCO to be the most accurate,
while the relative accuracy of MiniNJ and ASTRID-multi
depends on the model condition. Specifically, MiniN]J
is less accurate than ASTRID-multi when given larger
gene family trees or large numbers of genes. These
two methods differ in two ways—how they calculate
the distance matrix and how they estimate a tree from
the calculated matrix (neighbor joining for MiniNJ and
FastME for ASTRID). It is not clear which of these
steps is most responsible for the difference in accuracy,
but given the close similarity in accuracy for NJst
(Liu and Yu 2011) and ASTRID (which also use neighbor
joining and FastME, respectively), it is likely that the
distance matrix calculation is the key reason for the
differences between these methods.

Despite the very good accuracy of ASTRID-DISCO,
it is not known whether it is statistically consistent
under a GDL model. Furthermore, to date, no distance-
matrix method has been proven statistically consistent
under a model of GDL. There are two key factors in
proving distance-based methods statistically consistent.
First, the distance matrix must converge to an additive
matrix as the number of gene trees increases; secondly,
an appropriate method must be used to estimate the
tree from the distance matrix. The second point is true
for Neighbor Joining and FastME, the methods used
by MiniN]J and ASTRID), but it is not known whether
any of the suggested techniques for computing distance
matrices will converge to an additive matrix under GDL
models. While simulation studies are not sufficient to
determine statistical consistency, we observe that as the
number of gene trees increases, MiniN]J error seems
to level off; in contrast, ASTRID-DISCO and ASTRID-
multi error rates continue to decrease (Fig. 3). Future
work is necessary to establish statistical consistency (or
inconsistency) for these distance-matrix approaches.

CONCLUSION

DISCO is a simple technique that opens up many
new approaches to species tree inference in the context
of gene duplication and loss. Here, we have shown
two successful applications: ASTRID-DISCO and CA-
DISCO. Using simulations, we showed that these two
approaches work well in practice, with accuracy as
good as or better than current leading methods, such as
ASTRAL-Pro. Furthermore, ASTRID-DISCO performed
well on three biological data sets, showing comparable
accuracy to ASTRAL-Pro, while being much faster.
Our study also suggests that CA-DISCO, applied using
IQ-TREE, provides very good accuracy, comparable to
or better than ASTRID-DISCO under most conditions
(except for very high ILS), and so CA-DISCO should be
used when it is feasible. However, CA-DISCO is more
computationally intensive than the alternative methods,
and ASTRID-DISCO is extremely fast. Hence, ASTRID-
DISCO is a very fast and highly accurate method for
species tree estimation that can handle GDL and ILS.

Much future work still needs to be done. One
important direction is to establish the theoretical
properties of these pipelines (e.g., statistical consistency
and sample complexity), without making unnecessarily
strong assumptions about correct rooting and tagging.
For example, can statistical consistency be established
when the probability of incorrect rooting and tagging
is bounded? Future work should also explore the
theoretical and empirical properties of CA-DISCO,
ASTRID-DISCO, and other methods on datasets
involving HGT, gene flow, and other sources of gene
tree discord. While both ASTRID-DISCO and CA-DISCO
performed well under the clade-based model of missing
data, it would be interesting to see how well these
methods perform in the context of other missing data
models, such as the M;;; model from Nute et al. (2018). It
is also possible that CA-DISCO would yield results with
even better accuracy when using RAXML (Stamatakis
2014) or perhaps a Bayesian tree estimation method, but
this would require additional computational resources
and so future studies should examine this. Finally,
DISCO by design depends on ASTRAL-Pro for rooting
and tagging the gene family trees; therefore, DISCO
could potentially be improved by using techniques other
than ASTRAL-Pro to root-and-tag the gene family trees.

We close with the observation that the good accuracy
of DISCO pipelines suggests that other decomposition
strategies that produce single copy gene trees might
provide comparable or better accuracy, and potentially
with lower computational cost. Furthermore, evaluating
the impact on pipelines using DISCO that restrict the
DISCO trees to those that are bigger than some threshold
(e.g., 10% of the full set of species) could potentially
improve accuracy and reduce running time. In general,
future work into new decomposition strategies is
desirable.

SUPPLEMENTARY MATERIAL

Datasets  simulated for this study are
available  from  the Illinois  Databank  at
https:/ /databank.illinois.edu/datasets /IDB-4050038.
The DISCO algorithm is available in open-source form
at: https://github.com/JSdoubleL /DISCO. DISCO has
an external dependency on TreeSwift (v 1.1.14) (Moshiri,
2020).
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