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Single-cell analysis of human skin identifies CD14+
type 3 dendritic cells co-producing IL1B and IL23A in
psoriasis
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Florent Ginhoux1,2,5,13

Inflammatory skin diseases including atopic dermatitis (AD) and psoriasis (PSO) are underpinned by dendritic cell
(DC)–mediated T cell responses. Currently, the heterogeneous human cutaneous DC population is incompletely characterized,
and its contribution to these diseases remains unclear. Here, we performed index-sorted single-cell flow cytometry and RNA
sequencing of lesional and nonlesional AD and PSO skin to identify macrophages and all DC subsets, including the newly
described mature LAMP3+BIRC3+ DCs enriched in immunoregulatory molecules (mregDC) and CD14+ DC3. By integrating our
indexed data with published skin datasets, we generated a myeloid cell universe of DC and macrophage subsets in healthy
and diseased skin. Importantly, we found that CD14+ DC3s increased in PSO lesional skin and co-produced IL1B and IL23A,
which are pathological in PSO. Our study comprehensively describes the molecular characteristics of macrophages and DC
subsets in AD and PSO at single-cell resolution, and identifies CD14+ DC3s as potential promoters of inflammation in PSO.

Introduction
Chronic inflammatory skin diseases such as atopic dermatitis
(AD) and psoriasis (PSO) are the most common dermatologic
conditions (Guttman-Yassky et al., 2011a). Both are character-
ized by the presence in the skin of activated T cell subtypes
secreting pro-inflammatory cytokines. This T cell–mediated
immune dysregulation is central to the pathogenesis of a wide
range of inflammatory skin diseases; thus, understanding the
factors modulating T cell priming and activation in healthy and
diseased skin is key to the development of effective treatments
for these diseases.

Dendritic cells (DCs) are professional APCs that act as a
bridge between innate and adaptive immunity and play an im-
portant role in driving T cell–mediated cutaneous responses
(Guilliams et al., 2014). Human DCs are heterogeneous and can

be divided into two main functional groups: classical DCs (cDCs)
and plasmacytoid DCs (pDCs). While pDCs exhibit more innate
functions restricted to the detection of viral infections and
the production of type I interferon, classical DCs include type
1 (cDC1) and type 2 (cDC2) subsets, which can detect different
pathogens, produce specific cytokines, and present antigens to
polarize naive CD4+ and CD8+ T cells (Satpathy et al., 2012).
Blood cDC2 can be divided into two fractions according to the
expression of CD5, which differ in the induction of T cell dif-
ferentiation (Yin et al., 2017). We also recently described a new
subset of inflammatory CD5−CD163+CD14+ DC (DC3) in human
blood (Dutertre et al., 2019), whose ontogeny and functions re-
main unknown and are a matter of debate (Bourdely et al., 2020;
Cytlak et al., 2020). DC3s do not derive from DC progenitors or
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commonmonocyte progenitors, but are thought to derive from a
progenitor upstream of the common monocyte progenitor stage
(Bourdely et al., 2020; Cytlak et al., 2020). In addition, although
the cytokines produced by DC3 after stimulation in vitro are
known (Bourdely et al., 2020; Brown et al., 2019), DC3 function
in vivo and contribution to disease pathophysiology remain poorly
characterized. DC3s were found expanded in the blood of pa-
tients with the autoimmune disease systemic lupus erythema-
tosus (Dutertre et al., 2019), but whether they are present in the
skin and their involvement in human skin inflammation were
unknown until recently (Cytlak et al., 2020).

Current knowledge of the cutaneous APC compartment de-
fines four major groups: Langerhans cells in the epidermis, cDC1
and cDC2 in the dermis, and macrophages (Kashem et al., 2017).
Langerhans cells acquire antigens from the epidermis and con-
tribute to the differentiation of T helper type 2 (Th2), Th17, and
regulatory T cells (Bieber, 1995; Kashem et al., 2017; Seneschal
et al., 2012). In addition, cDC1s are important for Th1 and cyto-
toxic T cell differentiation, while cDC2s are important for Th2
and Th17 cell induction (Kashem et al., 2017). Furthermore, upon
inflammation, blood monocytes are recruited and differentiate
locally, giving rise to inflammatory cells with a DC-like pheno-
type (Shi and Pamer, 2011).

Recently, the single-cell RNA sequencing (RNA-seq) ap-
proach has been used to analyze the DC population in human
skin. Xue et al. (2020) reported two cDC2 subsets, whereas
Cytlak et al. (2020) reported the presence of CD141+ cDC1,
CD1c+CD14− DC2, and CD1c+CD14+ DC3 in both human blood and
dermis. These findings suggest that DC3 is also present in human
skin, but their role in disease remains unclear. Thus, to address
the role of DCs in chronic inflammatory skin diseases, we used
single-cell flow cytometry and RNA-seq of index-sorted cells
from healthy and diseased skin to generate an unbiased profile/
landscape of DCs andmacrophages, and to describe their distinct
molecular signatures and proportions in skin lesions of AD and
PSO patients. This uncovered a significant enrichment in the
proportion of CD14+ DC3s in PSO lesional skin, where they were
one of the major cell types coexpressing IL1B and IL23A, two
cytokines essential for PSO pathogenesis (Cai et al., 2019; Fitch
et al., 2007). This finding suggests that targeting CD14+ DC3
might represent a novel therapeutic option in the treatment of
PSO, and demonstrates the potential for the single-cell myeloid
cell landscape database to provide important insights into skin
biology in health and disease.

Results
Annotation of skin APCs by protein and gene expression
We collected skin biopsies from two patients with AD and two
with PSO, from both nonlesional and lesional areas, and pre-
pared single-cell suspensions by enzymatic digestion (Fig. S1 a
and Table S1, a and b). We identified and index-sorted cu-
taneous DCs and monocyte-macrophages using flow cytom-
etry based on expression of characteristic patterns of surface
markers/proteins (Fig. S1 b) before subjecting each index-
sorted cell to single-cell RNA sequencing (scRNA-seq) using
the Smart-seq2 protocol. First, to reduce the effects of inter-

individual variability, we integrated the RNA expression data
from each patient using the Seurat V3 pipeline (Stuart et al.,
2019). We then mapped these data into a uniform manifold
approximation and projection (UMAP) space to allow identifi-
cation of cell clusters based on transcriptional similarities (Fig.
S1, c–e), before overlaying heat maps of surface protein ex-
pression from the flow cytometry data onto the integrated UMAP-
identified cell subsets to identify CD141+ cDC1, CD1c+CD88− cDC2,
and CD1c−CD88+CD14+ macrophages (Fig. 1, a and b). Since CD88
is amarker expressed onmonocytes andmacrophages but not on
DCs and cDC2s comprise CD5+CD14− DC2 and CD5−CD14+ DC3
(Dutertre et al., 2019), we divided cDC2 into CD14− (DC2) and
CD14+ (CD14+ DC3) subsets. Gene set enrichment analysis (GSEA)
using previously reported gene signatures of DC and mono-
cyte subsets (Cytlak et al., 2020; Villani et al., 2017) revealed
that CD1c+CD14+ cells were more enriched for the DC3 gene
signature than DC2 gene signature compared with CD1c+ cells.
In addition, CD1c+CD14+ cells were more enriched for the DC3
gene signature than monocyte gene signature compared with
CD14+ cells (Fig. 1 c and Fig. S1 f). CD163 protein expression
was tested by cytometry by time of flight (CyTOF), and CD14+

DC3s expressed a lower level of CD163 than macrophages, but
higher than DC2s (Fig. S1 g), consistent with previous reports
(Bourdely et al., 2020; Dutertre et al., 2019). Alongside this, we
also clustered the cells in an unsupervised way based on RNA
expression by using the k-nearest neighbor algorithm (KNN),
then analyzed differentially expressed genes (DEGs) in each
cluster to confirm the annotation of the cell subsets defined
based on indexed cell protein expression data (Fig. 1, d and e).
Together these approaches revealed that cluster #1 corresponded to
cDC1 (XCR1+C1orf54+), and clusters #2–7 likely corresponded to
cDC2. cDC2s here, defined at the protein level as CD1c+CD88−,
were divided into CD14− (DC2, clusters #2 and #3) and CD14+

(CD14+ DC3, #5, #6, and #7) subsets. Cutaneous CD14+ DC3
expressed EREG, SLC2A3, IL23A, and HSPA genes, which were
not reported as being expressed by DC3 in the blood, likely
indicating skin-specific CD14+ DC3 differentiation in response
to local cues. We also detected a cluster of cells highly ex-
pressing genes normally associated with mature DCs enriched
in immunoregulatory molecules (mregDC, #4), including CD200
and CD274 (Chen et al., 2020; He et al., 2020; Maier et al., 2020).
Finally, clusters #8 and #9 corresponded to macrophages, while
cluster #10, enriched for mitochondrial gene expression, corre-
sponded to low viability cells (Luecken and Theis, 2019). Our
analysis of index-sorted cells’ protein expression with KNN
clusters confirmed the cell subset identification described
above (Fig. 1 f).

Single-cell regulatory network inference and clustering
(SCENIC) analysis of APCs in skin from patients with AD or PSO
SCENIC analysis (Aibar et al., 2017) was performed on our skin
scRNA-seq dataset to infer the global gene regulatory networks
(regulons) associated with each RNA-based cell cluster. Each
regulon includes a transcription factor and its putative target
genes that harbor binding motifs for the transcription factor.
Differential regulon activity testing revealed highly active regulons
in each cluster (Fig. 1 g). IRF2 was a highly active transcription
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Figure 1. Annotation of APCs in skin from patients with AD or PSO. (a) Left: Gating strategy starting from CD45+HLA-DR+CD3−CD19− defining all skin
subsets of nonlesional and lesional skin of AD (n = 2) and PSO (n = 2) patients. Right: Annotation from indexed data were overlaid on RNA-based UMAP
dimensional reduction. (b) Surface protein expression from indexed data were overlaid on RNA-based UMAP dimensional reduction. (c) GSEA of pairwise
comparisons of CD1c+CD14+ cells with CD1c+ cells or CD14+ cells from skin. Gene signatures of blood DC3s compared with DC2s (DC3 > DC2) or CD14+

Nakamizo et al. Journal of Experimental Medicine 3 of 17

Type 3 DCs co-producing IL-1B/IL23A in psoriasis https://doi.org/10.1084/jem.20202345

https://doi.org/10.1084/jem.20202345


factor in clusters #1 (cDC1), #2 and #3 (DC2), and #4 (mregDC);
ATF3 in clusters #6 and #7 (CD14+ DC3); RELB in cluster #4
(mregDC); MAFB andMAFG in clusters #8 and #9 (macrophages);
and XBP1, CEBPB, and HIF1A in CD14+ DC3s and macrophages
(Fig. 1 h). Thus, cutaneous cDC1s, DC2s, CD14+ DC3s, and mac-
rophages exhibit differential regulon activities controlled by
different nuclear transcription factors.

Generation of a skin DC and macrophage single-cell universe
By using an indexed Smart-seq2 scRNA-seq approach, we have
combined both protein and RNA expression data with deeper
gene expression information (See et al., 2018), allowing unam-
biguous identification of myeloid cell types in the skin. How-
ever, the resources needed to achieve such resolution limited
the numbers of cells that can be analyzed using this pipeline.
Therefore, to extend and strengthen our findings, we integrated
our data with that from other publicly available skin datasets
(GEO accession no. GSE147424; He et al., 2020; Xue et al., 2020),
and by using our indexed single cells as probe/reference cells to
identify corresponding cell types in other datasets, we were able
to generate a comprehensive skin myeloid cell universe (Table
S1 c). The datasets were integrated with Seurat V39s scTransfer
to eliminate the effects of variability between them (Fig. 2 a),
and we next overlaid the RNA expression–defined KNN clus-
ters from our data (Fig. 1) onto the integrated all-data UMAP
(Fig. 2 b). Each subset of cells formed a cluster, and our anno-
tation allowed us to classify most subsets within the integrated
UMAP space. Cells annotated as “MIX,” close to macrophages,
were mixed cell populations that could not be precisely delin-
eated. However, our indexed–sorted cell protein expression
data showed that cells within the MIX region were positive for
CD14 and CD88, suggesting they were related to macrophages
(Fig. 2 c). The expression of peripheral blood DC2, DC3, and
monocyte feature genes was overlaid on the integrated UMAP
space (Cytlak et al., 2020; Fig. 2 d). DC2 feature gene ex-
pression was higher in DC1s and DC2s, while DC3 feature gene
expression was higher in CD14+ DC3s and macrophages. Mono-
cyte feature gene expression was higher in macrophages and the
MIX region. Such analysis suggested that CD14+ DC3s, not ex-
pressing monocyte feature genes, were unrelated to monocytes,
whereas the MIX population, which expressed monocyte feature
genes, was related to monocytes/macrophages.

Next, we examined the expression of genes used in the an-
notations of Xue et al. (2020). This analysis indicated that cells
within the MIX population were positive for MARCO and F13A1,
which allowed us to annotate them as MARCO+ macrophages.
Proliferating DCs, Langerhans cells, and TREM2-expressing
macrophages were also identified in the same way (Fig. 2, e and
f). However, in the Xue et al. (2020) dataset, it was difficult to

clearly separate DC2s from CD14+ DC3s because there was no
surface marker information, and expression of the DC3 marker
CD14 was weak. Nevertheless, by combining our dataset with
their reported dataset, we increased the number of studied cells
and provided protein expression data from our index-sorting,
thereby confirming our cell subset identification, allowing us
to obtain a greater resolution of macrophage subsets. Of note,
cell suspensions used in our study were frozen after enzymatic
treatment and thawed before index-sorting, a process that could
explainwhy our data showed a reduced proportion of certain cell
subset. When comparing the frequency of cell subsets in fresh
versus frozen protocols, fewer MARCO+ macrophages were
detectable in frozen versus fresh samples (Fig. S2, a–c), high-
lighting the need to consider the cell-specific sensitivity to
experimental conditions and the biases it can induce in their
representation.

Psoriatic skin has increased proportions of CD14+ DC3s and
macrophages
We then examined the relative proportions of each DC and
macrophage subset in healthy and diseased skin conditions. In
AD lesional skin, only cDC1s were relatively increased according
to our scRNA-seq data, while in PSO, the proportions of cDC1s,
CD14+ DC3s, and CCR1+ macrophages were relatively higher in
lesional skin (Fig. 3 a). Because our scRNA-seq data were based
on few patients, we aimed to validate our observations and thus
compared the frequencies of each subset in skin and blood using
flow cytometry on additional patients (skin: 14 AD and 16 PSO;
blood: 5 AD and 8 PSO). We found that the proportions of CD14+

DC3 and macrophages were higher in PSO lesional skin as
compared with nonlesional skin (Fig. 3 b and Fig. S3 a). How-
ever, in AD, there was no difference in cell population abun-
dance between nonlesional and lesional skin regions. Next,
we compared the proportions of DC subsets and monocytes in
the blood between AD and PSO patients and healthy subjects
(Dutertre et al., 2019; Fig. S3 b), but there was no significant
difference between these groups (Fig. 3 c). Thus, measuring blood
DC and monocyte subset proportions cannot be used as an in-
dicator of PSO and AD disease activity.

Analysis of the functional profiles of skin DC and
macrophage subsets
Having delineated all major DC and macrophage subsets in the
skin, we next reanalyzed their gene expression profiles in con-
junction with functional annotation. cDC1s and DC2s showed
high expression of genes related to antigen presentation sig-
naling and T cell differentiation such as HLA-DQA1 and HLA-DR,
while CD14+ DC3s highly expressed genes related to IL-17 sig-
naling and neutrophil activation such as IL23A and CXCL2, and

monocytes (DC3 > Mono) and, vice versa, of blood DC2s (DC2 > DC3) or CD14+ monocytes (Mono > DC3) compared with DC3s were used (Villani et al., 2017).
NES, normalized enrichment score. (d) The heat map showing relative expression of the DEGs from each KNN cluster. (e) UMAP dimensionality reduction and
KNN clustering of human skin APCs based on RNA expression data. Cell subsets were delineated using the 10 KNN clusters that were regrouped into major
previously defined cell subsets based on the expression of surface proteins. (f) Heat map of the mean fluorescence intensity (MFI) of the surface proteins in
each cluster. (g) Differentially active regulons among RNA-based KNN clusters. (h) Regulon activities of top regulons were projected on the RNA-based UMAP
space and shown as violin plots across the KNN clusters. MAC, macrophage.
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Figure 2. Optimization of annotations through integration with published data. (a) New UMAP dimension reduction after the integration of the three
datasets. HCs are healthy skin. (b) The RNA KNN cluster in Fig. 1 e is represented as an integrated UMAP. (c) Surface protein expression is overlaid onto an
integrated UMAP dimensional reduction. (d) DC2, DC3, and monocyte feature gene expression shown in Cytlak et al. (2020), overlaid on UMAP. The gene list is
the same as in Fig. S1 f. (e) DC and macrophage (Mac) subset signatures from Xue et al. (2020) were shown as a heat map of the specific signature genes
expressed. (f) New annotations from the integration of the three datasets. LC, Langarhans cell; MAC, macrophage.
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Figure 3. CD14+ DC and macrophage (MAC) subsets of skin and blood in healthy, AD, and PSO samples. (a) Bar graph of the percentage of each DC and
macrophage subset in healthy, nonlesional (NL), and lesional (L) skin from integrated scRNA-seq data. (b and c) Flow-cytometric analysis of each DC and
macrophage in (b) skin and (c) blood of healthy subjects and AD (14 skin and 5 blood) and PSO (16 skin and 8 blood) patients. Top: Dot plot of flow cytometry.
Bottom: Bar graph of the percentage of each DC and macrophage sub-population. P values were obtained by Wilcoxon matched-pairs signed-rank test (b) and
Dunn’s multiple comparisons test (c). *, P ≤ 0.05. MAC, macrophage; MONO, monocyte.
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mregDCs highly expressed genes related to DC differentiation
and lymphocyte migration such as IRF4 and CCL17 (Fig. 4, a and
b). As expected, most genes involved in maturation, migration,
regulation, and inflammation that have been reported in a prior
study (Maier et al., 2020) were highly expressed in mregDCs
(Fig. 4 c). When we looked at cytokine gene expression, we
found that IL1B, CXCL8, IL10, and IL23A were abundantly ex-
pressed in CD14+ DC3s, while IL15 and IL32 were expressed in
mregDCs (Fig. 4 c). Thus, cDC1s and DC2s have gene expression
patterns consistent with high antigen-presenting ability, and
CD14+ DC3s with high cytokine-producing ability. Cutaneous
mregDCs expressed high levels of inhibitory and migratory
genes as well as IL15 and IL32. Next, we characterized the
functional gene expression profile of macrophage subsets. CCR1+

macrophages showed high expression of genes related to in-
flammatory cytokines and chemokines including CXCL8, CXCL2,
and IL1B, while MARCO+ macrophages expressed chemokine
genes and genes involved in the complement cascade such as
C1QB and C1QC, and TREM2+ macrophages expressed lipid-
related genes such as LIPA (Fig. 4, d and e).

mregDCs produce IL-15 in skin lesions of AD and PSO patients
We next compared the gene expression profiles of mregDCs in
lesional versus nonlesional skin of AD and PSO patients in our
dataset. The expressions of heat shock proteins and CCL17, both
being indicators of AD, were higher in AD lesional skin (Fig. 5 a).
In PSO, we found that expression of MHC-II (HLA-DQA1) and
CCL19, which attracts T cells, was higher in lesional than non-
lesional skin (Fig. 5 a). IL-15 is known to be an exacerbating
factor of inflammation in AD and PSO (Lv et al., 2012; Mack
et al., 2020). IL15 transcripts were mostly detected within
mregDCs isolated from PSO and AD lesional compared with
nonlesional skin, but the difference was more pronounced
in PSO (Fig. 4 c; and Fig. 5, b and c). Interestingly, we found
that the increased proportion of mregDCs in PSO lesional
skin occurred mostly within the IL15+ mregDC population
(Fig. 5 c). The percentage of IL15+ cells in mregDCs also in-
creased with lesional skin in PSO (Fig. 5 d). We validated this
observation by immunolabeling of skin sections to determine
whethermregDCs produced IL-15 at the protein level in AD and PSO
lesions. Because BIRC3 is highly expressed in mregDCs (Fig. 1 d),
we used it as a marker for mregDCs. We observed that BIRC3+ cells
(mregDCs) were more abundant in AD and PSO lesional skin
compared with healthy control skin, and that ∼80% of them
produced IL-15, which also tended to be increased in AD and PSO
skin (Fig. 5, e–g). In addition, themajority of the IL15-producing
cells were BIRC3+ cells in AD and PSO (Fig. 5 h). These data
suggest that mregDCs are more frequent in these chronic in-
flammatory skin conditions, where they produce IL-15 and other
cytokines that could contribute to pathology.

CD14+ DC3s coexpress both IL1B and IL23A in lesional skin of
PSO patients
IL-1β and IL-23A cytokines play important roles in the patho-
genesis of PSO (Tsai and Tsai, 2017). Early reports suggested that
TNF/inducible nitric oxide synthase–producing DCs (TIP-DCs)
can produce IL-23A in inflamed skin (Lee et al., 2004); therefore,

we first examined whether this was the case for TNF-producing
cells in our integrated dataset. We found that the majority of
cells expressed either IL23A or TNF transcripts (Fig. S4, a and b),
suggesting that IL23A-producing cells and TNF-expressing cells
are distinct. When projected onto the integrated UMAP space,
IL23A-expressing cells mostly belonged to the CD14+ DC3 popu-
lation, while TNF-expressing cells mostly belonged to CD14+

DC3s and CCR1+ macrophages (Fig. S4 c). As IL-1β works along-
side IL-23A in PSO pathogenesis, we next asked whether the
IL23A-expressing cells also expressed IL1B transcripts. We found
that both the overall expression level of IL1B and IL23A tran-
scripts (Fig. 6 a) and the frequency of IL1B single-positive and
IL1B/IL23A double-positive cells (Fig. 6 b) were higher in PSO
lesional skin than in nonlesional skin. When projected onto the
integrated UMAP space, the majority of cells expressing IL1B
alone were CCR1+ macrophages, while most of the IL1B/IL23A-
coexpressing cells were CD14+ DC3s (Fig. 6, c and d). In contrast,
IL23A mono-production occurred throughout all DC subsets
(Fig. 6 c). Finally, we used immunohistochemistry to confirm
that CD14+ DC3s produce IL-23. Staining of PSO lesional skin
with antibodies against CD1c, CD14, and IL-23 showed that the
main sources of IL-23 were CD14+ DC3s and macrophages. The
number of IL-23–producing cells did not differ between CD14+

DC3s and macrophages, but most CD14+ DC3s produced IL-23
(Fig. 6 e), which was consistent with the results of our scRNA-
seq analysis.

We then asked whether there was a specific marker ex-
pression pattern associated with IL1B/IL23A-coexpressing cells,
and found that they were characterized by CD83, an activation
marker for DCs (Zhou and Tedder, 1995), AREG and EREG asso-
ciated with fibrosis (Zhang et al., 2021), and the receptors for
glucose and lipids, OLR1 and SLC2A3 (Yu et al., 2010; Fig. 6 f).

Additionally, inferring the differential regulon activity in
lesional PSO using SCENIC analysis revealed that the active
regulon landscape of IL1B/IL23A double-positive cells is different
from those of single-positive or double-negative cells (Fig. 6, g
and h). STAT2, FOSL2, XBP1, CEBPB, and HIF1A were detected
among the top active regulons in IL1B/IL23A double-positive
cells. Interestingly, and based on the motif enrichment analy-
sis, STAT2 and FOSL2 were suggested to potentially regulate
expression of IL23A, and also CEBPB and HIF1A can regulate IL1B
expression. There are binding motifs for XBP1 on both IL23A and
IL1B loci as well (Fig. 6 i). Altogether, these findings further
support the notion that in lesional PSO, CD14+ DC3s might be
a major source for co-production of IL23A and IL1B, probably
mediated by transcription factors such as STAT2, FOSL2, XBP1,
CEBPB, and HIF1A. However, such analysis requires further
validation using other methods such as assay for transposase ac-
cessible chromatin with high-throughput sequencing and chro-
matin immunoprecipitation sequencing.

The majority of IL1B/IL23A double-positive CD14+ DC3s are
SLC2A3+ cells
Next, we analyzed cells falling within the three CD14+ DC3 clus-
ters (Fig. 1 e). Since DC3_2 and DC3_3 were increased in PSO
lesions (Fig. 3 a), DC3_2 and DC3_3 may be involved in the path-
ogenesis of PSO. We also uncovered that the highest proportion
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Figure 4. Classification of DC and macrophage subsets in healthy, AD and PSO samples. (a) Heat map of DEG expressed in each DC subset. (b) Pathway
analysis of each DC subset. (c)Heat maps of expressed genes for maturation, regulatory, migration, cytokine in each DC subset. (d)Heat map of DEG expressed
in each macrophage subset. (e) Pathway analysis of each macrophage subset.
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Figure 5. mregDCs produce IL-15 and are more abundant in AD skin. (a) Heat map comparing relative gene expression of mregDC in AD and PSO
nonlesional (NL) and lesional (L) skin in our data. (b) Cells expressing IL15were plotted onto the integrated UMAP of our data. (c) Percentage of IL15-producing
cells in lesional skin from AD and PSO in our data. (d) Proportion of IL15-producing cells in AD and PSO skin. (e–h) Immunolabeling for IL-15 and BIRC3 in
normal (n = 8), AD (n = 9), and PSO (n = 9) skin. Blue: DAPI, red: IL-15, green: BIRC3. Scale bar = 20 µm. (f–h) Bar graph of the number of BIRC3 (f), BIRC3/IL-15
(g), and IL-15 (h)–positive cells per high-power field (HPF; ×40) of view in healthy, AD, and PSO skin. P values were obtained by Dunn’s multiple comparisons
test (f and g) and Mann–Whitney test (h). *, P ≤ 0.05. HC, healthy control.
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Figure 6. CD14+ DC3s produce both IL1B and IL23A in PSO. (a) Violin plot of the IL1B- and IL23A-producing cells in nonlesional (NL) and lesional (L) skin in
AD and PSO in our dataset. (b and c) Bar graph (b) and dot plot (c) of IL1B- and IL23A-producing cells in nonlesional and lesional skin from AD and PSO patients.
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of IL1B/IL23A double-positive cells was falling within the DC3_2
cluster (Fig. 6 j). We then compared the expression of CD83
and SLC2A3, highly expressed surface antigens in IL1B/IL23A
double-positive cells, in the CD14+ DC3 subset (Fig. 6 k). We
found that DC3_2 had the highest expression of SLC2A3, a gene
coding for the membrane protein glucose transporter 3 (GLUT3),
and immunostaining showed a higher percentage of GLUT3
positivity in CD14+ DC3s than in DC2s or macrophages (Fig. 6 l).
In PSO lesions, the number of GLUT3– and HLA-DR–double-
positive cells was increased at the site of accumulation of lym-
phocytes in the superficial dermis (Fig. 6, m and n). These results
indicate that GLUT3+ CD14+ DC3s are more abundant in PSO
lesional skin and may produce IL-23A.

Finally, to test whether our results could be verified in a
recently published skin dataset with AD and PSO biopsies
(Reynolds et al., 2021), we integrated this new dataset (Popescu
and Goh, 2021) with our indexed Smart-seq2 dataset (Fig. 7, a
and b) and identified CD14+ DC3s by examining which fractions
in the Reynolds et al. (2021) dataset correspond to the fractions
we identified as DC3s. Consistent with our previous findings, we
found that CD14+ DC3 (Inf_mono and moDC_1 in the Reynolds
et al. [2021] annotation) expressed IL1B and IL23A (Fig. 7 c), and
that the number of DC3_2 (Inf_mono in the Reynolds et al.
[2021] annotation) was increased in PSO lesions (Fig. 7 d).

Discussion
Using high-dimensional, single-cell protein and RNA expression
analyses of human cutaneous APCs, we have precisely delin-
eated all DC and macrophage subsets in the skin. By extending
and deepening our dataset using publicly available resources,
in combination with immunolabeling of skin sections, we also
identified IL15-expressing mregDCs and IL1B/IL23A-coexpressing
CD14+ DC3s in diseased skin.

It has recently been demonstrated that the cDC2 population
can be divided into two subsets: DC2s (CD5+) and DC3s (CD5−;
Dutertre et al., 2019). In autoimmune diseases such as systemic
lupus erythematosus and scleroderma, the percentage of CD5−CD14+

DC3s in peripheral blood was increased, as was the expression of
IFN-I–stimulated genes and several pro-inflammatory molecules,
including TNFRSF10A, LILRB1, and TNFRSF2 (Dutertre et al., 2019).
Brown et al. (2019) also classified mouse and human cDC2s into
two subtypes, DC2A and DC2B, with CLEC10A− DC2As and
CLEC10A+CD14+ DC2Bs. DC2Bs have been reported to promote Th17
cell differentiation compared with DC2As (Brown et al., 2019; Villani

et al., 2017). Based on these correlations, it is tempting to speculate
that DC2As correspond to DC2s, and DC2Bs correspond to DC3s. In
our data, CD14+ DC3s also expressed genes related to Th17 cell dif-
ferentiation and activation, such as IL6 and IL23A. Their numberwas
also increased in PSO, a Th17 cell–related disease. In other words,
CD14+ DC3s, which are increased in inflammation, may promote
Th17 cell differentiation in the skin. Specifically in the skin, cDC2s
have previously been divided into CXorf21-positive and MCOLN2-
positive subpopulations (Xue et al., 2020). Here, DC2s in our
data likely correspond to CXorf21-positive DCs, and CD14+ DC3s to
MCOLN2-positive DCs; however, we were able to classify DC2s and
CD14+ DC3s more clearly based on their differential CD14 protein
expression. Interestingly, CD14 transcriptional expression in CD14+

DC3s in the skin is unclear in both our data and the data of Xue et al.
(2020), but CD14 protein expression in our indexed scRNA-seq data
was unequivocal, again supporting the value of such an approach. In
some cases, protein expression is more stable than gene expression,
and it is possible tomake a clearer annotation by combining protein
expression data with gene expression, as recently shown by Maier
et al. (2020), who used a cellular indexing of transcriptomes and
epitopes by sequencing approach (Stoeckius et al., 2017).

Another newly discovered subset of DCs in inflammatory
skin diseases is mregDCs. Maier et al. (2020) identified mregDCs
with high expression of immunomodulatory genes (CD274,
PDCD1LG2, and CD200) and mature genes (CD40, CCR7, and IL12B)
in human and mouse lungs. This subset has previously been
identified in human skin, where it was thought to be associated
with wound healing and exacerbation of AD (Chen et al., 2020;
He et al., 2020). Importantly, mregDCs have also been identified
in other pathologies including cancer but have been unfortu-
nately named DC3s in some reports (Gerhard et al., 2021; Zilionis
et al., 2019), a terminology completely unrelated the one used
here (Dutertre et al., 2019) and used by other groups (Bourdely
et al., 2020; Cytlak et al., 2020), describing DC3s as a DC2 subset.
Here, we found that the mregDC number was increased in AD
and PSO lesional skin, and that mregDCs were a major source of
IL-15 among cutaneous APC. IL-15 is up-regulated in both AD and
PSO skin (Karlen et al., 2020; Ong et al., 2002): in PSO, IL-15, like
IL-23A, stimulates the production of IL-17A by T cells (Hoeve
et al., 2006) and is significantly associated with exacerbation
of both AD and PSO (Elder, 2007; Mack et al., 2020). This might
be linked to IL-15’s ability to block apoptosis of T cells and ker-
atinocytes, and thereby increase their survival (Inoue et al.,
2010; Rückert et al., 2000). Together, these results suggest that
modulating mregDC activity may also help to control AD and PSO.

(d) Bar graph of the percentage of IL1B and IL23A double-positive and IL1B single-positive cells within each DC and macrophage subset in PSO lesional skin.
(e) Top: Immunolabeling for CD1c (green), CD14 (red), and IL-23 (white) in PSO lesional skin (n = 6). Green arrowhead: DC2, red arrowhead: macrophage, white
arrowhead: CD14+ DC3. Scale bar = 20 µm. Bottom: Bar graphs show absolute number and percentage of IL-23–positive cells among DC2s, CD14+ DC3s, and
macrophages. (f) Heat map of DEG in IL1B/IL23A double-positive cells in lesional PSO skin. (g–i) SCENIC analysis of IL1B/IL23A expression cells in lesional PSO
skin. (g) Differentially active regulons among cells clustered based on expression of IL1B and IL23A. (h) Violin plots of regulons with higher activity in IL1B/IL23A
double-positive cells. (i) IL23A and IL1B are the target genes for STAT2, FOSL2, XBP1, CEBP, and HIF1A. (j) Bar graph of the percentage of CD14+ DC3 subsets
within IL1B and IL23A double-positive cells in PSO lesional skin. (k) Violin plots of SLC2A3 in the PSO lesional skin CD14+ DC3 subsets. (l) Bar graph showing the
percentage of GLUT3-positive cells per each APC in PSO patient skin (n = 8). (m) Immunofluorescence labeling of healthy (n = 4) and PSO (n = 4) patient skin.
Dotted line shows the dermal–epidermal junction. HLA-DR: green, GLUT3 (SLC2A3): red, and DAPI: blue. Scale bar = 100 µm (low magnification) and 10 µm
(high magnification). (n) Bar graph of the number of HLA-DR and HLA-DR/GLUT3 double-positive cells per high-power field (HPF; ×60) of view in healthy (n =
4), AD (n = 4), and PSO (n = 4) patient skin. P values were obtained by Dunn’s multiple comparisons test (e, l, and n). *, P ≤ 0.05. MAC, macrophage.
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Figure 7. In the Reynolds et al. (2021) dataset, DC3s produce IL1B and IL23A in PSO lesional skin. (a) UMAP visualization of APC integration of our dataset
and the dataset from Reynolds et al. (2021). (b) Comparison of annotations between our dataset and the datasets from Reynolds et al. (2021). (c) Dot plot of
IL1B, IL23A, and surface antigen expression in each cell subsets in the dataset from Reynolds et al. (2021). (d) Bar graph showing the percentage of each DC and
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We also identified CD14+ DC3s and CCR1+ macrophages as the
main source of IL23A, which is important for PSO pathophysi-
ology. There is no clinical doubt that IL-23A is important for PSO
because the condition is controlled by administering a neutral-
izing antibody against IL-23A. However, there are various pro-
posals about the elusive identity of the IL-23A–producing cells
in PSO. The best-known IL-23A–producing cells are TIP-DCs
(Guttman-Yassky et al., 2011b). CD11c-positive cells in PSO skin
were designated as TIP-DCs because most of the CD11c-positive
cells produce TNF and inducible nitric oxide synthase (Lowes
et al., 2005). The surface markers that identify this cell type are
HLA-DR and CD11c. In addition, CD11c-positive cells expressed
IL-23A to a greater extent than CD83- or CD3-positive cells in
PSO skin, indicating that TIP-DCs are the main source of IL-23A
(Lee et al., 2004). However, CD11c expression is shared across
cDC1s, cDC2s, and macrophages (Kashem et al., 2017), and thus
cannot be used as a subset-specific marker. In our dataset,
IL23A-producing cells were distinct from those producing TNF.
6-Sulfo LacNAc-positive DCs (slanDCs; CD1c−, CD11c+, CD16+,
CD14lo) were also reported to produce IL-23A in PSO (Hansel
et al., 2011). SlanDCs were increased in PSO skin, and a fraction
of them also produce both IL-23A and TNF (Hansel et al., 2011).
However, in this report, slanDCs were shown to express CD88
(C5aR) at the same level as monocytes, suggesting that slanDCs
were in fact monocytes/macrophages, which is in line with
findings from Dutertre et al. (2012). In addition, slanDCs are
referred to monocyte-derived DCs (Haniffa et al., 2015). In our
dataset, slanDCs corresponded to CCR1+ macrophages based on
the gene expression of CD1C, CD11c (ITGAX), CD14, and CD16
(FCGR3A), and as reported, were one of the main producers
of IL23A. This is consistent with a report that identified IL-
23A–producing macrophages (Fuentes-Duculan et al., 2010).
Altogether, these reports and our analysis suggest that both
CD14+ DC3s and CCR1+ macrophages/slanDCs/monocyte-derived
DCs are important cellular sources of IL-23A. However, we show
here that a major fraction of CD14+ DC3s coexpressed both IL1B
and IL23A, cytokines playing important roles in the pathogenesis
of PSO (Tsai and Tsai, 2017), compared with CCR1+ macrophages
in PSO lesional skin, making them a new relevant pathogenic
cell population to target.

Finally, IL1B and IL23A double-positive CD14+ DC3s expressed
GLUT3, a glucose transporter, on their surfaces. It is known that
metabolic abnormalities such as diabetes mellitus and hyper-
lipidemia are more likely to occur in PSO, and that obesity
worsens the disease (Gelfand, 2016). On the other hand, dietary
restriction is known to alleviate disease symptoms (Gisondi
et al., 2008). In addition, biguanide and thiazolidinediones,
which are drugs used to treat diabetes, have been reported to
improve PSO (Ip and Kirchhof, 2017). Because these drugs affect
cell metabolism, they may act on IL1B and IL23A double-positive
cells andmodulatemetabolism to suppress the production of IL1B
and IL23A, which may contribute to the improvement of PSO.

Hence, it might possible to discover new therapeutic targets for
PSO by developing drugs that inhibit metabolism by targeting
IL1B/IL23A co-producing CD14+ DC3s.

Materials and methods
Human blood and skin samples
Human samples were obtained in accordance with a favorable
ethical opinion from Singapore SingHealth and National Health
Care Group Research Ethics Committees (reference no. 2012/
01144). Lesional and nonlesional skin biopsies (4 mm) and blood
were taken from the 15 AD and 21 PSO patients (Table S1). All
subjects provided institutional review board–approved consent.
AD and PSO patients had no topical steroid/immunomodulator
use in the previous 2 wk and no systemic immunosuppressants
or phototherapy in the last 4 wk. Peripheral blood mononuclear
cells were isolated by Ficoll-Paque (GE Healthcare) density
gradient centrifugation. Skin was cut off the lower dermis and
hypodermis, leaving the upper dermis and epidermis attached,
then placed in a 12-well plate containing Worthington’s colla-
genase (0.80 mg/ml) plus DNase (0.05 mg/ml) in 2 ml of 10%
FCS/RPMI/Pen Strep/L-glutamine and cut into very small
pieces. Tissue pieces were incubated at 37°C overnight (12–16
h). Samples for scRNA-seq were placed in serum with 10% di-
methyl sulfoxide and stored in liquid nitrogen. Samples for
flow cytometry were analyzed without freezing. Human skin
sections were obtained from healthy donors and AD and PSO
patients at Kyoto University Hospital in Japan. This study was
approved by the ethics committee of the Kyoto University
Graduate School of Medicine (R0743).

Human cell flow cytometry and CyTOF: Labeling, staining,
analysis, and cell sorting
All antibodies used for FACS, flow cytometry, and CyTOF were
mouse anti-human mAbs. Anti-human CD3e (SP34-2), CD5
(UCHT2), CD11b (M1/70), CD14 (M5E2), CD19 (SJ25C1), and CD45
(HI30) were purchased from BD Biosciences. Anti-human CD1c
(L161), CD88 (S5/1), CD163 (GHI), FceRIα (AER-37 [CRA-1]), and
HLA-DR (L243) were purchased from BioLegend. Anti-human
CD141 (AD5-14H12) was purchased from Miltenyi. Live/Dead
Fixable BLUE DYE was purchased from Life Technologies.
Briefly, cells were washed and incubated with Live/Dead blue
dye (Invitrogen) for 30 min at 4°C in PBS and then incubated in
5% heat-inactivated FCS for 15 min at 4°C (Sigma-Aldrich). The
appropriate antibodies diluted in FACS buffer (2% FCS and
2 mM EDTA in PBS) were added to the cells and incubated for
30 min at 4°C. Flow cytometry was performed on a BD FACS-
Fortessa (BD Biosciences), and the data were analyzed using BD
FACSDiva 8.0.1 (BD Biosciences) or FlowJo v.10.5.3 (Tree Star).

For CyTOF, purified antibodies conjugated to their respective
lanthanide metals using the Maxpar antibody labeling kit (Flu-
idigm) or fluorophore-conjugated primarywith anti-fluorophore

macrophage (Mac) subset in healthy, nonlesional (NL), and lesional (L) skin from the dataset from Reynolds et al. (2021). P values were obtained by
Kruskal–Wallis test (d). *, P ≤ 0.05. Mac, macrophage; Inf., inflammatory; LC, Langerhans cell; Mono mac, monocyte-derived macrophage; Mig., migratory;
MoDC, monocyte-derived dendritic cell; Mono, monocyte.
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metal-conjugated secondary antibodies were used for surface
or intracellular staining. Cell staining was performed at room
temperature in a final staining volume of 100 μl. Cells in a
U-bottom 96-well plate were washed once with 200 ml FACS
buffer, then stained with 100 ml 200 mM cisplatin (Sigma-
Aldrich) for 5 min on ice to exclude dead cells. Cells were then
washed with FACS buffer and once with PBS before fixing with
200 ml 2% paraformaldehyde (Sigma-Aldrich) in PBS over-
night or longer. Bromoacetamidobenzyl-EDTA (BABE)–linked
metal barcodes were prepared by dissolving BABE (Dojindo)
in 100 mM Hepes buffer (Thermo Fisher Scientific) to a final
concentration of 2 mM. Isotopically purified PdCl2 (Trace Sci-
ences) was then added to the 2 mM BABE solution to a final
concentration of 0.5 mM. Similarly, tetra-azacyclododecane-
tetra-acetic acid–maleimide (DM)–linked metal barcodes were
prepared by dissolving DM (Macrocyclics) in L buffer (Fluid-
igm) to a final concentration of 1 mM. RhCl3 (Sigma-Aldrich)
and isotopically purified LnCl3 were then added to the DM
solution at a final concentration of 0.5 mM. Six metal barcodes
were used: BABE-Pd-102, BABE-Pd-104, BABE-Pd-106, BABE-
Pd-108, BABE-Pd-110, and DMLn-113.

All BABE and DM-metal solution mixtures were immediately
snap-frozen in liquid nitrogen and stored at −80°C. A unique
dual combination of barcodes was chosen to stain each tissue
sample. Barcode Pd-102 was used at a 1:4,000 dilution, Pd-104 at
a 1:2,000 dilution, Pd-106 and Pd-108 at a 1:1,000 dilution, and
Pd-110 and Ln-113 at a 1:500 dilution. Cells were incubated with
100 ml barcode in PBS for 30 min on ice, washed in per-
meabilization buffer, and then incubated in FACS buffer for
10 min on ice. Cells were then pelleted and resuspended in
100 ml nucleic acid Ir-Intercalator (Fluidigm) in 2% parafor-
maldehyde/PBS (1:2,000) at room temperature. After 20 min,
cells were washed twice with FACS buffer and twice with water
before being resuspended inwater. EQ Four Element Calibration
Beads (Fluidigm) were added at a 1% concentration before ac-
quisition. Cell data were acquired and analyzed using a CyTOF
mass cytometer (Fluidigm). The CyTOF data were exported in a
conventional flow-cytometry file (FCS) format. Cells for each
barcode were deconvolved using the Boolean gating algorithm
within FlowJo.

Generation of index-sorted and Smart-seq2 single-cell
transcriptome data
Skin punch biopsy cells were index-sorted using the index-
sorting panel on a BD FACS ARIAIII (BD Biosciences) using a
70-µm nozzle into 96-well plates containing 3 µl lysis buffer (see
below). Single-cell cDNA libraries were prepared using the
Smart-seq v2 protocol (Picelli et al., 2014) with the following
modifications: (i) 1 mg/ml BSA lysis buffer (Ambion Thermo
Fisher Scientific); and (ii) 200 pg cDNA with 1/5 reaction of the
Illumina Nextera XT kit (Illumina). The length distribution of
the cDNA libraries was monitored using a DNA High Sensitivity
Reagent Kit on the Perkin Elmer Labchip (Perkin Elmer). All
samples were subjected to an indexed paired-end sequencing
run of 2 × 151 cycles on an Illumina HiSeq 4000 system (Illu-
mina) for ∼1 million reads per sample. Data were deposited in
GEO under accession no. GSE176509.

Cluster analysis of combined immune cells
Paired-end raw reads were aligned to the human reference ge-
nome (GRCh38 version 25 release; Gencode) using RSEM ver-
sion 1.3.0. Transcripts per million read values were calculated
using RSEM and used for downstream analysis. Each samplewas
processed using Seurat using the standard transform procedure
with default parameters to perform a regularized negative bi-
nomial regression based on the 3,000 most variable genes.
Normalized datasets for each patient were combined using the
FindIntegrationAnchors and IntegrateData functions in Seurat
with the default value of 30 dimensions. The integrated dataset
was scaled and processed under principal component analysis
using the ScaleData and RunPCA functions in Seurat. Two-
dimensional map coordinates were generated using the Run-
UMAP procedure (dims = 1:8, 10 [Fig 1], 1:25 [Fig. 2], and 1:50
[Fig. 7]). Cluster analysis was performed using the FindNeigh-
bors procedure (dims = 1:8, 10 [Fig. 1] and 1:25 [Fig. 2]) and the
FindClusters procedure (resolution = 1.0 [Fig. 1] and 1.5 [Fig. 2]).
The FindMarkers procedure in Seurat was run on each cluster to
obtain biomarker genes up-regulated in that cluster (min.pct =
0.25, test.use = “bimod”, and logfc.threshold = 0.25). For path-
way analyses, lists of genes identified as cell subset–specific by
the abovementioned methods were supplied to Metascape soft-
ware (Zhou et al., 2019).

SCENIC analysis
The SCENIC algorithm (R package, version 1.1.2.2) was used to
build and score regulons associated with each RNA-based cell
cluster (Aibar et al., 2017). Each regulon includes a transcription
factor and its putative target genes that harbor binding motifs
for the transcription factor. The inferred regulon activity (AU-
Cell score) was imported into the Seurat pipeline (Butler et al.,
2018) for differential regulon activity testing among the cell clusters
using the nonparametric Wilcoxon rank-sum test. Bonferroni
correction based on all tested regulons was applied to calculate
the adjusted P values.

GSEA
To statistically evaluate the enrichment of previously reported
gene signatures (Gene Sets; Cytlak et al., 2020; Villani et al.,
2017) in our dataset, we used pairwise comparisons using the
GSEA (Mootha et al., 2003; Subramanian et al., 2005) method
from the GSEA Home (https://www.broadinstitute.org/gsea).
The GSEA signature list can be found in supplementary tables 3
and 6 of Villani et al. (2017): higher in CD1C_A (cluster DC2)/
lower in CD1C_B (cluster DC3; HLA-DQB, HLA-DPB1, HLA-DQB1,
HLA-DQA1, HLA-DQA2, DQ-A1, CD1C, HLA-DOB, P2RY14, ARL4C,
CLIC2, CLEC17A, C10ORF128, FAM26F, ASAP1, SLC41A2, SLAMF7,
CST7, PKIB, HSPA7, CXCL16, RUNX3, WDFY4, IL18R1, FCGR2B,
MYO1E, AXL, PEA15, SIGLEC10, CD1E, GOLGA8B, IFITM1,
LOC100505746, FEZ1, INSIG1, SPATS2L, GRIP1, MCOLN2,
SERTAD3, PPP1R14A, UVRAG, SIGLEC6, KPNA6, LGMN, SPIB,
SNURF-SNRPN, LOC645638, and TOP1MT), lower in CD1C_A
(cluster DC2)/higher in CD1C_B (cluster DC3; AK307192, BACH1,
CA5BP1, TSC2, SHOC2, HPCAL1, PVR, RIPK2, STIM1, ID1, IKBKE,
KCNN4, EMP1, LPPR2, GPBAR1, LOC284454, MKNK1, KIAA0513,
FOXO3, TMEM111, YWHAG, ECRP, TAB1, OSM, GABARAPL1,
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ASPH, PDLIM7, QPCT, RIN2, MRPS23, PLXND1, CLEC12A,
TMEM176A, PISD, PLA2G7, TMEM141, NINJ1, AGTRAP, BLVRA,
HBEGF, DMXL2, C9ORF89, IL1B, NLRP12, SORL1, NFE2,
ADAM15, CCDC69, SULT1A1, TOM1, KCNE3, PYGL, SLC11A1,
HK3, ACSL1, IER3, CFD, LMNA, SEPX1, TREM1, PILRA, ASGR1,
TXNRD1, GLUL, PSTPIP1, CSF3R, STAB1, RETN, SERPINA1,
SLC7A7, CTSD, NEAT1, CES1P1, FPR1, CD163, S100A12, CYBB,
F13A1, CES1, BST1, MTMR11, CD36, MGST1, RAB3D, PLBD1,
TMEM176B, CD14, FCN1, RNASE2, VCAN, S100A8, and S100A9),
higher in CD1C_B (DC3)/lower in Mono1 (classical CD14++CD16−

monocyte; HLA-DRB4, FCER1A, HLA-DQA2, HLA-DQA1, HLA-
DQB, HLA-DPB1, HLA-DPB2, HLA-DPA1, PLD4, NDRG2, CD1C,
CLEC10A, HLA-DMA, HLA-DRB6, DQ-A1, SLC38A1, PEBP1,
PPA1, FABP5, GPR183, HMGN1, BHLHE40, TXN, RGS1, HLA-
DOA, C1QBP, NR4A2, MAP4K1, SPINT2, ADAM28, RETN,
RNASE2, ARL4C, CLIC2, MX1, PON2, FCGR2B, TMEM176B,
NAPSA, ITGB7, HDAC9, FLT3, TMEM109, DUSP23, and IL2RG),
lower in CD1C_B (DC3)/higher in Mono1 (classical CD14++CD16−

monocyte; ZNF674, EXD1, MICU1, SYNE2, F5, PAPLN, BCL6,
USP15, LOC100190986, ABCC3, UTP23, CLMN, RASGEF1B,
ZNF267, GIMAP4, SAMD8, C1ORF220, ETS2, LOC100132774,
CYTH4, MAP4K4, PTPRJ, LOC100128531, DQ573668, TMEM127,
ZNF619, ERVK13-1, LOC91948, CR936688,MLXIPL, LOC100507032,
TTYH3, AK298300, IFNGR2, SLC44A2, ZNF527, FNDC3B, CAL-
COCO2, FOXO3, RBP7, WNK4, AK055694, DENND3, NLRP3,
ADAM10, CD93, ZNF780A, LOC158696, QPCT, ZFP106, NRIP3,
LPAR6, GBP2, CCPG1, LOC100506334, TMEM136, G0S2, ZSWIM1,
DPY19L2P2, C10ORF82, SPAG5, CTDSP1, LOC100505702, PLEKHM1,
MAFB, ECE1, BC039319, GLOD5, NAAA, CCR1, CD82, C12ORF50,
TREM1, C9ORF68, PER1, ZNF695, BST1, PIK3IP1, APOL4, ATF6B,
AX746871, IGF2R, C3AR1, BC038201, MPP4, ZCCHC6, UPP1, CR1,
AL832447, LRRK2, MS4A7, NINJ1, GSG1, IQSEC1, CBFA2T2,
RABL5, PLAUR, ZNF788, ZDHHC20, KREMEN1, FLCN, CO-
RO2A, NUMB, DYSF, SRRM2, FAM73A, FAM198B, PFKFB3,
AK124179, ALDH1A1, CAMKK2, SIGLEC10, AK302511, SIRPB1,
S100A12, DQ574721, WDR37, PHF12, MDM2, PYGL, CXCL16,
NBEAL2, ZBTB16, AK127270, RNF144B, DENND5A, NPL, GPR155,
HERC2P4, PGM5P2, NFAM1, FBXO15, TBXAS1, LOC100133161,
LOC388312, CDC42EP3, HPSE, GAS7, LOC728558, PLEK, CYP1B1,
KLRD1, SLC24A4, CRISPLD2, CHST15, LILRB2, RTN3, LOC100133331,
GNS, SORL1, DMXL2, TSPAN14, BTG2, PGPEP1, LAIR2, HTRA4, PE-
CAM1, UNC80, BCL2A1, SSH2, DENND2A, NAMPT, IRAK3, FCGR2A,
TLR4, FCAR, FLJ44955, SCPEP1, ZNF665, LOC731275, IRS2, DUSP6,
ACSL1, AX746880, FYB, PELI1, CD300E, C2ORF77, CYBB, FPR1, CTSA,
HK3, NCF1B, CLEC4E, VMP1, HLA-F, ITGAM, SERPINB9, AQP9, CDA,
SLC7A7, DOK3, SDCBP, VNN2, SOD2, LAIR1, BC013828, AX747598,
ASAH1, CLEC7A, APOBEC3A, ABCC9, CD68, CFD, AL137655, EVI2B,
LRP1, CTSD, C5AR1, NCF1C, SLC11A1, SERPINA1, NCF1, and CD14);
and Fig. 2 H of Cytlak et al. (2020): blood DC2 gene set (HAVCR2,
IRF4, TRAF2, TRAF4, FLT3, BLNK,HLA-DOB, CD45RA, IL18R1, CLNK,
SLAMF7, LILRA4, CD22, ZEB1, BTLA), blood DC3 gene set (HLA-
DRB3, TRAF1, HLA-DRA, NFKBIZ, PLAUR, CD45RO, CD40, FCGR2A,
FCGR2C, TLR7, MAFF, CD83, IL1R1, CD209, IL1B, CCL4, PTGS2,
LAMP3, IL8, FCGR3A, FCGR3B, FCGR2B, IL1R2, PPBP, MRC1, CXCL2,
MSR1, CD207, CXCL9, PRDM1, EGR1, C1QA, C1QB, and EGR2), and
bloodmonocyte gene set (TNFRSF10C, LILRB3, CYBB, CLEC6A, CD82,
CLEC5A, PRAM1, TLR4, MARCO, S100A9, LILRB2, KCNJ2, IL15,

LPAR2, GBP5, ITGAM, MERTK, NOTCH1, CFD, IKBKE, CR1, CSF3R,
BST1, LILRA6, S100A8, CD14, LILRA3, S100A12, IGF2R, C19orf59,
CLEC4E, ZBTB16).

Immunohistochemical analyses
Immunohistochemical labeling was performed on formalin-
fixed, paraffin-embedded tissues. Antigens were retrieved by
boiling in Tris-EDTA buffer, pH 9.0, using a pressure cooker.
Non-specific binding of immunoglobulin G was blocked by an
Image-iT FX Signal Enhancer (Thermo Fisher Scientific). The
sections were incubated with antibodies recognizing HLA–D
Related (HLA-DR; clone LN3; 1:50; BioLegend), HLA-DR
(ab92511; 1:100; Abcam), F13A1 (FXIIIa; 1:200; Biogenesis), BIRC3
(HPA002317; 1:100; Sigma-Aldrich), IL-15 (ab55276; 1:500; Ab-
cam), IL-23 (ab45420; 1:200; Abcam), CD1c (ab246520; 1:1,000;
Abcam), CD14 (clone D7A2T; 1:200; Cell Signaling), and GLUT3
(ab15311; 1:50; Abcam) for 1 h at room temperature, and then
in anti-mouse Alexa Fluor 555 (Jackson ImmunoResearch Labo-
ratories), anti-rabbit Alexa Fluor 647, and DAPI (Thermo Fisher
Scientific) for 1 h at room temperature. An opal tyramide
signaling amplification kit (Akoya Biosciences) was used in
case of duplication of the primary antibody host. The images
were captured using a confocal laser scanning microscope
(Olympus) and analyzed with ImageJ software (National In-
stitutes of Health).

Quantification and statistical analysis
In the analysis of scRNA-seq, a significant difference was de-
termined using bimod if the adjusted P value was <0.05. The
Wilcoxon matched-pairs signed-rank test was used to compare
cells in nonlesional and lesional skin in the same patient
(Fig. 3 b). Dunn’s multiple comparisons test (Fig. 3 c; Fig. 5, f–h;
and Fig. 6, e, l, and n), Mann–Whitney test (Fig. 5 h), and
Kruskal–Wallis test (Fig. 7 d) were used to compare the median
of each analyte. P > 0.05 was considered significant.

Online supplemental material
Fig. S1 shows sample information of scRNA-seq. Fig. S2 shows
the comparison of fresh and frozen samples. Fig. S3 shows index
data of human skin. Fig. S4 shows the TNF-producing cells and
IL23A-producing cells. Table S1 shows patient information.
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Aibar, S., C.B. González-Blas, T. Moerman, V.A. Huynh-Thu, H. Imrichova, G.

Hulselmans, F. Rambow, J.C. Marine, P. Geurts, J. Aerts, et al. 2017.
SCENIC: single-cell regulatory network inference and clustering. Nat.
Methods. 14:1083–1086. https://doi.org/10.1038/nmeth.4463

Bieber, T. 1995. [Role of Langerhans cells in the physiopathology of atopic
dermatitis]. Pathol. Biol. (Paris). 43:871–875.

Bourdely, P., G. Anselmi, K. Vaivode, R.N. Ramos, Y. Missolo-Koussou, S.
Hidalgo, J. Tosselo, N. Nuñez, W. Richer, A. Vincent-Salomon, et al.
2020. Transcriptional and Functional Analysis of CD1c+ Human

Dendritic Cells Identifies a CD163+ Subset Priming CD8+CD103+ T Cells.
Immunity. 53:335–352.e8. https://doi.org/10.1016/j.immuni.2020.06.002

Brown, C.C., H. Gudjonson, Y. Pritykin, D. Deep, V.P. Lavallée, A.Mendoza, R.
Fromme, L. Mazutis, C. Ariyan, C. Leslie, et al. 2019. Transcriptional
Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell. 179:
846–863.e24. https://doi.org/10.1016/j.cell.2019.09.035

Butler, A., P. Hoffman, P. Smibert, E. Papalexi, and R. Satija. 2018. Integrating
single-cell transcriptomic data across different conditions, technolo-
gies, and species. Nat. Biotechnol. 36:411–420. https://doi.org/10.1038/
nbt.4096

Cai, Y., F. Xue, C. Quan, M. Qu, N. Liu, Y. Zhang, C. Fleming, X. Hu, H.G.
Zhang, R. Weichselbaum, et al. 2019. A Critical Role of the IL-1β-IL-1R
Signaling Pathway in Skin Inflammation and Psoriasis Pathogenesis.
J. Invest. Dermatol. 139:146–156. https://doi.org/10.1016/j.jid.2018.07.025

Chen, Y.L., T. Gomes, C.S. Hardman, F.A. Vieira Braga, D. Gutowska-Owsiak,
M. Salimi, N. Gray, D.A. Duncan, G. Reynolds, D. Johnson, et al. 2020.
Re-evaluation of human BDCA-2+ DC during acute sterile skin in-
flammation. J. Exp. Med. 217:e20190811. https://doi.org/10.1084/jem
.20190811

Cytlak, U., A. Resteu, S. Pagan, K. Green, P. Milne, S. Maisuria, D. McDonald,
G. Hulme, A. Filby, B. Carpenter, et al. 2020. Differential IRF8 Tran-
scription Factor Requirement Defines Two Pathways of Dendritic Cell
Development in Humans. Immunity. 53:353–370.e8. https://doi.org/10
.1016/j.immuni.2020.07.003

Dutertre, C.A., S. Amraoui, A. DeRosa, J.P. Jourdain, L. Vimeux, M. Goguet, S.
Degrelle, V. Feuillet, A.S. Liovat, M. Müller-Trutwin, et al. 2012. Pivotal
role of M-DC8+ monocytes from viremic HIV-infected patients in TNFα
overproduction in response tomicrobial products. Blood. 120:2259–2268.
https://doi.org/10.1182/blood-2012-03-418681

Dutertre, C.A., E. Becht, S.E. Irac, A. Khalilnezhad, V. Narang, S. Kha-
lilnezhad, P.Y. Ng, L.L. van den Hoogen, J.Y. Leong, B. Lee, et al. 2019.
Single-Cell Analysis of Human Mononuclear Phagocytes Reveals
Subset-Defining Markers and Identifies Circulating Inflammatory
Dendritic Cells. Immunity. 51:573–589.e8. https://doi.org/10.1016/j
.immuni.2019.08.008

Elder, J.T. 2007. IL-15 and psoriasis: another genetic link to Th17? J. Invest.
Dermatol. 127:2495–2497. https://doi.org/10.1038/sj.jid.5700855

Fitch, E., E. Harper, I. Skorcheva, S.E. Kurtz, and A. Blauvelt. 2007. Patho-
physiology of psoriasis: recent advances on IL-23 and Th17 cytokines.
Curr. Rheumatol. Rep. 9:461–467. https://doi.org/10.1007/s11926-007
-0075-1
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Figure S1. Sample information. (a) Skin cells from lesional (L) and nonlesional (NL) skin samples from AD (n = 2) and PSO (n = 2) patients were labeled for 12
surface makers. CD45+HLA-DR+ cells were index-sorted by flow cytometry, and expression of the panel of surface proteins was measured on individual cells.
Sorted cells were also analyzed by RNA-seq to obtain RNA expression profile. (b) Gating strategy of the flow cytometry data analyzed by Smart-seq2 scRNaseq
of Fig. 1. (c) RNA-based UMAP dimensional reduction of skin APC data from the four patients. The darker color dots indicate the cells in lesional skin, and the
lighter color dots indicate the cells in nonlesional skin. (d) Information on skin lesion and quality control (QC) in each patient’s DC and macrophages. Data from
DC/macrophage, lesional/nonlesional skin, and RNA ± (QC pass or not) were overlaid onto the UMAP according to flow cytometry analysis. (e) Number of
feature RNA, count RNA, and percentage of mitochondria RNA of each samples. (f) GSEA of pairwise comparisons of skin CD1c+CD14+ (CD14+ DC3) cells with
CD1c+CD14− cells (DC2) or CD14+CD88+ cells (MAC). Gene signatures of blood DC2s, DC3s, or CD14+ monocytes were used (Cytlak et al., 2020). (g) Mean
expression of CD163 protein by DC2, DC3, and macrophage populations measured by CyTOF (n = 7). NES, normalized enrichment score.
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Figure S2. Comparison of fresh and frozen samples. (a) UMAP dimension reduction after the integration of the frozen dataset, fresh dataset, and dataset
from Xue et al. (2020). (b) RNA KNN cluster in Fig. 2 e is represented as a fresh-frozen integrated UMAP. (c) Bar graph of the percentage of each DC and
macrophage (MAC) subset in frozen dataset, fresh dataset, and dataset from Xue et al. (2020).
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Figure S3. Index data for human skin. (a) Flow-cytometric panels for each fraction of the combined UMAP (Fig. 2). (b) Flow-cytometric panels of human skin
performed with the same gating as in Fig. 3 c.
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Table S1 is provided online as a separate file and shows patient information. Table S1 a shows patient information of scRNA-seq and
flow cytometry analysis. Table S1 b shows details of patients for scRNA-seq analysis. Table S1 c shows a comparison of the
three datasets.

Figure S4. TNF-producing cells and IL23A-producing cells are different. (a) Dot-plots of RNA expression of all cells of the integrated dataset. (b) IL23A-,
IL23A/TNF double-, and TNF-positive cells were overlaid on UMAP, respectively. (c) Bar graph showing percentage of IL23A and TNF single-positive cells within
each DC and macrophage (MAC) subset. LC, Langarhans cell.
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