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Abstract

The link between blood pressure (BP) and cerebral function is well established. However, it

is not clear whether a common mechanism could underlie the relationship between elevated

BP and cognitive deficits. The expression of calcyon, a gene abundant in catecholaminergic

and hypothalamic nuclei along with other forebrain regions, is increased in the brain of the

spontaneously hypertensive rat (SHR) which is a widely accepted animal model of essential

hypertension and attention deficit hyperactivity disorder (ADHD). Previous studies demon-

strated that mice with up-regulation of calcyon in forebrain (CalOE) exhibit deficits in working

memory. To date, there is no evidence directly connecting calcyon to BP regulation. Here,

we investigated whether forebrain up-regulation of calcyon alters BP using radiotelemetry.

We found that CalOE mice exhibited higher mean arterial pressure (MAP) compared to tTA

controls. Plasma norepinephrine levels were significantly higher in CalOE mice compared

to tTA controls. Silencing the transgene with doxycycline normalized BP in CalOE mice,

whereas challenging the mice with 4% high salt diet for 12 days exacerbated the MAP differ-

ences between CalOE and tTA mice. High salt diet challenge also increased proteinuria

and urinary thiobarbituric acid reactive substances (TBARs) in tTA and CalOE; and the

increases were more prominent in CalOE mice. Taken together, our data suggest that upre-

gulation of calcyon in forebrain could increase BP via alterations in noradrenergic transmis-

sion and increased oxidative stress during high salt challenge. Overall, this study reveals

that calcyon could be a novel neural regulator of BP raising the possibility that it could play a

role in the development of vascular abnormalities.

Introduction

Hypertension affects one-third of the United States population and is a leading cause for car-

diovascular disease including stroke and cognitive impairment [1]. The correlation between

blood pressure (BP) and brain function is well known [2]. For example, recent studies suggest

a link between elevated BP and deficits in cognitive and executive functions such as working
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memory and attention. In addition, several studies highlight a potential relationship between

BP and age-related cognitive decline [1, 3–5]. The link between BP and cognition is also appar-

ent in neurodevelopmental behavioral disorders such as attention deficit hyperactivity disor-

der (ADHD).

Although the chronic use of stimulant medications could contribute to the elevated BP

detected in ADHD patients [6], the incidence of hypertension is above average even in ADHD

patients who do not regularly take stimulant medication [7]. Furthermore, adults and children

with deficits in working memory and attention often develop hypertension [8]. However, it is

unclear whether a common mechanism drives cognitive and vascular dysfunction.

The neural component of essential hypertension is frequently assigned to sympathetic

’overdrive’ through both peripheral and central neural inputs. A meta-analysis indicates that

in about 40% of studies higher BP is associated with elevated circulating plasma levels of nor-

epinephrine [9, 10]. Increased sympathetic nervous activity is a major contributing factor to

the pathophysiology of human hypertension and is observed in the spontaneously hyperten-

sive rat (SHR), a commonly used animal model of both essential hypertension and ADHD

[11–14]. Drugs that interfere with sympathetic activation remain an important therapeutic

strategy for controlling hypertension and its severely debilitating effects on the kidney [15].

Increased sympathetic drive may also increase oxidative stress and inflammation in hyperten-

sive renal disease [15, 16]. For example, salt loading of SHR further aggravates hypertension-

related renal injury by increasing oxidative stress and inflammation [17, 18].

While the medulla region of hindbrain is traditionally considered the BP control center in

the CNS, recent evidence has implicated forebrain regions that regulate thirst and osmolality

in BP control [19]. One gene expressed in forebrain that has not been explored in the context

of BP regulation is calcyon. Calcyon, is the mammalian-specific member of a neuron endo-

some enriched protein (NEEP) gene family [20]. Functional studies indicate that calcyon pro-

tein stimulates endocytosis as well as late endosome biogenesis and transport [20–22]. Genetic

studies with ADHD subjects and their relatives implicate calcyon in the incidence of ADHD

[23]. Calcyon is abundantly expressed in catecholaminergic and hypothalamic nuclei as well as

in several forebrain regions including prefrontal cortex (PFC) and hippocampus [21, 24, 25].

The gene is also highly expressed in SHR [26, 27]. Previous studies in CalOE transgenic mice,

in which calcyon expression is up-regulated in forebrain, revealed deficits in working memory

and inhibitory control behavior [28, 29]. Intriguingly, the deficits could be pre-empted by

turning off transgene expression during adolescence which is considered a critical period for

development of executive functions [29]. Here, using CalOE mice as a model of ADHD-related

deficits, we tested the hypothesis that up-regulation of calcyon influences BP control mecha-

nisms. We found that CalOE mice exhibit increased BP relative to control littermates, and that

the BP differences could be exacerbated by a high salt diet challenge. Plasma norepinephrine

levels in CalOE mice were also significantly elevated relative to control suggesting that

enhanced sympathetic activation could contribute to the increased BP. In summary, our data

suggest a novel mechanism by which a gene expressed in forebrain can regulate BP.

Methods

All procedures with animals were performed in accordance with the Public Health Service

Guide for the Care and Use of Laboratory Animals (Department of Health, Education, and

Welfare publication, NIH 80–23). All experiments were also approved and monitored by the

Augusta University Institutional Animal Care and Use Committee. Twelve to fourteen-week

old male CalOE and tTA control mice were used in the current study. CalOE mice are double

transgenic carrying 1) a ’responder’ transgene consisting of a tetracycline response element
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(TRE) promoter positioned upstream of an epitope- tagged human calcyon and 2) a ’driver’

transgene encoding the tetracycline trans-activator (tTA) protein preceded by CaMKIIa pro-

moter sequence whereas the tTA mice are single transgenic [28, 29]. The CaMKIIa promoter

drives transgene expression in hippocampus, amygdala and a number of other forebrain

regions including cortex and striatum [30]. Where mentioned, doxycycline (DOX) was

included in the drinking water to inhibit the tTA protein.

CalOE and tTA mice were implanted with telemetry transmitters for the continuous moni-

toring of BP. Briefly, mice were anesthetized via an intraperitoneal injection of ketamine/xyla-

zine before a neckline incision was made for insertion of arterial catheter connected to an

implantable transducer (Data Sciences International, St. Paul, MN) to monitor arterial pres-

sure and locomotor activity 24 hours a day by telemetry. The tip of the telemeter catheter was

inserted in the aortic arch via the left common carotid artery; the transducer was implanted

subcutaneously in the abdomen. The incision was closed with 5–0 nylon sutures. Following

surgery, the mice were housed in individual cages with ad-libitum access to food and water.

After one-week recovery from surgery, baseline recordings of mean arterial pressure (MAP),

systolic blood pressure (SBP), locomotor activity, and heart rate were then taken every 10 min-

utes continuously with the Data-Quest System (Data Sciences International, St. Paul, MN).

Mice were given standard rodent chow (0.3% salt diet) before being switched to a high salt diet

(4% NaCl) for up to 12 days.

Assessment of systolic BP and biochemical parameters

In a separate set of experiments, SBP was measured in the afternoon using the tail cuff pressure

method [31]. SBP was measured in both groups of mice before and after turning transgene

expression ’off’ with DOX treatment (20 mg/ml in drinking water). Mice were placed in meta-

bolic cages for 24-hour urine collection before and after DOX treatment. Protein excretion lev-

els were measured as an early index of renal injury using the Bradford method for protein

determination (Bio-Rad, Hercules, CA). Levels of urinary thiobarbituric acid reactive sub-

stances (TBARs) (Cayman Chemical, Ann Arbor, MI) were assessed as markers of oxidative

stress. Urinary and plasma catecholamine levels were assessed using commercial available

3-CAT ELISA Fast Track kit from Immusmol (Pessac, France).

Homogenization of renal cortex for protein expression

Kidney cortex was homogenized in ice-cold RIPA homogenization buffer (Sigma-Aldrich,

MO) in the presence of protease inhibitors to assess CYP4A, CYP2C44, and soluble epoxide

hydrolase (sEH) by western blotting as previously described [32, 33]. The CYP2C44 goat

antibody was purchased from Santa Cruz (Santa Cruz, CA); whereas rabbit antibodies for

CYP4A and sEH were purchased from ABCAM (Cambridge, MA). The antibodies were

detected with a horseradish peroxidase-conjugated secondary antibody and ECL chemilumi-

nescence (Amersham Biosciences, Buckinghamshire, UK). Intensity of immunoreactivity was

measured by densitometry, and relative levels assessed after normalizing for protein loading

with β-actin.

Statistical analysis

All data are presented as mean ± SEM and analyzed using two-way ANOVA followed by

Tukey’s post hoc test for multiple group comparisons or Student’s t-test as appropriate. Analy-

ses were performed using Graph Pad Prism Version 4.0 software (Graph Pad Software Inc., La

Jolla, CA). For all comparisons, P< 0.05 was considered statistically significant.

Role of calcyon in blood pressure regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0211903 February 12, 2019 3 / 14

https://doi.org/10.1371/journal.pone.0211903


Results

We used telemetry to assess mean arterial pressure (MAP) in CalOE double transgenic mice

using tTA single transgenic mice as controls since initial studies revealed no differences in the

systolic blood pressure (SBP) of tTA and TRE-calcyon single transgenic mice. As shown in Fig

1, MAP was significantly higher in CalOE mice relative to the tTA controls (Fig 1A and 1B).

The changes in MAP in CalOE were not evident during the day but were prominent at night

(Fig 1C). Although CalOE and tTA mice displayed no difference in daily activity, average 24

hour SBP and heart rate (HR) were significantly higher in CalOE mice (Fig 2). A powerful fea-

ture of tTA/TRE transgenic systems is that it is possible to turn TRE transgene expression ’off’

as well as back ’on’ again using DOX to inhibit the tTA protein. Previous findings demon-

strated that DOX reversibly silenced calcyon transgene expression in the brain and normalized

working memory and fear extinction deficits [29]. Accordingly, SBP was recorded by tail-cuff

measurement in CalOE and tTA mice before and after DOX treatment. Consistent with the

telemetry data, as shown in Fig 3 basal SBP was higher in CalOE mice relative to controls, and

the differences were abolished by DOX treatment.

Fig 1. Mean arterial pressure (MAP) of CalOE and tTA control mice fed a standard normal salt diet. MAP of CalOE and tTA mice (A) at 3 hour intervals, (B)

during an average 24 hour period, and (C) at night and day across four days (n = 4–5; �, P< 0.05 vs. tTA (daytime); #, P< 0.05 vs. CalOE (daytime); λ, P< 0.05 vs. tTA

(nighttime)).

https://doi.org/10.1371/journal.pone.0211903.g001

Fig 2. Average 24-hour telemetry data for systolic BP (SBP) (A), heart rate (HR)(B) and activity (C) in CalOE and tTA control mice fed a normal salt diet

(n = 4–5; �, P< 0.05 vs. tTA).

https://doi.org/10.1371/journal.pone.0211903.g002
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As DOX normalized SBP in the CalOE mice, we next sought to find out whether DOX

might also impact metabolic parameters. While there were no significant differences in body

weight or food and water consumption, CalOE mice excreted a lower urine volume relative to

tTA controls (0.7 ± 0.18 vs. 1.2 ± 0.07 ml/day, P< 0.05.) As seen with SBP, DOX treatment

eliminated the group differences in urine volume (urine volume after one week of DOX treat-

ment was 1.5± 0.30 ml/day in CalOE vs. 1.2± 0.15 ml/day in tTA) (see S1 Table).

Catecholamines play a crucial role in regulating BP, especially norepinephrine since it is

released form sympathetic nerve endings. We measured norepinephrine, epinephrine and

dopamine in plasma as well as urine of CalOE and tTA control mice. While plasma norepi-

nephrine levels were higher, plasma epinephrine levels were lower in CalOE mice compared to

controls (Fig 4A). In contrast, levels of dopamine in plasma did not differ between the two

groups (Fig 4A). However, urinary excretion of dopamine was lower in CalOE compared to

tTA control mice, and no differences in urinary norepinephrine and epinephrine excretion

were detected (Fig 4B).

We then explored whether increased salt intake might differentially impact BP regulation

in CalOE and tTA mice by shifting them from a normal (0.3% NaCl) salt diet to a high (4%

NaCl) salt diet for 12 days. As shown in Fig 5A and 5B, high salt exacerbated the differences in

BP detected CalOE and tTA mice—the effects of high salt were greater at night than during

the day (Fig 5C).

Fig 3. Systolic BP (SBP) measured by tail cuff in CalOE and tTA mice before and after 2-week treatment with DOX.

Consistent with telemetry data, SBP was significantly elevated in CalOE relative to controls. However, DOX treatment

abolished the difference in SBP between CalOE and tTA mice (n = 5–6; �, P< 0.05).

https://doi.org/10.1371/journal.pone.0211903.g003
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Besides effects on BP, increased salt intake is known to promote renal injury via increased

oxidative stress and inflammation [34]. Therefore, we measured proteinuria and urinary thio-

barbituric acid reactive substances (TBARs), both of which are biomarkers for early renal

injury and oxidative stress, respectively. No differences in proteinuria were detected in CalOE

and tTA control mice on a normal salt diet. While high salt diet challenge increased protein-

uria in both groups, the effects of high salt were more striking in the CalOE mice (Fig 6A and

6B). Similarly, there was no group differences in urinary TBARs when on a normal salt diet,

whereas urinary TBARs were significantly increased in both groups during high salt intake

(Fig 6C). As seen with proteinuria, the fold change in TBARs excretion stimulated by high salt

diet challenge was greater in the CalOE group (Fig 6D).

Fig 5. Effect of twelve days of high salt diet on MAP. MAP of CalOE and tTA mice (A) at 3 hour intervals, (B) during an average 24 hour period, and (C) at night and

day across four days (n = 4–5; �, P< 0.05 vs. tTA (daytime); #, P< 0.05 vs. CalOE (daytime); λ, P< 0.05 vs. tTA (nighttime)).

https://doi.org/10.1371/journal.pone.0211903.g005

Fig 4. Plasma and excreted catecholamines in urine in CalOE and tTA control mice fed a normal salt diet. (A) Levels of plasma norepinephrine were higher in

CalOE mice compared to tTA controls, whereas plasma epinephrine levels were lower. (B) Urinary dopamine excretion levels were lower in CalOE mice compared to

controls (n = 5–6; �,P< 0.05).

https://doi.org/10.1371/journal.pone.0211903.g004
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The cytochrome P450 hydroxylase and epoxgenase metabolites, 20-hydroxyeicostetraenoic

acid (20-HETE) and epoxyeicosatrienoic acids (EETs), respectively, play an important role in

the regulation of BP. 20-HETE and EETs exert vasoconstrictive and vasodilatory effects respec-

tively [35, 36]. However, the vasodilatory effect of EETs is limited by its rapid degradation by

soluble epoxide hydrolase (sEH) [36]. Therefore, we measured renal levels of key enzymes

involved in EETs and 20-HETE metabolism, CYP2C44, CYP4A and sEH. No group differ-

ences in levels of any of these proteins were detected in mice on a normal salt diet. High salt

diet significantly upregulated CYP4A in CalOE but not tTA suggesting differential effects on

20-HETE production as a result of calcyon overexpression (Fig 7A). While levels of CYP2C44

and sEH were elevated in both groups on a high salt diet, a larger fold increase in sEH was

detected the CalOE group (Fig 7B and 7C). These results suggest that CalOE mice could have

lower EETs availability during high salt loading compared to tTA controls.

Fig 6. Effect of high salt diet on proteinuria and TBARs excretion. High salt diet treatment significantly increased proteinuria and TBARs in both groups (A, C); the

fold change in proteinuria and TBARs excretion was higher in CalOE mice (B,D) (n = 6; �, P< 0.05 vs. tTA (normal salt); #, P< 0.05 vs. CalOE mice (normal salt); λ,

P< 0.05 vs. tTA (high salt)).

https://doi.org/10.1371/journal.pone.0211903.g006
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Discussion

Mechanisms linking hypertension and cognitive deficits are largely unknown although adults

and children with deficits in working memory and attention often develop hypertension [7].

Intriguingly, calcyon is one of many genes with elevated expression levels in SHR which is an

experimental model of both ADHD and essential hypertension [26, 27, 37]. Previous studies

have demonstrated that up-regulation of calcyon expression in forebrain in the CalOE mice

produces deficits in working memory [29]. The current studies indicate that upregulation of

calcyon also elevates BP, and that high salt diet exacerbates the BP differences between CalOE

and tTA control mice. Importantly, silencing calcyon transgene expression with DOX normal-

ized BP in the CalOE mice implicating calcyon in the central regulation of BP. Our findings

revealed that CalOE and tTA control mice differ with respect to a number of key variables

including alterations in noradrenergic transmission during normal physiological salt condi-

tions, and oxidative stress during high salt loading—both of which could play a role in the

observed differences in BP regulation. In light of our previous work showing working memory

and fear extinction deficits in CalOE mice, the findings of the current study raise the possibility

that alterations in expression of a single gene could produce both elevated BP and impaired

executive functions. More work will be necessary, however, to determine whether the cognitive

and vascular abnormalities could derive from a shared mechanism.

Clinical and experimental evidence have demonstrated that noradrenergic transmission

plays a major role in the regulation of arterial pressure [15]. Increased sympathetic nervous

activity is a major contributing factor to the pathophysiology of human hypertension, and

plasma norepinephrine levels are 25–30% greater in patients with essential hypertension

Fig 7. Effect of high salt diet treatment on renal levels of (A) cytochrome P450 hydrolase (CYP4A), (B) cytochrome P450 epoxygenase (CYP2C44) and (C) soluble

epoxide hydrolase (sEH). CYP4A is increased in CalOE by high salt diet challenge. CYP2C44 and sEH expression were elevated in both tTA and CalOE mice compared

to levels found in mice on normal salt diet. However, only sEH expression was significantly higher in CalOE compared to tTA mice during high salt loading (n = 3; �,

P< 0.05 vs. tTA (normal salt); #, P< 0.05 vs. CalOE (normal salt); λ, P< 0.05 vs. tTA (high salt)).

https://doi.org/10.1371/journal.pone.0211903.g007
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compared to age-matched normotensive controls [38]. In the current study, plasma norepi-

nephrine levels were elevated whereas epinephrine levels were lower in CalOE mice compared

to controls. Norepinephrine is largely produced by sympathetic postganglionic fibers [39, 40],

whereas the adrenal medulla is the main source of epinephrine. Increased norepinephrine in

CalOE mice could stem from increased sympathetic activity or from increased synthesis and/

or release of norepinephrine. Alternatively, increased norepinephrine in CalOE mice could be

due to impaired reuptake by the norepinephrine transporter or degradation by monoamine

oxidase (MAO) and catechol-O-methyl transferase (COMT). Along these lines, since sympa-

thetic nerve activity promotes synthesis and release of epinephrine, the observation of lower

levels of epinephrine in CalOE mice is somewhat surprising, but could reflect differential regu-

lation of epinephrine reuptake or catabolism, or even alterations in levels of adrenergic recep-

tors or their signaling. Alternatively, other factors including adrenocorticotrophic hormone

(ACTH) and cortisol, which regulate epinephrine production and release could also be

involved. On the other hand, the elevation and reduction in norepinephrine and epinephrine,

respectively, is consistent with the performance of the CalOE mice on a variety of behavioral

tasks. For example, while CalOE mice exhibit hyperactivity in a novel environment, they also

display anxiolytic behavior by spending more time in areas of testing arenas typically consid-

ered more aversive to rodents [28].

We previously reported that CalOE mice display locomotor hyperactivity [28], however,

the current telemetry data do not support this conclusion. This discrepancy could be due to

the fact that activity in the previous study was measured upon placement of the mice in a novel

environment. In contrast, in the current study, activity was measured in the animal’s home

cage after more than a week of surgical recovery which presumably allowed time for habitua-

tion to the environment. Altogether, our telemetry data suggests that the increased BP and HR

observed in CalOE mice could be independent of locomotion.

Our metabolic data revealed that CalOE mice excrete less urine than controls suggesting

that upregulation of caclyon might lead to urinary retention. Sympathetic innervation of kid-

ney plays a role in the development of hypertension by enhancing sodium and water retention

[41–44]. In humans, renal denervation is a common therapy for treatment-resistant hyperten-

sion [45–47]. As CalOE mice exhibit higher BP and plasma norepinephrine levels, calcyon

upregulation could stimulate renal sympathetic nerve activation. Interestingly there was no

difference in urinary levels of norepinephrine and epinephrine in CalOE relative to control

samples, but urinary dopamine excretion levels were reduced in CalOE mice. The discrepancy

between plasma and urinary levels of catecholamine could stem from reuptake mechanisms in

the kidney, or from their metabolism prior to excretion. Alternatively, there could potentially

also be alterations in vasopressin (antidiuretic hormone) in CalOE mice because the CamKII

promoter which drives calcyon upregulation is also active in anterior and medial zones of the

hypothalamus [48]. Because aquaporin 2 is the primary target for vasopressin regulation of col-

lecting duct water permeability, our future directions will include exploring if vasopressin

and/or aquaporin-2 play a role in BP regulation in CalOE mice.

High salt loading stimulates a stressor response that exacerbates the elevation in BP in

experimental models of hypertension including SHR [49–51]. Our results showed that high

salt diet increased BP differences between CalOE and tTA control mice compared to normal

salt diet. The differences were greater at night presumably due to the significant increase in

locomotor activity detected in both groups of mice at night. It is worth mentioning that MAP

was less in tTA control mice during high salt diet challenge than normal salt diet although

these changes with not significant. The drop in BP in tTA and CalOE mice upon salt loading

was surprising given previous reports of the effects of a salt challenge in wild type C57BL/6

mice [52]. The regulation of BP is genetically complex, and the role of genes in salt sensitivity
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is poorly understood [53]. One possible explanation is that the tTA transgene confers some

degree of resistance to high salt. Despite this, our telemetry data suggests that high salt diet

exacerbates differences in BP between the tTA and CalOE groups, indicating that upregulation

of calcyon could confer greater sensitivity to salt.

High salt diet increases proteinuria which could contribute to the progression of renal

injury [54]. While there was no difference in proteinuria between CalOE and tTA control

mice under normal salt diet, high salt increased proteinuria in the CalOE mice to a greater

extent. Elevation in proteinuria and the progression of renal injury in hypertension is strongly

associated with increased oxidative stress and inflammation in the kidney. Although the excre-

tion levels of the renal oxidative stress marker TBARs increased in both groups of mice during

salt loading, TBARs excretion was elevated to a greater extent in the CalOE cohort. These data

highlight the possibility that increased oxidative stress upon salt loading could underpin the

elevation in BP and proteinuria detected in CalOE mice.

20-HETE plays dual role BP regulation. In the vasculature, 20-HETE functions as a potent

vasoconstrictor to increase BP, whereas in the kidney, it enhances sodium excretion to lower

BP [55]. Our data suggests that renal CYP4A expression, the main hydroxylase for 20-HETE

production, is increased only in CalOE during salt loading. This result indicates a differential

response to salt challenge in CalOE mice at the level of 20-HETE production. On the other

hand, we and others previously showed that decreased epoxygenase-mediated EETs produc-

tion and/or increased sEH mediated EETs degradation plays a role in renal injury in salt-sensi-

tive hypertension [32, 33, 56–58]. In general, increased EETs production during salt-loading

exerts a vasodilatory anti-naturetic compensatory response [56, 58], CYP2C44, the main epox-

ygenase for EETs production in mice, and sEH, an EETs metabolizing enzyme, were up-regu-

lated in kidney in response to high salt loading in both tTA control and CalOE mice. While no

group differences in CYP2C44 levels were detected, sEH expression was significantly elevated

in CalOE relative to tTA during salt loading. These data suggest that EETs levels could be

lower in CalOE mice fed a high salt diet. Lower EETs availability could play a role in the ele-

vated BP differences between CalOE and controls with increased salt intake. EETs are also

known to lower oxidative stress [59]; hence, decreased EETs availability could also drive the

elevation in TBARs excretion in CalOE mice during salt loading. Whether an imbalance in

20-HETE and EETs levels exists in CalOE mice on high salt diet and if so, whether the imbal-

ance contributes to the elevation in BP in CalOE are questions that remain to be answered.

In summary, our findings provide evidence for the role of a predominantly CNS gene in BP

regulation. While the exact mechanism involved remains to be worked out, the present find-

ings suggest that upregulation of calcyon in forebrain is sufficient to elevate BP systemically.

Our data suggest that altered adrenergic transmission might drive the elevation in BP; they

also suggest that decreased renal EETs availability and/or increased 20-HETE or renal oxida-

tive stress could contribute to the increased difference in BP compared to controls detected in

CalOE mice during salt loading. Expression of calcyon is increased about two-fold in brain of

SHR animals (5, 16). Since levels of many genes are altered in SHR brain, it seems quite

remarkable that elevated BP and executive function deficits are found in mice with upregula-

tion of only a single gene [28, 29]. Taken together, these data highlight the potential use of the

CalOE mice in further studies on the central regulation of BP. The CalOE mice could also be a

useful model system for exploring mechanisms linking cardiovascular and cognitive functions.

Supporting information

S1 Table. Metabolic cage data from CalOE and tTA control mice fed a normal salt diet

before and after DOX treatment (20 mg/ml in drinking water) for one and two weeks
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(n = 6–8, � indicates P< 0.05 vs. tTA control mice).

(TIF)

S1 Fig. Representative images for immunohistochemical staining of renal tubular aquaporin-

4 in tTA control mice (panel A, brown staining) and CalOE mice (panel B, brown staining)

fed normal salt diet at 100X magnification power (n = 3). Panel (C) shows a quantitative repre-

sentation of aquaporin-4 staining intensity in tTA control and CalOE mice fed normal salt diet

(n = 3) using Image J software.

(TIF)

S2 Fig. Renal cortical angiotensin II AT-1 receptor expression levels relative to β-actin in

CalOE and tTA control fed normal salt diet (n = 4).

(TIF)

S3 Fig. Raw data for the renal cytochrome P450 epoxygenase (CYP2C44), hydroxylase

(CYP4A) and soluble epoxide hydrolase (sEH) expression and their corresponding β-actin

in CalOE and tTA control after 12 days of normal and high salt diet treatment.

(TIF)
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