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An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified
spherical harmonics approximation (SPN ). In XFEM scheme of SPN equations, the signed distance function is employed to
accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite
element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh
generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost
can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational
efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared
with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential
of the XFEM for optical imaging.

1. Introduction

Light propagation model in biological tissue is the foun-
dation of optical imaging. An accurate forward model is
important for location and quantification of target distri-
bution in the fields of optical imaging modalities, such as
diffusion optical tomography (DOT), fluorescence molecu-
lar tomography (FMT), bioluminescence tomography (BLT),
and Cerenkov luminescence tomography (CLT) [1–5]. The
propagation of the emission photons in tissue can be
accurately represented by the radiative transfer equation
(RTE) or Monte Carlo (MC) models, but they are extremely
computationally expensive. Therefore, the commonly used
mathematical model in optical imaging field is the diffusion
approximation (DA) to RTE. However, the DA model can
be used only in the highly scattering property of the
biological tissue, and is not suitable for the real mouse with
complex internal tissues. To reach a compromise between
the accuracy and efficiency, simplified spherical harmonics
approximation (SPN ) to RTE is employed due to its capacity
in improving the solution in transport-like domains with
high absorption and small geometries [6, 7].

Owing to the complex and curvilinear geometries asso-
ciated with the biological tissues, the classical finite element
methods (FEM) with SPN approximation become necessary
for optical imaging, especially for heterogeneous tissues
[8–10]. In the FEM scheme, the region of heterogeneous
tissue is divided into small tetrahedron elements. The linear
functions of the tetrahedron element are employed in the
standard finite element basis function which requires the
homogeneity of tissue in one element. The fine triangle
mesh between the two tissues is required to conform to
the complex internal boundary for ensuring the calculation
accuracy of FEM. However, the generation of the internal
boundary mesh is a hard work and time consuming task.
Moreover, the fine mesh yields the excess cost in finite
element computation, especially with SPN approximation in
three dimensions. Fortunately, the extended finite element
method inherits all the advantages of standard FEM and
exempts the internal boundary mesh generation. Conse-
quently, the extend-finite element method (XFEM) may deal
with the problems of fine triangle mesh generation perfectly.

XFEM was first introduced in the literature [11], and
it has many applications in the area of mechanics [11, 12].
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To the best of our knowledge, it has not been used with
SPN approximation for optical imaging. In this study, we
establish the mathematical framework of XFEM with SPN
approximation as the optical forward model. Specifically,
a mesh without the internal boundary conformation is
employed in the XFEM scheme. The distance relationship
between the tetrahedron vertex and the real tissue boundary
is reflected by a signed distance function which is used to
construct the enriched basis function. Then the enriched
function is added to the standard finite element basis
function, therefore a standard approximation of FEM is
thus “enriched” in the discretized region (usually cut by the
internal tissue boundary) of interest. In the weak form of SPN
equations, Gaussian quadrature is employed to calculate the
integrals and the linear system equations are established. As
a result, the calculation of XFEM can be carried out without
the time-consuming internal boundary mesh generation.
Moreover, the required overly fine mesh conforming to
the complex tissue boundary which leads to excess time
cost can be avoided. XFEM conveniences its application
to tissues with complex internal structure and improves
the computational efficiency. Numerical experiments with a
phantom and a digital heterogeneous mouse were carried out
to evaluate the performance of the proposed method. The
results were compared with that of standard FEM and MC
method to demonstrate the efficiency of XFEM.

The paper is organized as follows. In Section 2, the
detailed procedure of using XFEM for solving SPN equations
is derived. In Section 3, we evaluate the performance of the
proposed method by comparing with the standard FEM
and MC method in the experiments, and demonstrate the
efficiency of the method. Conclusions and discussions are
given in the last section.

2. Method

2.1. SPN Approximations. The general form of the �N �

1��2 SPN equations and its �N � 1��2 boundary conditions
for optical imaging in three dimensions are [13]:

�� � Ci,�ϕi�r��ϕi�r� � �N�1��2

�
j�1

Ci,ϕi�r�ϕi�r�
� Ci,Q�r�Q�r�, r � Ω, i, j � �1,

�N � 1�
2

�.
�N�1��2

�
j�1

Cb
i,�ϕj�r���n � �ϕj�r�

�

�N�1��2

�
j�1

Cb
i,ϕj�r�ϕj�r� � Ci,SSi�r�,

r � ∂Ω, i, j � �1,
�N � 1�

2
�,

(1)

where ϕi�r� is the SPN composite moments of the radiances
in RTE, and Ci,�ϕi�r�, Ci,ϕi�r�, Ci,Q�r�, Cb

i,�ϕj�r�, Cb
i,ϕj�r�,

and Ci,S denote the coefficients which are related to �ϕi�r�,
ϕi�r�,Q, and S for SPN equations at each point r in the region
Ω or boundary ∂Ω. These can be calculated by the absorp-
tion coefficient μa�mm�1�, scattering coefficient μs�mm�1�,
anisotropy parameter g , and refractive index n. Q�r� is the
internal source, and it represents the bioluminescence source
in BLT or the fluorophore in and FMT. Si�r� is the external
source which represent the external laser source in DOT and
FMT. ��n represents the unit normal vector outward to the
boundary.

The exiting partial current J��nW�mm2� can be obtained
from detector readings at the tissue boundary ∂Ω which can
be acquired by CCD camera in practical application, and we
have the general formulation:

J� �
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(2)

where CJ
�ϕj

�r� and CJ
ϕj�r� are the coefficients which can be

calculated for SPN equations. The detailed derivation of (1)–
(2) refers to the literature [13].

2.2. Extended Finite Element Discretization. The SPN equa-
tions and its boundary conditions can be solved using
Galerkin finite element scheme, the weak form of SPN
equations can be written as follows:
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Ci, fSi�r� fSi�Si�r�� � v�r�dr,

(3)

where fn�ϕi�ϕj�r�� and Ci, fSi �r� are the coefficient matrices
with respect to ϕj�r� and fSi�Si�r��. v�r� is the test
function, and it is the same as the standard linear basis
function in elements. For finite element analysis in three
dimensions, tetrahedral elements have become popular in
numerical computation, because of their ability to describe
complex geometries such as heterogeneous tissues. Thus
the volumetric domain is discretized into small tetrahedral
elements, and the elements need to conform to the internal
tissue boundary as shown in Figures 1(a) and 1(b). When the
internal boundary is not smooth, the size of the element must
be small enough to ensure the accuracy and this may cause
difficulty in mesh generation and lead to huge computation
burden. In XFEM framework, mesh is generated as a region



Computational and Mathematical Methods in Medicine 3

Enriched elements
Internal boundary 
edges and nodes

(a) (b)(c)

n

n

s Γ

∂Ω

Figure 1: (a) Heterogeneous tissues. (b) Standard finite element mesh boundary conforms to the interface. (c) Enriched elements and nodes
of XFEM “cut” by the interface.

consists many different tissues, and the elements “cut” by
the actual tissue boundary are enriched as shown in Figures
1(a) and 1(c). Using the enriched basis functions constituted
by the signed distance functions, the boundary can be
determined.

2.3. Enriched Strategy. In XFEM scheme, the signed distance
function is adopted to depict the internal boundary of
different tissues. The definition of the signed distance
function N�r� is

N�r� � min
rb�Γ


r � rb
 sign�ns � �r � rb		.
sign�ξ� � � 1 if ξ � 0,

�1 if ξ � 0,

(4)

where rb is the point at the internal boundary Γ, sign is
the signed function, and ns denotes the unit normal vector
outward to the internal boundary as shown in Figure 1(a).
Herein, the position relation between the discrete point
and the continuous boundary is completely reflected by the
function N�r�.

The enriched basis function ψj�r� composed of the
signed distance function N�r� of the element at tetrahedron
node j can be derived, and the continuousN�r� is discretized
with its value at the node. The enrichment functions
introduce a discontinuity in the gradient of the radiances
field ϕi�r� or the distribution of optical parameters to Γ, thus
the following integral of enriched function is more accurate
than that of linear basis function:

ψj�r� � vj�r���N�r�� � 
Nj 
	.
N�r� � 4

�
k�1

vk�r�Nk.

Nj � N�rj	,

(5)

where vj�r� is the linear basis function of the tetrahedron
element. Using the enriched basis function ψj�r�, the

enriched approximation ϕ�r� can be written as the following
form:

ϕ�r� � Nc

�
i�1

φivi�r�.
ϕ�r� � ϕ�r� � Ne

�
j�1

ajψj�r� � v�r�ϕ,

(6)

where ϕ�r� is the conventional approximation and Nc is the
number of nodes. ϕ�r� is the extended approximation, aj is
the enriched degrees of freedom, and Ne is the number of
the enriched nodes. It is clear that ϕ�r� includes ϕ�r� as a
special case, and each enriched element has eight degrees of
freedom. Rewrite the extended linear basis functions and the
discrete point value of ϕ�r� in matrix form, we obtain

v�r� � �v1�r�, v2�r��vNc�Ne�r��
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ϕi � �φi,1,φi,2�φi,Nc ,ai,1,ai,2�ai,Ne�T ,

i � �1,
�N � 1�

2
�,

(7)

where v�r� and ϕi have Nc�Ne components for each variable
of SPN equations. This form can directly use to assemble the
finite element matrix.

2.4. Integrals and System Matrix. For finite element dis-
cretization, the matrix form of the �N � 1��2 SPN equations
(3) can be written as follows:
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(8)
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Figure 2: Gaussian quadrature in an enriched element.

where elem denotes all the elements in the region, for the�N � 1��2 variables ϕ and b, each of which has Nc �

Ne components in total according to (7). mi,ϕj
in the left

coefficient matrix is the small element matrix and can be
written in details:

mi,ϕj

�

�����������������
�Ωe

Ci,�ϕi�r� � �vp � �vqdr � �Ωe Ci,ϕj�r�vp � vqdr
� �∂Ω Ci,� fϕ j

�r� fn�ϕi�vp	 � vqdr, i � j.

�Ωe
Ci,ϕj�r�vp � vqdr

� �∂Ω Ci,� fϕ j
�r� f��n �ϕi�vp	 � vqdr, i� j,

(9)

where vp and vq are the corresponding matrix elements of
v�r� in (7) in the finite element Ωe. p, q are the number
marks of the four points in element Ωe. Similarly, bi in the
right is

bi � �
Ω
Ci,Q�r�Qp � vqdr � �

∂Ω
Ci, fSi �r� fSi�Si�r�� � vqdr.

(10)

In finite element framework, for ease of calculation,
the integrand is assumed continuous, and the Gaussian
quadrature can be used. In this paper, on the one hand, exact
integrals can be obtained for the standard linear elements.
On the other hand, the second order Gaussian quadrature
with four quadrature points is adopted for the remaining
enriched elements as showed in Figure 2. The Gaussian
quadrature formula in the standard element Ωe is

�
Ωe

F�r�dr � 4

�
i�1

GiF�ξi�, (11)

where F�r� is the general integrand, Gi is the coefficient and
all is 0.25, ξi is the Gaussian quadrature point as showed in
Figure 2.

For the integrand F�r�, the integrals of enriched function
can be calculated by the linear basis function vj�r�, and vj�r�
at the Gaussian points is a constant as follows:

�ψj�r��r�ξi
� �vj�r� � ��N�r�� � 
Nj 
	
� vj�r� � ���N�r�� � 
Nj 
	�r�ξi .

N�r��r�ξi � 4

�
k�1

vk�ξi�Nk.

vj�ξi� � 0.5854, i � j.

v j�ξi� � 0.1382, i� j.

(12)

Incorporating (7) and (8), and assembling all the element
matrixes (8), after using the Gaussian quadrature to calculate
the enriched elements of (9), the linear system equations
of SPN equations is established and can be rewritten in the
matrix form:

M�Nc�Ne���N�1��2,�Nc�Ne���N�1��2Φ�Nc�Ne���N�1��2,1

� B�Nc�Ne���N�1��2,1,
(13)

where M is a matrix including �Nc�Ne���N�1��2 rows and�Nc�Ne���N �1��2 columns, Φ is the unknowns including�Nc �Ne� � �N � 1��2 components, and B is the source term
including �Nc �Ne� � �N � 1��2 components. Obtain the Φ
of (13) and instead of ϕ�r� in (2). The linear relationship
between the surface detector readings J� and the source S or
Q is established.

The goal of forward problem is to get the relationship
between the surface detector readings and the internal
sources. To have the general and particular comparison, the
correlation coefficient CORR�J�X�F , J�Fine� and the well known

mean relative numerical error MRNEFine of J� are both
defined to quantitatively evaluate the performance of XFEM
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or FEM on the coarse mesh with respect to the FEM on the
fine mesh:

CORR�J�X�F , J�Fine	
�

�Ns
i�1�J�i,X�F � J�i,X�FǱ�J�i,Fine � J

�

i,FineǱ���Ns
i�1 �J�i,X�F � J�i,X�FǱ2���i �J�i,Fine � J

�

i,FineǱ2� ,

(14)

MRNEFine �
�Ns
i�1�J�i,X�F � J�i,FineǱ�J�i,Fine

Ns
, (15)

where J�i,X�F is the J� compute by XFEM or FEM, J�i,Fine

is compute by FEM on the fine mesh. Ns is the number

of the sampling point, J
�

i,X�F and J
�

i,Fine is mean value of
J�i,X�F J

�

i,Fine in (14). CORR�J�X�F , J�Fine� = 1 illustrates the two
data is identical after normalization and can be used to assess
the degree of closeness between the two data. Similarly, by
substituting the J�i,MC for the J�i,Fine in (14) and (15), the mean
relative numerical error MRNEMC and correlation coefficient
CORR�J�X�F�MC, J�MC� of XFEM and FEM with respect to MC
method can be obtained for evaluation.

3. Results and Discussion

3.1. Regular Phantom Experiment Compared with Standard
FEM. The validation studies were performed using a cylin-
drical phantom of 30 mm height and 10 mm radius to
model a mouse. It consisted of ellipsoids or cylinders to
represent the tissues of mouse as shown in Figure 3(a).
A solid sphere source of 1 mm radius and 0.238 nW/mm3

power density was centered at (3, 5, 0) inside the right
lung. The relevant optical parameters from literature [14] are
listed in Table 1. Numerical simulations are carried out to
compare the standard FEM and XFEM for SPN equations.
The coarse mesh containing 3459 nodes without internal
mesh boundary generation was used for XFEM and another
coarse mesh contained 3573 nodes for FEM as shown in
Figures 3(b) and 3(c). Because the precise analytic solutions
for heterogamous phantom is difficult to obtained, the FEM
on the fine mesh can get relative accurate solution according
to the classical finite element analysis:


ϕ � ϕh
 �� 0 as h�� 0, (16)

where the numerical solution ϕh of FEM converges to the
exact solution ϕ as the mesh size h decreases. We choose
the result of the FEM on the fine mesh containing 12312
nodes as the standard for comparison. The program of FEM
and XFEM is coded in MATLAB on the desktop computer
(Intel(R) Xeon(R) 2 CPU E5430 @ 2.66 GHz, and 8 G RAM).

345 interpolate points whose value is nonzero are
uniformly sampled around the phantom surface. Choosing
the FEM on the fine mesh as the standard, the absolute
value of exiting partial current J�X�F on the sampling points
are arranged in ascending order. Then the results of XFEM,

Table 1: Optical parameters of phantom.

Material μa�mm�1� μs�mm�1� g

Muscle 0.01 4.0 0.9

Lung 0.35 23.0 0.94

Heart 0.2 16.0 0.85

Liver 0.002 20.0 0.9

Bone 0.035 6.0 0.9

Table 2: Results of XFEM and FEM for SPN approximations.

Method FEM XFEM

Number of nodes 3459 3573
Number of elements 15540 15987

DA 0.85 0.94

CORR�J�X�F , J�Fine� SP3 0.88 0.95

SP7 0.88 0.90

DA 31% 16%

MRNEFine SP3 22% 14%

SP7 22% 15%

and FEM on the comparable coarse mesh at these sampling
points can be obtained by interpolation. The comparison
results with Diffusion, SP3, SP7 approximations are showed
in Figures 4(a), 4(b), and 4(c), respectively. Although the
curve has fluctuation caused by the discretization error, the
results have similar tendency. It is clear that the blue curve
of XFEM on coarse mesh is closer to the green curve of
FEM on fine mesh than that of FEM on the coarse mesh.
Compared with the FEM, the CORR�J�X�F , J�Fine� of XFEM is
closer to 1 for DA, SP3, and SP7 with 0.94, 0.95, and 0.90.
The two methods is carried out on comparative mesh even
the XFEM on the slightly less coarse mesh (3459 nodes).
Thus the solution using XFEM is nearer to the true solution.
The MRNEFine of XFEM is 14%, 15%, and 16%, which is
much smaller than FEM, whose MRNEFine is 31%, 22%,
and 22% for DA, SP3, and SP7 equations respectively. The
results listed in Table 2 using the two evaluation indexes
demonstrate the validity of the proposed method for SPN
equations. Moreover, it indicates that the XFEM is superior
to the standard FEM and the solution of XFEM is more closer
to the true solution for SPN equations.

3.2. Digital Mouse Experiment Compared with Monte Carlo
Method. In this experiment, a digital heterogeneous mouse
from CT and cryosection data consisting of several organs
is adopted to evaluate the performance of the XFEM. The
mouse is shown in Figure 5(a) [15]. A cylinder source of
0.8 mm radius, 1.6 mm height, and 0.311 nW/mm3 power
density was centered at (12, 7.5, 50.5) inside the liver.
The optical parameters of the organs at 670 nm wavelength
computed by the literature [14] are employed and shown in
Table 3. The experiments were conducted using XFEM on
the coarse mesh, FEM on the fine mesh, and classical MC
method. The surface detector readings using MC method
was achieved from MOSE [16] using 5 million photons. Since
there are still errors between the SPN equation and MC to
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Figure 3: (a) Heterogeneous phantom, (b) the element mesh of FEM, and (c) element mesh of XFEM without internal boundary generation,
red region is the enriched region.

depict the light propagation, the XFEM is compared with the
FEM and MC simultaneously.

As shown in Figure 4(d), it is clear that the blue and
green curves agree well. Considering the difference of the
results between SP3 and SP7 equations are very small, for
simplicity, only the SP3 results are presented in Figure 6. The
absolute values on the surface using the FEM, XFEM and MC
methods agree well and have the similar tendency in general.
For detailed comparison, 521 points with nonzero values on
the mouse surface are sampled, and then the surface value of
these points using the three methods are obtained by inter-
polation and shown in Figure 7. Choosing the MC method

as standard, the mean relative numerical error MRNEMC and
correlation coefficient CORR�J�X�F�MC, J�MC� of XFEM and

FEM with respect to MC method are obtained and shown
in Table 4. The MRNEMC and CORR�J�X�F�MC, J�MC� of FEM

is 0.86 and 44%, while those of XFEM is 0.93 and 45%. The
computational time of several modules that perform specific
computational tasks, mesh generation, matrix assembly and
solver. Since the XFEM does not have the complex mesh
generation as FEM, the total time cost of matrix assembly
and solver is considered for comparison. It is clear that the
time cost of XFEM is only 367 seconds on the coarser mesh
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Figure 4: Surface detector readings J� for SPN equations around the regular heterogeneous phantom using the two methods on the coarse
mesh compared with the FEM on the fine mesh. (a) DA equations. (b) SP3 equations. (c) SP7 equations. (d) Comparison among the results
of XFEM for DA, SP3, and SP7 equations.

while that of FEM is 2675 seconds with the similar accuracy
results. All the time cost of two methods are far less than
that of MC method. The XFEM has a distinct strength on
time-efficiency and this makes it more practical in imaging
process.

4. Conclusion

We have derived the extended finite element method with
SPN approximations for the forward model of the three

dimensional optical imaging. Considering the complex geo-
metric object, it is necessary to have the fined mesh to con-
form to the internal boundary. And the mesh conformation
is a difficult issue in the pretreatment in the FEM, moreover
the standard FEM on the fine mesh for SPN approximations
cost too much especially for the high order approximation.
Fortunately, the XFEM can deal with this problem. The
XFEM includes the standard FEM as a special case, which
does not require a geometric representation of the interface
or any boundary mesh generation. Use the signed distance
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Figure 5: (a) The digital mouse model. (b) The external and internal boundary mesh for FEM. (c) The external boundary mesh and enriched
region for XFEM.

Table 3: Optical parameters of the mouse organs.

Organs μa�mm�1� μs�mm�1� g

Muscle 0.08697 4.29071 0.90

Heart 0.05881 6.42581 0.85

Stomach 0.01139 17.96150 0.92

Liver 0.35182 6.28066 0.90

Kidney 0.06597 16.09293 0.86

Lung 0.19639 36.23141 0.94

functions add to the standard basis functions, the number
of nodes can keep unchanged. The interface can be well
depicted by the enriched functions, also the solution of SPN
equation is more accurate.

The XFEM is validated through the numerical experi-
ments. Phantom experiment was conducted and its results
agreed well with the well known classical FEM. Moreover,
compared with the FEM, XFEM can get more accurate result
even on the slightly coarse mesh, which is closer to the
FEM on the fine mesh. Digital mouse experiments further
indicate that XFEM is superior to the standard FEM. The
MC method was employed to evaluate the performance
the proposed method. Although the relative errors and
correlation coefficient using the XFEM with respect to MC
method is comparable to that of standard FEM, the time

Table 4: Comparison among the FEM, XFEM and MC method.

Method FEM XFEM MC method

Number of nodes 24906 6541 /

Number of elements 132202 32398 /

CORR�J�X�F�MC, J�MC� 0.86 0.92 1

MRNEMC 44% 45% 0

Time cost [s] 2675 367 7292

cost of XFEM is greatly decreased due to the adoption of
coarser element mesh. All these indicate that the XFEM
is more suitable for SPN equations especially in complex
heterogeneous tissues.

Adaptive FEM method is often adopted for its high
efficiency [17, 18]. But nearly all the adaptive method is
based on the mesh refinement which is extremely complicate
especially in three dimensions. XFEM can also be seen as
an adaptive FEM method because it increases the degrees
of freedom near the internal boundary while using fixed
mesh, therefore the mesh refinement can be avoided. Thus
the process in each adaptive level is simplified and the
calculation cost is decreased. Moreover, the discretization
error of the forward model is improved, which is important
for the quantification reconstruction. XFEM may provide a
potential tool for reconstruction algorithm.
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Figure 6: The surface detector readings with SP3 approximation (a) using FEM on the fine mesh, (b) using XFEM on the coarse mesh, and
(c) using MC method.
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Figure 7: Surface detector readings J� using MC method, XFEM, and FEM at the sampling points. Green line denotes the results of MC
method, red and blue lines are that of FEM and XFEM with SP3 approximation.
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