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Source time functions 
of earthquakes based 
on a stochastic differential 
equation
Shiro Hirano

Source time functions are essential observable quantities in seismology; they have been investigated 
via kinematic inversion analyses and compiled into databases. Given the numerous available 
results, some empirical laws on source time functions have been established, even though they are 
complicated and fluctuated time series. Theoretically, stochastic differential equations, including a 
random variable and white noise, are suitable for modeling complicated phenomena. In this study, 
we model source time functions as the convolution of two stochastic processes (known as Bessel 
processes). We mathematically and numerically demonstrate that this convolution satisfies some of 
the empirical laws of source time functions, including non-negativity, finite duration, unimodality, 
a growth rate proportional to t3 , ω−2-type spectra, and frequency distribution (i.e., the Gutenberg–
Richter law). We interpret this convolution and speculate that the stress drop rate and fault impedance 
follow the same Bessel process.

Earthquake source time functions (STFs), which are temporal variations in the slip rate integrated over faults 
during earthquakes, are macroscopically observable in seismology and have been widely investigated regarding 
kinematic source inversions and dynamic source modeling. To review some knowledge on STFs, we first sum-
marize some empirical laws (ELs) for STFs: 

EL1	� STFs are dominantly non-negative, continuous, compactly supported, and unimodal.
EL2	� The moment functions M0 , which are proportional to the time-integration of STFs, evolve as M0 ∝ t3 , 

where t is the time since their ignition (this is referred to as “the cube law” herein).
EL3	� The ω−2-model can satisfactorily approximate the amplitude of STF Fourier spectra.
EL4	� The frequency of their total moment follows the Gutenberg–Richter (GR) law.

Many studies, from early pioneering research1 to recent revelations2,3 have cataloged numerous STFs and 
revealed their tendencies and variabilities over time. Although several outliers have been found, EL1 has arisen 
as an obvious tendency, based on cataloged data. For example, ∼ 80% of STFs in a catalog2 are unimodal; they 
are labeled Group 1 in the research of Yin et al.3. In EL1, the fact that STFs are compactly supported is natural 
because regular earthquakes terminate within a few minutes, whereas slow earthquakes have longer durations.

Uchide and Ide4 compared the moment functions of Mw 1.7–6.0 events in Parkfield, California, based on 
multi-scale inversion analyses. They pointed out that EL2 holds from the very early to later stages of the source 
processes. Meier et al.5 demonstrated that peak ground displacement evolves with the cube law. As the far-field 
ground displacement is proportional to STFs, they suggested that the law is sourced from the phenomenon of 
self-similar rupturing of the fault, which results in EL2. In addition, the proportionality between the final moment 
and the cube of the total duration has been established1. If the rupture duration is propotional to a fault length 
L, EL2 is equivalent to M0 ∝ L3 , which seems valid up to Mw9-class events on the basis of a global catalog6. 
However, traditional studies based on some regional catalogs have suggested scaling transitions to M0 ∝ L27 or 
M0 ∝ L18 for magnitudes greater than 7 or 8 possibly due to the thickness of seismogenic zones. Additionally, 
for Mw ≥ 7 events, an analysis of observed STFs shows the M0 ∝ t2 scaling9. Hence, we consider earthquakes 
below these magnitudes, where EL2 holds and the faults can be considered as finite 2-D planes smaller than the 
width of the seismogenic zone thickness.
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Given the spectra of STFs, their amplitudes above their corner frequencies can be modeled by a power law, 
and their fall-off rates can be quantified. As shown by numerous studies10–12, EL3 seems to be very robust. Some 
forward modeling studies of dynamic rupturing have been conducted to explain the ω−2-model; they have shown 
that STFs consist of functions that are almost entirely smooth, except for a kink. For example, Brune’s model 
has a kink at its start, while Sato and Hirasawa’s model and Madariaga’s model both have a kink due to their 
stopping phases13. Mathematically, these kinks are the origin of their spectral fall-off rate; put (m,µ) = (0, 1) in 
Theorem 1.2 of Nissilä14 for ω−2 . However, the cataloged STFs do not show such an isolated kink, but do show 
some fluctuations3. This implies that the traditional models as smooth curves with some finite number of kinks 
are too simplified to reproduce the complexity of STFs, and thus, that some stochastic modeling is required. 
The ω−2-model with stochastic fluctuation has been modeled by using randomized phase spectrum15. However, 
such models required the duration of STF as an input, which should be determined stochastically to fulfill EL4.

Apart from the entire shape of each STF as discussed above, it has been well established that EL4 holds. The 
GR law originally means that the probability density function (PDF) of a seismic moment is a power law. By 
recalling the cube law between the moment and the duration, the GR law means that the PDF of the duration is 
also a power law. Once we model stochastic STFs, we can estimate the PDF of the duration and discuss whether 
the PDF satisfies the GR law.

The stochastic modeling of faulting processes has been proposed both theoretically and numerically15–19. 
Andrews16,17 considered a spatio-temporal slip distribution with self-affinity, mainly in the Fourier domain. This 
approach revealed the spectra of the distribution and energetics of the faulting. Significantly, the fault impedance, 
which is the factor of proportionality between the slip rate and stress drop in the Fourier domain, can enlighten 
the relationship between the quantities, even in the stochastic model. In recent, the importance of stochastic-
ity has been more recognized. Spatial heterogeneity of fracture energy18 and temporal fluctuation of dynamic 
stress transfer19 introduced in a boundary integral equation play an important role on the rupture complexity. 
While such numerical modelings are developing, mathematical modeling, if available, would contribute to the 
understanding of complex faulting processes.

Stochastic differential equation (SDE)-based models have been employed in the field of earthquake source 
physics20–22. Matthews et al.20 and Ide21 modeled recurrent and slow earthquakes, respectively, as Brownian 
motion. On recurrent regular earthquakes20, they modeled a seismic cycle with a time scale longer than the 
characteristic time scales of each event, and the properties of STFs were not considered. Wu et al.22 assumed 
that the generalized Langevin equation can model the equation of motion for the fault slip rate. Although their 
model was based on some physical properties of dynamic friction, their solution was Brownian motion, which 
cannot satisfy the non-negativeness (EL1) or the ω−2-like spectrum (EL3). Thus, a novel approach is needed for 
SDE-based modeling under EL1–4.

In this article, we consider an SDE known as the Bessel process. We analytically and numerically demonstrate 
that the convolution of two solutions from the same Bessel process satisfies EL1–4. Finally, we discuss the physical 
meaning of these two solutions on the basis of the fault impedance.

Mathematical modeling
In the following, we do not distinguish STF :=

∫

Ŵ

V(x, t) dx and moment-rate function Ṁ(t) := µ

∫

Ŵ

V(x, t) dx 
on a flat fault Ŵ , where µ is the rigidity and V is the slip rate distribution at position x ∈ Ŵ . We introduce a 
mathematical model to generate Ṁ(t) that satisfies EL1–4 using solutions of an SDE. A Brownian motion well 
approximates Ṁ of slow earthquakes21 because the observed source spectra of slow earthquakes follow the ω−1

-model, which is similar to the spectrum of Brownian motion. However, because EL3 holds for regular earth-
quakes, we consider a product of the spectra of two stochastic processes (i.e., ω−1 × ω−1 = ω−2 ), which is a 
convolution of the two stochastic processes in the time domain, which we denote as X(1)

t  and X(2)
t  herein. Thus, 

we assume that Ṁ(t) =
(

X(1)
• ∗ X(2)

•
)

(t) holds, where the asterisk “*” denotes the convolution in time.
To fulfill EL1, we assume that both X(1)

t  and X(2)
t  are solutions of the following SDE called the Bessel process:

with its initial value X(i)
0  ( > 0 ), which is equivalent to the integral form as:

where B(i)t  is a standard Brownian motion and d is the dimension of the Bessel process. SDE(1) is valid while 
X
(i)
t > 0 holds. Thus, we define X(i)

t = 0 after the process hits zero; the time T := min
t

{

t | t > 0& X
(i)
t = 0

}

 is 
referred to herein as the first hitting time23. According to the above definition, X(i)

t  is continuous and non-neg-
ative. Moreover, X(i)

t  with d < 2 is compactly supported because T ≪ ∞ holds almost surely for that parameter 
range23. Therefore, given d < 2 , EL1 holds if we can confirm that the convolution is unimodal. We demonstrate 
this statement numerically in the next section.

We also confirm that the convolution satisfies EL2 and EL3 numerically in the next section. It can be expected 
that EL3 would be satisfied, as described in the first paragraph of this section.

The condition for EL4 can be derived analytically. It is known that P(T), which is the PDF of the first hitting 
time T with d < 2 and X(i)

0 = a , can be represented as24:

(1)dX
(i)
t =

d − 1

2

dt

X
(i)
t

+ dB
(i)
t , (i = 1, 2)

(2)X
(i)
t = X

(i)
0 + B

(i)
t +

d − 1

2

∫ t

0

ds

X
(i)
s

, (i = 1, 2)
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where ν =
d

2
− 1 , and Ŵ(·) is a gamma function. On the other hand, considering the cube law ( M0 ∼ T3 ), the 

GR law with respect to Mw = 2
3 log10 M0 − 6.1 can be represented as

where b ∼ 1 holds and the constant coefficients are neglected. Thus, if we assume a sufficiently small initial value, 
a (≪

√
2T) , Eqs. (3) and (4) imply that:

is required for EL4. By combining Eqs. (3) and (5), we show the PDF of the first hitting time with b = 0.8–1.2 in 
Fig. 1a. On the other hand, 1− P(T) represents the probability that the random variable Xt does not fall into zero 
at each time. Within the probability, the probability density of Xt(> 0) for each t has been known as a solution to 
the Fokker–Planck equation accompanied by Eq. (1)25; Fig. 1b–d show the solution that indicates a probability 
of evolution of Xt . We speculate about a physical interpretation of this probability in the discussion section.

Numerical modeling and results
In the following section, we investigate how the convolution 

(

X(1)
• ∗ X(2)

•
)

(t) satisfies EL1–3 after solving Eq. 
(1) using the SRIW1 algorithm26 implemented in DifferentialEquations.jl (https://​diffeq.​sciml.​ai/) for Julia 1.6.1 
(https://​julia​lang.​org/); the associated function and numerical results in an ascii format are available at a reposi-
tory (https://​doi.​org/​10.​17605/​OSF.​IO/​VUXJ6). Given Eq. (5) and b = 1 , we solve:

with a constant time step of dt = 10−6 and a sufficiently small initial value of X0 = 10−3 up to time 
Tmax = 2× 10−3 (i.e., 2000 steps). Because the solution must become zero within the finite time, we reject 
numerical solutions that never reached zero before Tmax . The convolution of two solutions does not follow ω−2

-model if their corner frequencies, which are comparable to the inverse of their first hitting time, are quite dif-
ferent. Thus, we denote the lower limit of the first hitting time as Tmin and reject solutions that reach zero before 
Tmin . In the following, we investigate two cases: A) Tmin = 1× 10−3 (i.e., 1000 steps) and B) Tmin = 2× 10−4 
(i.e., 200 steps). Therefore, we consider the Bessel processes with the probabilistic first hitting time T satisfying 
Tmin ≤ T ≤ Tmax , where Tmin/Tmax = 0.5 for case A and Tmin/Tmax = 0.1 for case B. For every two solutions, we 
regard the solution with relatively shorter duration as X(1)

t  and the other as X(2)
t  . Thus, Tmin/Tmax ≤ T1/T2 ≤ 1 

holds, where Ti is the duration for X(i)
t  ( i = 1, 2).

After iterations, we store 2000 solutions with Tmin ≤ T ≤ Tmax , which yields 1000 pairs of solutions, and 
calculate 1000 convolutions of the pairs. Even though we calculate and abandon many useless solutions, we 
obtain ∼ 120 Bessel processes per minute within the duration range by using 12-core AMD Ryzen 9 3900XT.

The 1000 convolutions dominantly satisfy EL1 (Fig. 2), whereas the case B shows more variation. Although 
their average (i.e., the dense band in Fig. 2) seems like a smooth, bell-shaped, and compactly supported func-
tion that has been widely used as an input of wavefield simulations known as the Herrmann, Cosine, or Küpper 
wavelet functions27, individual cases are more complicated and sometimes skewed and/or multimodal; see Sup-
porting Figures S.1 and S.2. Simultaneously, the time integration (Fig. 3) and Fourier amplitude spectra (Fig. 4) 
reproduce EL2 and EL3, respectively. EL4 is almost surely satisfied, as discussed in the previous section. Hence, 
we conclude that the convolution of two Bessel processes stochastically fulfills EL1–EL4.

Discussion
Physical meaning of the convolution.  Here, we interpret the physical meaning of the convolution of 
two Bessel processes. In a simplified view, the convolution of two functions with the duration comparable to 
the whole event resembles the classical kinematic modeling of the source features as the convolution of two 
processes having two characteristic time scales: the rise time and the rupture time. However, the relationships 
between these functions and quantities like stress drop and fault impedance have to be investigated to interpret 
the presented formalism in terms of rupture dynamics.

As mentioned in “Introduction”, EL2 holds except for great earthquakes so that the fault width is sufficiently 
smaller than the thickness of seismogenic layer. If M0 ∝ t2 holds for great earthquakes instead of EL2, the average 
shape of normalized STFs should be close to a triangle9, which is obviously different from STFs in Fig. 3. Thus, 
in the following, we consider a finite 2-D flat fault surface Ŵ embedded in an infinite 3-D space. A general case 
without the above assumption for considering scalings of great earthquakes is our future task. We define two 
convolutions: “ ∗ ” as only in time and “ ̃∗ ” as in on-fault position and time. In the case of a finite fault, we assume 
that the stress drop rate, σ̇ (x, t) for the on-fault position x ∈ Ŵ , can be represented as:

where V(x, t) is the slip rate distribution again and Z(x, t) is the fault impedance defined as the ratio of stress 
to slip rate in the space-time Fourier domain16,17. If the surrounding area is an elastic body, Z in the space-time 
Fourier domain can be derived from linear elasticity as Eq. (20) of Andrews16 (see Supporting Information for 

(3)P(T) =
2ν

a2νŴ(|ν|)
Tν−1 exp

(

−
a2

2T

)

,

(4)P(Mw) ∼ 10−bMw ∼ T−2b,

(5)ν = −2b+ 1, i.e., d = 4(1− b)

dXt = −
1

2

dt

Xt
+ dBt

(6)σ̇ (x, t) = −
(

V ∗̃Ż
)

(x, t),

https://diffeq.sciml.ai/
https://julialang.org/
https://doi.org/10.17605/OSF.IO/VUXJ6
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details). However, we consider a stochastic process in which Z includes a non-deterministic property. Equation 
(6) represents the stress rate (i.e., Neumann condition) based on the displacement discontinuity (i.e., Dirichlet 
condition) along a finite fault; thus, Z is mathematically called a Dirichlet-to-Neumann operator. Here, we assume 
that there exists a Neumann-to-Dirichlet operator Ż−1 , whose support is Ŵ , satisfying:

Furthermore, the Fourier transform with respect to position ( 
∫

Ŵ

e2π ik·xdx , where k is a two dimensional 
wavenumber) yields:

(7)V(x, t) = −
(

σ̇ ∗̃Ż−1
)

(x, t).

Figure 1.   Probability density functions of (a) the first hitting time for b = 0.8–1.2 based on Eq. (3) and (b)–(d) 
Xt for b = 0.8–1.2 based on a solution of the Fokker–Planck equation25, where b is the b-value of the GR law and 
related to the parameters as in Eq. (5). We assume X0 = 1 for all figures. The blue line in (a) represents T−2 (Eq. 
(4) with b = 1.0 ) and is parallel to the dashed curve (Eq. (3) with b = 1.0).
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As the limit k → 0 is equivalent to the integration in space 
(

lim
k→0

∫

Ŵ

e2π ik·xdx =
∫

Ŵ

dx

)

 , Eq. (8) results in

(8)V(k, t) = −
(

σ̇ (k, •) ∗ Ż−1(k, •)
)

(t).

Figure 2.   The 1000 computed convolutions of the two Bessel processes for (a) case A and (b) case B. Time scale 
and total moment are normalized. See Figures S.1 and S.2 for individual curves.

Figure 3.   The normalized moment evolution 
(
∫

t

0

Ṁ(s) ds/

∫ ∞

0

Ṁ(s) ds

)

 for (a) case A and (b) case B along 

normalized time scale (t/T). The curves dominantly follow the cube law ( ∼ t
3 ) and converge toward their static 

states.

Figure 4.   The normalized Fourier amplitude spectra of the convolutions plotted in Fig.2 for (a) case A and (b) 
case B.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3936  | https://doi.org/10.1038/s41598-022-07873-2

www.nature.com/scientificreports/

where the overlines denote integration over Ŵ . Finally, Eq. (9) implies that EL1–4 are fulfilled if the stress rate, 
σ̇ (t) , and Neumann-to-Dirichlet operator, Ż−1 , when integrated over Ŵ , are Bessel processes.

As σ comprises stress drop, −σ̇ (t) is always non-negative and −σ(t) is a non-decreasing function from zero 
to its final value ( > 0 ). This property is naturally produced if −σ̇ (t) is a Bessel process. For the 1000 convolutions 

obtained in the previous section, we also calculate −
∫ t

0
X(1)
s ds , where the duration of X(1)

s  is shorter than that 

of X(2)
s  . By considering this quantity as σ(t) , we confirm that the relationship between M(t) and σ(t) shows 

monotonic slip-weakening curves (Fig. 5). Therefore, the assumption that the stress drop rate is a Bessel process 
explains the natural weakening process of the on-fault stress change. In Fig. 5, the abscissa and ordinate mimic 
integrated slip and stress drop over the fault, respectively. This means that the characteristic slip weakening 
distance ranges from 20 to 50% of the final slip amount. Interestingly, this fraction is close to results based on 
observations. Mikumo et al.28 estimated the final slip amount ( Dmax ) and slip weakening distance ( Dc ) for each 
subfault of the 2000 Tottori earthquake and concluded that 0.27Dmax < Dc < 0.56Dmax holds in almost subfaults. 
Although they revealed point-wise Dc − Dmax relations, their average over all subfaults also satisfies the same 
inequality (if 0.27xi < yi < 0.56xi holds for each i = 1, . . . ,N  , also 0.27N

∑N
i=1 xi <

1
N

∑N
i=1 yi <

0.56
N

∑N
i=1 xi 

holds, where 1N
∑N

i=1 xi and 1N
∑N

i=1 yi are average values of xi and yi , respectively).
As we consider Eqs. (1) and (5) with b ∼ 1 , our model consists of the drift term with negative feedback ( d−1

2
dt
Xt

 , 
where d−1

2 < 0 and Xt ≥ 0 ) and the diffusion term ( dBt ). Especially, the amplitude of the drift term increases as 
the stress drop rate ( Xt ) decreases, which means that the drift term and diffusion term behave as the restoring 
force and stochastic driving force to stabilize and (possibly) evolve the stress drop rate, respectively, during the 
process.

To interpret the other assumption that the inverse fault impedance, Ż−1 , is a random process is not straight-
forward, and we need more detailed discussion in the future work. When we calculate seismic waves, the Green 
functions are well modeled within the framework of linear elasticity. This might be because the Green functions 
depend on the medium between the fault and (usually) far-field observation points, where almost all of the 
region is an elastic body. However, the (inverse) fault impedance is a propagator among the on-fault positions 
traveling along the fault. In general, faults are segmented, bumpy, and surrounded by fractured rocks. Modeling 
such a complex system by assuming a flat fault may cause non-deterministic fluctuations due to scattering waves, 
as schematically illustrated by Aso et al.19. Therefore, this assumption is possible, even though it is difficult to 
directly observe.

In the numerical simulation, we restrict the ratio of the duration of X(1)
t  and X(2)

t  within tenfold. This is not 
only for EL3, as mentioned here, but also for another physical property. If X(1)

t  is the stress drop rate, its dura-
tion should correspond to the duration of the most energetic faulting process, which is given by the fault length 
divided by the rupture speed. On the other hand, because Ż−1(t) = X

(2)
t  is based on the fault impedance, its 

duration must be equivalent to the time taken for the scattering wave to spread over the entire fault. This time 
is at least, or even a few times greater than, the fault length divided by the seismic wave speed. Therefore, the 
durations of X(1)

t  and X(2)
t  should have almost the same order, and Tmin/Tmax = 0.5 and 0.1 in our assumption 

might be two possible end members. We have to note that it is unclear whether the above discussion is applica-
ble even for great earthquakes that EL2 may not hold as in the “Introduction”. For such cases, the point source 
approximation should be revised, and the different scaling property should be taken into account.

Further mathematical and physical implication of the model.  If the above discussion holds, the 
PDF of the first hitting time and the random variable in Fig. 1 represents the probability of termination and 
evolution of co-seismic stress drop on faults. Although this is not a pointwise but integrated distribution over 

(9)V(t) = µ−1Ṁ(t) = −
(

σ̇ ∗ Ż−1
)

(t),

Figure 5.   Normalized moment versus normalized stress drop assumed to be time-integration of a Bessel 
process for case A.
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the entire fault, the PDF gives us a constraint for forward and inverse modeling of stress drop evolution, which 
might be a significant implication of this model to fault dynamics.

Moreover, the mathematical structure of the system we considered would tell us more about fault dynam-
ics. To satisfy EL1 and EL4, Xt must be non-negative, and its duration (i.e., first hitting time) must follow some 
power law like Eq. (3). Other major types of SDE, including the Wiener process, Ornstein-Uhlenbeck process, 
and Cox-Ingersoll-Ross process, do not show the properties because they do not have any termination mecha-
nism therein. Therefore, a model with other types of SDE22 is inherantly unable to explain EL1 and EL4, and 
the Bessel process is a prime candidate for our purpose. The squared Bessel process is another candidate, but it 
is essentially the same as the Bessel process because its square root is a solution of Eq. (1)29. As discussed in the 
previous subsection, the drift term of Eq. (1) may be related to a stress-rate-weakening property of friction if Xt 
is stress drop rate. A relationship between the rate of frictional strength and rate of stress was suggested in an 
extended framework of rate- and state-dependent friction30. Although the previous friction model30 included a 
linear relation of them, our model may also suggest the possibility that the rate of stress change is a considerable 
quantity for the fault friction.

Finally, we discuss the mathematical potential of the present model to explain more various STFs. The fall-off 
rate of observed spectra has been modeled as ω−p , and p may slightly deviate from 210,11. In the present model, 
p = 2 holds as explained in Mathematical modeling (i.e., ω−1 × ω−1 = ω−2 ). Thus, instead of the Bessel process, 
we have to consider some stochastic process that deviates from ω−1 spectrum if p  = 2 holds. The Brownian-like 
noise with such spectrum is called the fractional Brownian noise31, and The Bessel process with the fractional 
Brownian noise is called the fractional Bessel process32. Therefore, we may model ω−p spectrum with p  = 2 by 
using the fractional Bessel process instead of Eq. (1).

Conclusions and outlooks
Here we demonstrated that the four empirical laws on STFs, or moment-rate functions, can be reproduced by 
modeling STFs as the convolution of two Bessel processes with almost the same order of duration. Although 
many theoretical models have been suggested to explain some of EL1–4 as written in the “Introduction”, the 
advantage of the present model is that the model shows all properties of EL1–4, stochastic fluctuation as seen 
in observed STFs, and slip-weakening fault dynamics. In terms of fault dynamics, given the complexity of the 
geometry and surroundings of the faults, this result is comprehensible if both the stress drop rate and the inverse 
fault impedance follow a Bessel process.

Among the four laws, we should investigate the dominance of unimodality more precisely and statistically. 
As in Supporting figures, unimodal distributions dominate in both cases A and B, but the fraction of bimodal or 
multimodal distributions seems relatively more significant in case B, which means that the number of prominent 
peaks may depend on the ratio of the first hitting times. In a database of observed STFs, 80% of them are uni-
modal, and others are bimodal or multimodal, which was declared by Dynamic Time Warping method that is 
an application from speech recognition3. Therefore, we also should employ the Dynamic Time Warping method 
and gather statistics of the peaks in the numerical STFs to compare our results to the observation.

In some numerical models, spatial and fractal heterogeneity of stress drop33, fracture energy18, or fault 
geometry34 have been introduced. In the present model, however, we do not consider such spatial distributions, 
and our interpretation is that the model is equivalent to a point source as we take the limit k → 0 . Therefore, 
the effects of the above heterogeneities might be integrated and appear as the stochastic term in Eq. (1). Thanks 
to this simplification, we succeeded in constructing the model within a framework of SDE. Nevertheless, the 
present model still has extensibility for considering spatial heterogeneity. As in the previous subsection, we may 
be able to consider ω−p ( p  = 2 ) spectrum with the fractional Bessel process. Theoretically, the spectral fall-off 
rate p is related to the heterogeneity of slip distribution in space35, which implies that we could model the spatial 
heterogeneity via the extended SDE model.

Even in the limit of point source approximation, the present model has applicability to scientific and engineer-
ing studies on strong ground motions. One way to numerically simulate strong ground motions is to compute the 
convolution of an STF and the Green function. In the calculation, a few point sources that have ω−2 spectrum are 
sufficient to reproduce dominant parts of far-field seismic records deterministically36. We can obtain numerous 
inputs to a strong ground motion simulation and gather statistics of the simulated seismograms. Moreover, even 
without numerous numerical simulations, we can investigate the statistical properties of a stochastic process if 
the PDF of the random variable at any time is available as in Fig. 1. Thus, it should be possible to calculate some 
statistical properties of simulated strong ground motions at low computational costs.

Received: 6 October 2021; Accepted: 25 February 2022

References
	 1.	 Houston, H. Influence of depth, focal mechanism, and tectonic setting on the shape and duration of earthquake source time func-

tions. J. Geophys. Res. Solid Earth 106, 11137–11150 (2001).
	 2.	 Vallée, M. & Douet, V. A new database of source time functions (STFs) extracted from the SCARDEC method. Phys. Earth Planet. 

Int. 257, 149–157. https://​doi.​org/​10.​1016/j.​pepi.​2016.​05.​012 (2016).
	 3.	 Yin, J., Li, Z. & Denolle, M. A. Source time function clustering reveals patterns in earthquake dynamics. Seismol. Res. Lett. 92, 

2343–2353 (2021).
	 4.	 Uchide, T. & Ide, S. Scaling of earthquake rupture growth in the Parkfield area: Self-similar growth and suppression by the finite 

seismogenic layer. J. Geophys. Res. 115, B11302 (2010).
	 5.	 Meier, M.-A., Heaton, T. & Clinton, J. Evidence for universal earthquake rupture initiation behavior. Geophys. Res. Lett. 43, 

7991–7996 (2016).

https://doi.org/10.1016/j.pepi.2016.05.012


8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3936  | https://doi.org/10.1038/s41598-022-07873-2

www.nature.com/scientificreports/

	 6.	 Thingbaijam, K. K. S., Mai, P. M. & Goda, K. New empirical earthquake source-scaling laws. Bull. Seismol. Soc. Am. 107, 2225–2246. 
https://​doi.​org/​10.​1785/​01201​70017 (2017).

	 7.	 Scholz, C. H. Scaling laws for large earthquakes: Consequences for physical models. Bull. Seismol. Soc. Am. 72, 1–14 (1982).
	 8.	 Romanowicz, B. Strike-slip earthquakes on quasi-vertical transcurrent faults: Inferences for general scaling relations. Geophys. 

Res. Lett. 19, 481–484. https://​doi.​org/​10.​1029/​92gl0​0265 (1992).
	 9.	 Meier, M.-A., Ampuero, J. P. & Heaton, T. H. The hidden simplicity of subduction megathrust earthquakes. Science 357, 1277–1281. 

https://​doi.​org/​10.​1126/​scien​ce.​aan56​43 (2017).
	10.	 Boatwright, J. A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radi-

ated seismic energy. Bull. Seismol. Soc. Am. 70, 1–27 (1980).
	11.	 Abercrombie, R. E. Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth. J. 

Geophys. Res. Solid Earth 100, 24015–24036 (1995).
	12.	 Kanamori, H. The diversity of large earthquakes and its implications for hazard mitigation. Annu. Rev. Earth Planet. Sci. 42, 7–26 

(2014).
	13.	 Madariaga, R. & Ruiz, S. Earthquake dynamics on circular faults: A review 1970–2015. J. Seismol. 20, 1235–1252 (2016).
	14.	 Nissilä, J. Fourier decay of absolutely and hölder continuous functions with infinitely or finitely many oscillations. arXiv:​1805.​

02445​v2 [math.CA] (2021).
	15.	 Hisada, Y. Broadband strong motion simulation in layered half-space using stochastic green’s function technique. J. Seismol. 12, 

265–279. https://​doi.​org/​10.​1007/​s10950-​008-​9090-6 (2008).
	16.	 Andrews, D. J. Fault impedance and earthquake energy in the fourier transform domain. Bull. Seismol. Soc. Am. 70, 1683–1698. 

https://​doi.​org/​10.​1785/​bssa0​70005​1683 (1980).
	17.	 Andrews, D. J. A stochastic fault model: 2. time-dependent case. J. Geophys. Res. Solid Earth 86, 10821–10834 (1981).
	18.	 Ide, S. & Aochi, H. Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface energy. J. Geophys. Res. Solid 

Earthhttps://​doi.​org/​10.​1029/​2004j​b0035​91 (2005).
	19.	 Aso, N., Ando, R. & Ide, S. Ordinary and slow earthquakes reproduced in a simple continuum system with stochastic temporal 

stress fluctuations. Geophys. Res. Lett. 46, 14347–14357 (2019).
	20.	 Matthews, M., Ellsworth, W. & Reasenberg, P. A Brownian model for recurrent earthquakes. Bull. Seismol. Soc. Am. 92, 2233–2250 

(2002).
	21.	 Ide, S. A Brownian walk model for slow earthquakes. Geophys. Res. Lett. 35, 25 (2008).
	22.	 Wu, T.-H., Chen, C.-C., Lovallo, M. & Telesca, L. Informational analysis of Langevin equation of friction in earthquake rupture 

processes. Chaos Interdiscip. J. Nonlinear Sci. 29, 103120 (2019).
	23.	 Göing-Jaeschke, A. & Yor, M. A survey and some generalizations of Bessel processes. Bernoulli 9, 25 (2003).
	24.	 Hamana, Y. & Matsumoto, H. The probability distributions of the first hitting times of Bessel processes. Trans. Am. Math. Soc. 365, 

5237–5257 (2013).
	25.	 Guarnieri, F., Moon, W. & Wettlaufer, J. S. Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigen-

value spectrum. J. Math. Phys. 58, 093301 (2017).
	26.	 Rößler, A. Runge-Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM J. Numer. 

Anal. 48, 922–952 (2010).
	27.	 Maeda, T., Takemura, S. & Furumura, T. OpenSWPC: An open-source integrated parallel simulation code for modeling seismic 

wave propagation in 3D heterogeneous viscoelastic media. Earth Planets Sp.https://​doi.​org/​10.​1186/​s40623-​017-​0687-2 (2017).
	28.	 Mikumo, T., Olsen, K. B., Fukuyama, E. & Yagi, Y. Stress-breakdown time and slip-weakening distance inferred from slip-velocity 

functions on earthquake faults. Bull. Seismol. Soc. Am. 93, 264–282 (2003).
	29.	 Revuz, D. & Yor, M. Continuous Martingales and Brownian Motion (Grundlehren der mathematischen Wissenschaften) (hardcover 

edn), Vol. 293 (Springer, 1998).
	30.	 Nagata, K., Nakatani, M. & Yoshida, S. A revised rate- and state-dependent friction law obtained by constraining constitutive and 

evolution laws separately with laboratory data. J. Geophys. Res. Solid Earth 117, B02314. https://​doi.​org/​10.​1029/​2011j​b0088​18 
(2012).

	31.	 Øigård, T. A., Hanssen, A. & Scharf, L. L. Spectral correlations of fractional brownian motion. Phys. Rev. E 74, 031114. https://​doi.​
org/​10.​1103/​physr​eve.​74.​031114 (2006).

	32.	 Hu, Y. & Nualart, D. Some processes associated with fractional bessel processes. J. Theor. Probab. 18, 377–397. https://​doi.​org/​10.​
1007/​s10959-​005-​3508-7 (2005).

	33.	 Ampuero, J.-P., Ripperger, J. & Mai, P. M. Properties of dynamic earthquake ruptures with heterogeneous stress drop. In Earth-
quakes: Radiated Energy and the Physics of Faulting 255–261 (American Geophysical Union, 2006). https://​doi.​org/​10.​1029/​170gm​
25.

	34.	 Dunham, E. M., Belanger, D., Cong, L. & Kozdon, J. E. Earthquake ruptures with strongly rate-weakening friction and off-fault 
plasticity, part 2: Nonplanar faults. Bull. Seismol. Soc. Am. 101, 2308–2322. https://​doi.​org/​10.​1785/​01201​00076 (2011).

	35.	 Hirano, S. & Yagi, Y. Dependence of seismic and radiated energy on shorter wavelength components. Geophys. J. Int. 209, 1585–1592 
(2017).

	36.	 Nozu, A., Yamada, M., Nagao, T. & Irikura, K. Generation of strong motion pulses during huge subduction earthquakes and scaling 
of their generation areas. J. Jpn. Assoc. Earthq. Eng. 14, 696–6117 (2014).

Author contributions
S.H. carried out all part of research and wrote the manuscript.

Funding
This work was supported by JSPS KAKENHI Grant (18K13637).

Competing interests 
The author declares no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​07873-2.

Correspondence and requests for materials should be addressed to S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1785/0120170017
https://doi.org/10.1029/92gl00265
https://doi.org/10.1126/science.aan5643
http://arxiv.org/abs/1805.02445v2
http://arxiv.org/abs/1805.02445v2
https://doi.org/10.1007/s10950-008-9090-6
https://doi.org/10.1785/bssa0700051683
https://doi.org/10.1029/2004jb003591
https://doi.org/10.1186/s40623-017-0687-2
https://doi.org/10.1029/2011jb008818
https://doi.org/10.1103/physreve.74.031114
https://doi.org/10.1103/physreve.74.031114
https://doi.org/10.1007/s10959-005-3508-7
https://doi.org/10.1007/s10959-005-3508-7
https://doi.org/10.1029/170gm25
https://doi.org/10.1029/170gm25
https://doi.org/10.1785/0120100076
https://doi.org/10.1038/s41598-022-07873-2
https://doi.org/10.1038/s41598-022-07873-2
www.nature.com/reprints


9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3936  | https://doi.org/10.1038/s41598-022-07873-2

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Source time functions of earthquakes based on a stochastic differential equation
	Mathematical modeling
	Numerical modeling and results
	Discussion
	Physical meaning of the convolution. 
	Further mathematical and physical implication of the model. 

	Conclusions and outlooks
	References


