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Abstract: Binder jetting 3D printing (BJ3DP) is used to create geometrical and topology-optimized
building structures via architectural geometric design owing to its high degree of freedom in geometry
implementation. However, building structures require high mechanical and durability performance.
Because of the recent trend of using 3D printing concrete as a structural component in reinforcing
bars, its durability with respect to chloride penetration needs to be reviewed. Therefore, in this study,
the compressive strength and durability of the chloride diffusion of cement-based 3D-printed output
were evaluated. In addition, to confirm the performance difference based on the build orientation, the
compressive strength and chloride diffusion were evaluated with respect to the build direction and
transverse direction. The experimental results show that the compressive strength was approximately
22.1–26.5% lower in the transverse direction than in the build direction and that the chloride diffusion
coefficient was approximately 186.1–407.1% higher in the transverse direction. Consequently, when a
structure that requires long-term durability is produced using BJ3DP, it is necessary to examine the
design and manufacturing methods in relation to the build orientation in advance.

Keywords: additive manufacturing; binder jetting 3D printing; additive direction; durability; com-
pressive strength; chlorine diffusion

1. Introduction
1.1. 3D Printing Technology for Construction

Additive manufacturing (AM), which is also referred to as three-dimensional (3D)
printing, is a concept that contrasts with subtractive manufacturing (SM), where material
production is realized by cutting or trimming [1]. In ASTM F 2792-12 (2015), AM is defined
as “a method of stacking continuous materials layer-by-layer to create geometry from 3D
model data, which is a technology that contrasts SM [2–4]”.

The application range of 3D printing technology and materials has been extended to
daily necessities, machinery, electronics, and medicine. Experts in these fields have collabo-
rated closely with construction technology engineers to create high-value- construction
applications using 3D printing for geometries that are difficult to implement with existing
methods, such as atypical members and geometry optimization [5,6].

Representative 3D printing technologies used in the construction field include material
extruded 3D printing (ME3DP) and binder jetting 3D printing (BJ3DP). ME3DP is a method
of extruding construction materials, such as mortar and concrete, from a nozzle using
pressure. It is mainly used on-site for the construction of large members such as columns
and walls owing to its advantages of easy on-site 3D printing and enlargement [7]. BJ3DP
is a method of forming 3D structures through bonding between powder particles by
discharging a liquid adhesive on a powder-type material. Compared with ME3DP, it has

Materials 2021, 14, 7452. https://doi.org/10.3390/ma14237452 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-3059-3068
https://orcid.org/0000-0002-6042-6711
https://doi.org/10.3390/ma14237452
https://doi.org/10.3390/ma14237452
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14237452
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14237452?type=check_update&version=1


Materials 2021, 14, 7452 2 of 14

the advantage of implementing geometrical and topology-optimized structures because of
its high degree of freedom in the geometry of architectural construction [8–10].

The structures printed using a 3D printer must meet specific mechanical performance
requirements. It has been reported that the materials used and the build orientation
affect the mechanical performance of the 3D output [11–14]. Several studies have been
conducted examining the mechanical performance of the output and its relation to the
build orientation, but they are limited to the evaluation of short-term performance, such
as compressive strength [15,16], tensile strength [17,18], flexural strength [19], and shear
strength [20].

The printability and mechanical properties of 3D printing concrete have been widely
investigated in laboratories. Furthermore, optimizations are being performed to improve
the mechanical properties of 3D printed concrete, including the interlayer strength. For
this purpose, mesh reinforcing [21] and 3D concrete printing with a reinforcing bar [22],
fibers [23], or admixtures [24] have been employed.

1.2. Binder Jetting 3D Printing

A number of studies examined physical performance based on the material. For
example, Gibbons et al. used rapid hardening cement (RHC) [25], Maier et al. used calcium
aluminate cement [26], and Cesaretti et al. used magnesium oxide cement [27] for BJ3DP.
The list of materials that can be used for BJ3DP has been continuously expanding.

In this study, ProJet CJP 360 from 3D Systems was used. The build volume of the
device is 203 mm × 254 mm × 203 mm, and two to four layers can be deposited per minute
with a thickness of 0.089–0.102 mm for each layer. BJ3DP deposits powder by injecting
a liquid binder into a powder bed [28,29] and draws a 2D pattern by applying a layer of
powder to a build plate and injecting the liquid adhesive binder into specific parts [30,31].

A schematic of the BJ3DP process is illustrated in Figure 1a [32]. The setting of the 3D
printer is spread over the bed surface of the powder by the leveling roller corresponding
to the thickness of the layer (approximately 0.1 mm). Subsequently, a print head jets the
liquid adhesive binder to the powder bed to create a 2D pattern on the layer. The binder
droplets thus formed are selectively applied to the powder layer, thus binding the powder
particles with each other (Figure 1b). After each layer is spread, the build piston is lowered
to accommodate the next layer, and the process is repeated.

After the 3D output is obtained by repeating this process, the unbound powder is
removed. When cementitious materials are used in BJ3DP, performance improvement after
processing is essential because the mechanical performance immediately after printing is
low [33–35]. Figure 2 shows the binder jetting 3D printing process and postprocessing for
strength improvement. Figure 2a–c shows the binder jetting 3D printing process; Figure 2a
shows the selectively applied binder to the powder surface in a specific layer, whereas
Figure 2b shows the completed 3D printing output until the final layer. Furthermore,
Figure 2c shows the output after depowdering. Figure 2d–g shows the postprocessing for
strength improvement. The test specimens were manufactured through vacuum impregna-
tion, temperature curing at 70 ◦C, and water curing.
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Figure 1. Schematic illustrations of binder jetting 3D printing (BJ3DP): (a) BJ3DP system and (b) 
powder/binder interaction between adjacent layers. Adapted with permission from ref. [32]. Copy-
right 2021 Kwang-min Park.  
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2021 Kwang-min Park.

1.3. Introduction of Chloride Diffusion for Durability Evaluation

Steel-reinforcing-bar corrosion caused by chloride penetrating concrete is recognized
as the major factor that causes the deterioration of concrete structures [36]. Reinforcing bar
corrosion causes concrete cracks and cladding, resulting in a significant reduction in the
strength of the structure [37,38].

A technology for inserting reinforcing bars into 3D printed concrete has recently been
developed [39,40]. An experimental study is therefore needed to confirm the corrosion
of the reinforcing bar caused by chloride. In particular, it is reported that 3D printed
concrete is mainly implicated in the differential degradation of durability depending on
the build orientation [41]. Chloride penetration in MD3DP concrete has been investigated
in previous studies [42,43]. However, BJ3DP concrete has not been studied thus far. There-
fore, this study aimed to evaluate the chloride penetration in BJ3DP according to the
build orientation.
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Figure 2. Binder jetting 3D printing process and postprocessing for strength improvement: (a) The binder jetting process 
repeats, (b) The binder jetting 3D printing is complete, (c) De-powdering removal of unbound powder, (d) Vacuum im-
pregnation, (e) Curing at 70℃ temperature, (f) Water curing, and (g) Finished Binder jetting 3D printing specimen 
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repeats, (b) The binder jetting 3D printing is complete, (c) De-powdering removal of unbound powder, (d) Vacuum
impregnation, (e) Curing at 70 ◦C temperature, (f) Water curing, and (g) Finished Binder jetting 3D printing specimen.

1.4. Research Objectives

Recently, 3D printer output has been used as a building member. However, methods
and research results for evaluating the durability of printouts have not been reported. To
utilize the cementitious material-based 3D printing output as a building member for long-
term use rather than a prototype for temporary use, its long-term durability performance
should be examined in addition to its short-term mechanical performance. As a step in
this direction, the chloride diffusion coefficient was evaluated in this study using NT build
492 [44], a representative method for evaluating the durability of cementitious materials.
Additionally, the influence of the build orientation (build and transverse directions) on
chloride diffusion was evaluated. Figure 3 shows a schematic of the research plan and the
purpose of this study.
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2. Materials and Methods
2.1. Materials Used
2.1.1. Powder and Binder

For cementitious materials used for binder jetting, rapid reactions and hardening are
essential when an adhesive is injected [45–47]. Therefore, in this study, alkali-activated
materials (AAMs) and RHC were used to rapidly harden through reactions with water
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and develop the required strength after printing. Table 1 lists the physical properties and
chemical compositions of the materials used. According to the literature, the injection
of VisiJet® PXL, an adhesive for ProJet CJP 360 [48], onto cementitious materials further
decreases the compressive strength, compared with the injection of ordinary distilled
water as an adhesive [32,49]. Thus, ordinary distilled water was injected as an adhesive in
this study.

Table 1. Physical properties and chemical compositions of the powders used in binder jetting 3D printing (alkali-activated
material (AAMs); rapid hardening cement (RHC)).

Type

Chemical Compositions (wt%) Physical Properties

CaO Al2O3 SiO2 FexOy MgO TiO2 Na2O K2O SO3
Lg.

Loss
Density
(g/cm3)

Surface
Area

(cm2/g)

AAMs 31.50 11.70 38.40 1.30 1.77 0.46 4.54 0.67 2.04 7.62 2.25 5460

RHC 45.14 22.02 10.90 3.88 1.08 1.01 0.29 0.59 14.89 0.20 2.89 5700

2.1.2. Mixture Design

In a previous study [32], a basic methodology was developed for alkali-activated
materials (AAM)-based BJ3DP. We used AAM comprising ground granulated blast-furnace
slag (GGBFS) and fly ash (FA) as the major components of the BJ3DP powder. The AAM
powder was synthesized using an optimal mixture ratio described in a previous report [32].
Silica sand with a size of 0.1–0.17 mm was mixed with AAMs and RHC. BJ3DP mortar
specimens were printed using a binder (powder) with a silica sand ratio of 0.75:0.25. Table 2
lists the binder compositions.

Table 2. Mixture design for binder jetting 3d printing (alkali-activated mortar (AAM), rapid harden-
ing mortar (RHM)).

Type

Unit Weight (g)

AAMs 1
RHC 2 Silica Sand

GGBFS FA Na2SiO3 Ca(OH)2

AAM 4642 1161 1044 653 -
2500

RHM - - - - 7500
1 AAMs: alkali-activated materials consisting of ground granulated blast furnace slag (GGBFS), fly ash (FA),
Na2SiO3, and Ca(OH)2. 2 RHC: rapid hardening cement.

2.1.3. Postprocessing

Compressive strength specimens (20 mm × 20 mm × 20 mm) and durability
(φ100 mm × 50 mm) specimens were produced using BJ3DP, and postprocessing was
performed for strength improvement. A post-storage solution was prepared by mixing
liquid sodium silicate (SiO2 28.2%, Na2O 9.3%, and H2O 65.5%) and pure 98% sodium
hydroxide (NaOH) (Na2SiO3/NaOH ratio of 4 and 3 mol of NaOH). Table 3 shows the
composition of the mixed poststorage solution. The poststorage solution was prepared
using the optimal mixture ratio reported in the previous study [32].

Table 3. Composition of postprocessing materials.

Postprocessing Materials
Unit Weight (g)

Na2SiO3 NaOH Water

Na2SiO3/NaOH ratio of 4 and 3 mol of NaOH 1280 120 200
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Postprocessing was performed using the following method [37,38]. The outputs
were printed and dried for 2 h in a powder bed. After 24 h, depowdering was carried
out using a compressed air gun to remove any unbound powder. Subsequently, a basic
postprocessing procedure was carried out as follows: (1) The BJ3DP output was immersed
in the postprocessing storage solution in a vacuum impregnator. (2) A maximum pressure
of 0.10 MPa was maintained, and the postprocessing solution permeated the voids inside
the printed output. (3) Vacuum impregnation was continued until no air bubbles were
produced in the printed output, which in this case required ~10 min. (4) The output was
immersed in the postprocessing storage solution in a temperature chamber at 70 ◦C for
7 days. (5) The output was removed from the postprocessing solution and wiped off with
distilled water to remove any remaining solution from its surface. (6) After curing in
a 70 ◦C temperature chamber for 7 days, water curing (20 ± 2 ◦C) was carried out for
28 days [32].

2.2. Experimental Method
2.2.1. Compressive Strength

To examine the influence of the build orientation on the mechanical performance
of the 3D printer outputs, loads were applied in the build and transverse directions,
as shown in Figure 4. Compressive strength specimens were fabricated through the
postprocessing procedure described in Section 2.1.3 after printing cubic specimens with
a size of 20 mm × 20 mm × 20 mm. Compressive strength was tested according to the
Korean Industrial Standards of KS L ISO 679 [50] using a universal testing machine (UTM,
Instron Universal Testing Machine, MA, USA; maximum load of 50 kN) at 28 days of age.
Compressive strength was measured for five specimens of each material in both directions.
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2.2.2. Durability (Chloride Diffusion)

To examine the influence of the build orientation on the durability performance of the 3D
printer outputs, a chloride diffusion test was conducted in the build and transverse directions,
as shown in Figure 5. In this study, the chloride diffusion coefficient was evaluated by NT
build 492. This coefficient is the chloride migration coefficient from nonsteady state migration
experiments [44], in which an electrically accelerated test method is applied to the DuraCrete
model, a representative method to examine the durability of cementitious materials. For
the durability test, specimens with a size of φ100 mm × 50 mm were fabricated through
the postprocessing procedure described in Section 2.1.3 after printing. The durability was
measured using three specimens for each material and direction.
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As pretreatment, the specimens were subjected to vacuum saturation (0.10 MPa) for
3 h and then immersed in a saturated solution of calcium hydroxide (Ca(OH)2) for 18 ± 2 h.
In the electrically accelerated test, an electrical potential difference was applied by filling
the anode (+) with a 0.3 M NaOH aqueous solution and the cathode (−) with a 10% NaCl
aqueous solution. The secondary voltage was calculated by applying an initial voltage of
30 V and measuring the current value for the initial voltage. Consequently, a test time of 6 h
was determined based on the current value. Upon completion of the test, each specimen
was split, and a 0.1N silver nitrate (AgNO3) aqueous solution was applied. The silver
chloride line was then measured using a digital Vernier caliper, and the average value was
calculated. The chloride diffusion coefficient was calculated using Equation (1):

Dnssm =
0.0239(273 + T)L

(U − 2)t
(xd − 0.0238

√
(273 + T)Lxd

U − 2
) (1)

where Dnssm is non-steady-state migration coefficient, (×10−12 m2/s), U is the absolute
value of the applied voltage (V), T is the average value of the initial and final temperatures
in the anolyte solution (◦C), L is the thickness of the specimen (mm), xd is the average
value of the penetration depths (mm), and t is test duration (hour).

3. Results
3.1. Compressive Strength Test Results

Figure 6 shows the compressive strengths of the BJ3DP specimens with respect to
the build orientation at 28 days of age. Figure 6a shows the compressive strength of the
AAM. The measurement results show that the compressive strength was approximately
22.1% lower in the transverse direction, as 25.8 MPa was observed in the build direction
and 20.1 MPa in the transverse direction. Figure 6b shows the compressive strength of the
rapid hardening mortar (RHM). The compressive strength was approximately 26.5% lower
in the transverse direction than in the build direction, as 18.9 MPa was observed in the
build direction and 13.9 MPa in the transverse direction.

It appears that the strength was reduced in the transverse direction because gaps
between interlayers were generated in the BJ3DP deposition process. As a result, the me-
chanical properties of BJ3DP are influenced strongly by the printing direction. Compared
with conventional concrete or mortar, the critical problems of the mechanical properties of
3D printed concrete or mortar are the interlayer bond strength and anisotropy. The weak
interface bond leads to the reduction of the mechanical properties and durability of 3D
printed concrete or mortar [51]. Therefore, further research should be conducted in the
future to improve the interlayer bond strength of BJ3DP.
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3.2. Chloride Diffusion Test

Figures 7 and 8 and Table 4 show the chloride diffusion coefficient at 28 days of
age after the mortar specimens (∅100 × 50 mm) printed using BJ3DP were subjected to
postprocessing and curing. In general, the penetration resistance increased as the chloride
diffusion coefficient decreased.

Table 4. Chloride diffusion coefficient depending on the BJ3DP material and the build orientation (alkali-activated mortar
(AAM), rapid hardening mortar (RHM)).

Type Direction Average Chloride
Penetration Depth (mm)

Diffusion Coefficient
(10−12 m2/s) Standard Deviation

AAM

Build direction
(Z-axis)

2.75 8.0
1.512.58 7.0

3.30 10.6

Transverse direction
(X-Y Plane)

6.64 29.1
3.898.13 37.9

7.86 36.7

RHM

Build direction
(Z-axis)

5.54 22.7
5.605.11 20.4

4.88 19.3

Transverse direction
(X-Y Plane)

8.63 40.9
4.718.10 37.9

7.99 37.3
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After splitting the specimens tested for 6 h under an applied voltage of 10 V, 0.1 N silver
nitrate (AgNO3) was applied to the specimens. The results are shown in Figure 7. Chloride
ions penetrated and reacted with silver nitrate at depths of 2.58–3.30 mm (Figure 7a),
6.64–8.13 mm (Figure 7b), 4.88–5.54 mm (Figure 7c), and 7.99–8.63 mm (Figure 7d). The
measured chloride penetration depths were substituted into Equation (1). The obtained
results are shown in Table 3.
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In the case of the AAM shown in Figure 8a, chloride diffusion coefficients of 8.0–10.6 ×
10−12 m2/s and 29.1–37.9 × 10−12 m2/s were measured in the build, and transverse directions,
respectively, and the average diffusion coefficient in the transverse direction was 407.1% higher
than that in the build direction. In the case of the RHM shown in Figure 8b, chloride diffusion
coefficients of 19.3–22.7 × 10−12 m2/s and 37.3–40.9 × 10−12 m2/s were measured in the build
and transverse directions, respectively. The average diffusion coefficient in the transverse
direction was 186.1% higher than that in the build direction.
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It appears that the diffusion coefficient in the transverse direction was higher because
gaps between layers were generated in the BJ3DP deposition process, and the gaps fa-
cilitated the chloride penetration. When printing was performed in the build direction,
chloride diffusion decreased because the output direction was perpendicular to the chloride
diffusion direction. However, when printing was performed in the transverse direction,
chloride diffusion increased compared with that in the build direction because the output
direction was parallel to the chloride diffusion direction. Nerella et al. [51] also observed
that the interface exhibits long and wide separations between the two neighboring layers.

4. Results and Discussion

In this study, the performance of the specimens produced using the binder jetting
3D printing (BJ3DP) method was evaluated with respect to the build orientation. The
difference in performance depending on the build orientation was examined through the
compressive strength and durability (chloride diffusion) tests. The conclusions drawn from
this study are summarized as follows:

1. The compressive strength of the BJ3DP outputs was 22.1% to 26.5% lower in the
transverse direction than in the build direction.

2. The chloride diffusion coefficient in the transverse direction was 186.1% to 407.1%
higher than that in the build direction. Chloride diffusion appeared to decrease
when printing was performed in the build direction because the output direction was
perpendicular to the chloride diffusion direction. In contrast, it appeared to increase
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when printing was performed in the transverse direction because the output direction
was parallel to the chloride diffusion direction.

In this study, the build orientation was limited to two types: build and transverse
directions. The specimen curing age was also limited to 28 days. In the future, we will
investigate the diversification of the build orientation (e.g., 15, 30, 45, 60, and 75◦) and the
long-term curing age after 28 days.

5. Conclusions

The influence of the output direction on the compressive strength ranges from 22.1%
to 26.5%, whereas its influence on the durability performance ranges from 186.1% to
407.1%. This shows that the influence of the output direction on the long-term durability
performance is greater than that on the short-term mechanical performance. Therefore,
it is necessary to examine the output direction that can secure durability performance in
advance for the long-term use (considering maintenance) of cementitious material-based
3D printing outputs. Therefore, when the BJ3DP outputs are produced based on cementi-
tious materials, the initial design and manufacturing methods should be determined by
examining the self-weight and external force directions in advance.

In this study, cementitious material-based outputs were additively manufactured
using BJ3DP. Because AM exhibits different mechanical properties depending on the build
orientation, the build orientation needs to be considered during design. It is also necessary
to examine the build orientation in advance to satisfy the performance required for the
use of cementitious material-based outputs as building members in the future. In further
research on the design and manufacturing of building members using BJ3DP, we intend to
set the output size, geometry, and material used as the research variables.

The separation of layer interface of BJ3DP caused by the loose microstructure with
more and larger pores leads to the degradation of durability, and it will be considered
in future work. Considering the importance of durability to the service life of concrete
structures, research on the durability of BJ3DP needs to be emphasized.
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