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Simple Summary: Weighted gene coexpression network analysis (WGCNA) is a novel approach
that can quickly analyze the relationships between genes and traits. In the past few years, studies
on the gene expression changes of dairy cow mammary glands were only based on transcriptome
comparisons between two lactation stages. Few studies focused on the relationships between gene
expression of the dairy mammary gland and lactation stage or milk composition in a lactation cycle.
In this study, we detected milk yield and composition in a lactation cycle. For the first time, we
constructed a gene coexpression network using WGCNA on the basis of 18 gene expression profiles
during six stages of a lactation cycle by transcriptome sequencing, generating 10 specific modules.
Genes in each module were performed with gene ontology (GO) annotation and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis. Module–trait relationship analysis showed a
series of potential candidates related to milk yield and composition. The current study provides an
important theoretical basis for the further molecular breeding of dairy cows.

Abstract: Weighted gene coexpression network analysis (WGCNA) is a novel approach that can
quickly analyze the relationships between genes and traits. In this study, the milk yield, lactose, fat,
and protein of Holstein dairy cows were detected in a lactation cycle. Meanwhile, a total of 18 gene
expression profiles were detected using mammary glands from six lactation stages (day 7 to calving,
−7 d; day 30 post-calving, 30 d; day 90 post-calving, 90 d; day 180 post-calving, 180 d; day 270
post-calving, 270 d; day 315 post-calving, 315 d). On the basis of the 18 profiles, WGCNA identified
for the first time 10 significant modules that may be related to lactation stage, milk yield, and the
main milk composition content. Genes in the 10 significant modules were examined with gene
ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
The results revealed that the galactose metabolism pathway was a potential candidate for milk yield
and milk lactose synthesis. In −7 d, ion transportation was more frequent and cell proliferation
related terms became active. In late lactation, the suppressor of cytokine signaling 3 (SOCS3) might
play a role in apoptosis. The sphingolipid signaling pathway was a potential candidate for milk fat
synthesis. Dairy cows at 315 d were in a period of cell proliferation. Another notable phenomenon
was that nonlactating dairy cows had a more regular circadian rhythm after a cycle of lactation. The
results provide an important theoretical basis for the further molecular breeding of dairy cows.
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1. Introduction

Bovine milk is not only the sole nutrition source of newborn dairy cows, but also an
important source of proteins, sugars, lipids, and other nutrients for humans [1,2]. The syn-
thesis, secretion, and storage of milk can only be carried out in the mammary glands; hence,
milk yield and quality depend on the mammary glands [3]. A lactation cycle is divided into
different lactation stages according to the daily milk yield of dairy cows [4–6]. Recently,
a few studies focused on mammary gland gene expression at limited lactation stages to
clarify the variation of gene expression profiles between different lactation stages [7–9].

The exploration of gene expression in dairy cow mammary glands at different lactation
periods is accompanied by upgrading the technology and analysis method. The measure-
ment of gene expression underwent changes from quantitative PCR to DNA microarray
and then to transcriptome sequencing [10–12]. Gradually, gene ontology (GO) annotation
and pathway analysis replaced the interaction analysis of limited differentially expressed
genes (DEGs) [10–13]. Studies using transcriptome sequencing as a means mainly focused
on comparing the gene expression of dairy cow mammary glands between two lactation
stages [8,9]. Almost none comprehensively analyzed alternations in the gene expression
of mammary glands in a lactation cycle combined with metabolomics and transcriptome
sequencing.

With the advent of high-throughput technology, methods such as a single gene differ-
ential expression analysis or cluster analysis often miss a lot of useful information when
faced with a complex network composed of a large amount of DNA, RNA or protein.
Therefore, a biological network analysis method emerged on the basis of global gene ex-
pression patterns [14–17]. One of the most useful methods is weighted gene coexpression
network analysis (WGCNA), which can be used in unweighted correlation networks to
alleviate multiple detection problems from big data analysis. WGCNA is used in some
studies on diseases and plants [14,18–20]. It has not been reported on the application of
WGCNA in the gene expression of dairy cow mammary gland up to now.

This study constructed for the first time a coexpression network of mammary gland
genes at six different stages of the lactation cycle on transcriptome sequencing data and
WGCNA, which then divided modules and mined specific modules. When combined
with the data about milk yield and composition, key terms and pathways in specific
modules were analyzed to reveal the underlying molecular mechanism in the relationship
of transcriptome and metabolite profiling.

2. Materials and Methods
2.1. Ethics Statement

This study was approved by the Institutional Animal Care and Use Committee
(IACUC) of the Yangzhou University Animal Experiments Ethics Committee (Permit
Number: SYXK (Su) IACUC 2016–0019). All animals were fed according to national
regulations.

2.2. Sample Collection

A total of 33 healthy Holstein dairy cows in their second lactation period were selected
from the Yangzhou University experimental farm. The 33 animals with similar body
weights were fed with total mixed ration (TMR) [9]. Milk samples of the 33 dairy cows
were collected from the left anterior mammary region on early lactation (30 days after
calving (30 d)), peak lactation (90 days after calving (90 d)), mid lactation (180 days after
calving (180 d)), and late lactation (270 days after calving (270 d)), and transported on
ice to the lab within 2 h for the determination of milk composition. Three Holstein dairy
cow (A, B, C) mammary glands were collected using surgical methods at six lactation
stages (−7 d, 30 d, 90 d, 180 d, 270 d, 315 d) [21]. In detail, the biopsy site was shaved
and disinfected with 75% ethanol, and 1 mL procaine was injected subcutaneously. Then,
the disinfected biopsy site was incised along the midpoint to collect the parenchymal
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mammary glands. Lastly, the parenchymal mammary glands were transferred to sterile
tubes and frozen in liquid nitrogen until RNA isolation.

2.3. Milk Composition Detection

Milk fat, protein and lactose concentrations were determined using mid-infrared
spectrometry (MilkoScan Minor, Foss Analytics, Hillerød, Denmark) [22]. The daily milk
yield of individual dairy cows was recorded in the experimental period.

2.4. RNA Extraction and cDNA Library Analysis

The mirVana™ miRNA Isolation Kit (Ambion-1561) was used for the extraction of total
RNA in each sample. Then, RNA integrity was measured on the Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) [14,23]. The samples with RNA Integrity
Number (RIN) of greater than or equal to 7 were analyzed subsequently.

The TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, RS-122-2101) was used for
the construction of 18 cDNA libraries [24], and the Illumina sequencing platform (HiSeqTM
2500) was used to sequence these libraries, generating 125 bp paired-end reads [25,26].
Raw data underwent recognition analysis to obtain original sequencing. To generate the
clean reads, raw reads were purified by removing ploy-N contained and low-quality reads.
Clean reads were mapped to reference bovine genome UMD3.1 [27].

Datasets were obtained from the NCBI Sequence Read Archive (SRA) (https://www.
ncbi.nlm.nih.gov/sra) with accession number SRR12136243 (−7 d), SRR12149783 (30 d), and
SRR12149843 (90 d), and the Genome Sequence Archive in the BIG Data Center, Beijing
Institute of Genomics (BIG), and the Chinese Academy of Sciences under accession number
CRA002742 (180 d, 270 d and 315 d), and are publicly accessible at http://bigd.big.ac.cn/gsa.

2.5. Weighted Gene Coexpression Network Analysis
2.5.1. Gene Coexpression Network Construction

Gene expression was calculated using the fragments per kilobase of exon model
per million mapped fragments (FPKM) method [28]. HtSeq-count 0.9.1 was used for the
generation of the read counts of each gene. The expression patterns of genes were examined
with principal component analysis (PCA). To demonstrate the dynamics of genes identified
in Holstein dairy cow mammary glands at different lactation stages, coexpression modules
were constructed using the WGCNA package tool [29]. First, genes with a 0 FPKM in all
samples were removed from analysis [30,31]. Pearson’s correlation coefficient matrix was
established the between gene pairs of all samples. Next, the influence of noise and spurious
associations was minimized by transforming the adjacency matrix into a topological overlap
matrix (TOM). Then, the generation of the hierarchical clustering of disparate matrices
relied on the hierarchical clusters (HCLUST) function. Lastly, these cluster trees were
divided using Dynamic Tree Cut with relevant parameter minModuleSize = 36. In this
process, genes with similar expression patterns could be combined in the same branch, and
each branch represented a coexpression module.

2.5.2. Interaction Analysis of Coexpression Modules

The exploration of the interactions between coexpression modules utilized a heat map
plot showing TOM according to the expression levels of genes [32]. In the heat map plot,
color depth was related to overlapping degree. Light color indicated low overlap and high
independence, and dark red indicated high overlap and low independence. In addition,
eigengene connectivity was analyzed to discover the interactions of the coexpression
modules [33]. Modules with only high independence and difference in the connectivity
effect compared to other modules could be used for subsequent module–trait relationship
analysis.

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://bigd.big.ac.cn/gsa
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2.5.3. Module–Trait Relationships Analysis

Module eigengenes calculated correlation coefficients between modules and external
traits to identify modules with biological significance [34]. Module–trait relationships
were visualized in heat maps. The intramodular connectivity of genes was calculated, and
genes with higher connectivity tended to be hub genes [14]. Genes in critical modules
were mapped to protein–protein interaction (PPI) networks of cattle to reveal the biological
activities and interactive relationships of proteins encoded by these genes. PPI networks
were visualized with Cytoscape software (3.7.1). In these PPI networks, yellow nodes
expressed the hub genes in each module.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and GO anno-
tation were performed to investigate the biological functions of genes in critical modules.
Significant KEGG pathway profiles and GO terms were visualized by Cytoscape software
(3.7.1) on the basis of network analysis of ClueGO/CluePedia inferred from molecular
complex detection (MCODE) clusters [35–37]. Pathways and terms with a p-value of less
than 0.05 were identified as significant pathways.

2.6. Sequencing Data Validation by qRT-PCR

Ten genes were selected to validate transcriptome sequencing data. The Light Cycler®

480 System (Roche, USA), TB Green® Premix Ex Taq™ II Kit (TaKaRa, RR820), and specific
primers (Table S1) were used for amplifications. Amplification was performed with three
biological repetitions and each biological repetition carried out three technical replicates.
Relative expression was calculated by the 2−∆∆Ct method using β-actin as the internal
reference.

2.7. Statistical Analysis

Statistical analyses of milk yield and composition were performed by two-way analysis
of variance (ANOVA) using the Tukey–Kramer adjusted generalized linear model (GLM)
procedures of Statistical Analysis Software (SAS) 9.4 (SAS Institute, Cary, NC, USA), and
presented as mean ± standard error (SE). qRT-PCR results are shown using Prism 6.02
(GraphPad, San Diego, CA, USA) and presented as mean ± standard deviation (SD).
Statistical significance (p < 0.05) was determined using Student’s t-test.

3. Results
3.1. Milk Yield and Component Results

Milk yield and component data are shown in Table 1. Milk yield and lactose content
were significantly increased from 30 to 90 d, and then constantly decreased from 90 to 270 d
(p < 0.05). Milk fat content continuously increased during the lactation period. Milk protein
content was stable from 30 to 90 d (p > 0.05) and then consistently rose with the increase in
lactation days (p < 0.05).

Table 1. Milk yield, milk lactose, milk fat and milk protein at different lactation stages (means ± SE).

Test Days 30 d 90 d 180 d 270 d SEM p

Milk yield (Kg) 32.65 b 34.40 a 31.12 c 26.46 d 0.13 <0.0001
Milk lactose (%) 5.05 b 5.11 a 5.04 b 4.93 c 0.01 0.0007

Milk fat (%) 3.40 d 3.48 c 3.58 b 3.87 a 0.02 <0.0001
Milk protein (%) 3.12 c 3.15 c 3.24 b 3.32 a 0.01 <0.0001

Note: a, b, c in the same row represent significant differences (p < 0.05).

3.2. Transcriptome Sequencing Data Analysis

To comprehensively reveal the dynamic changes of gene related lactation, a total
of 18 cDNA libraries were generated from three Holstein dairy cow (A, B, C) mammary
glands at six lactation stages. More than 70.01 GB raw bases and 0.56 GB raw reads were
generated in each library (Table S2). After quality control, the effectiveness rates of bases
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and reads were 97.27% and 97.31%, respectively. Q30 ratio was higher than 95.84% and GC
content was above 47.50%. Unique match reads were higher than 90.64% when clean reads
were aligned to the bovine reference genome (Table S3).

3.3. Gene Coexpression Network Construction

Gene abundances were estimated on basis of FPKM. PCA was used to visualize the
expression distribution of global genes and the result showed that genes in a cluster were
from three dairy cows at the same lactation stage, which indicated that differences in
gene expressions appeared at different lactation stages (Figure 1). Coexpression modules
were constructed using the WGCNA package tool to explore the expression patterns
of genes detected in 18 mammary gland samples from six lactation stages. First, we
confirmed that the correlation coefficient between gene pairs was 0.80. Then, to make
the network meet scale-free distribution, an appropriate weight of 18 and independence
of 0.85 were selected using the soft threshold tool of the WGCNA package (Figure S1).
A total of 11 modules composed of genes with similar expression patterns were generated
by cutting a dynamic hierarchical tree using the HCLUST function (Figure 2). The size of
11 coexpression modules marked with different colors depended on the number of genes
that they contained (Table 2). In addition, 10 genes were selected for qRT-PCR to validate
the reliability of transcriptome sequencing data (Figure 3). The expression patterns of the
10 genes in the qRT-PCR results were highly consistent with transcriptome sequencing data.

Table 2. The number of genes in the eleven coexpression modules.

Module Colors Red Purple Green Black Yellow Pink Blue Turquoise Brown Magenta Grey

Node Number 63 38 75 62 83 50 164 286 151 41 12,163
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3.4. Interaction Analysis of Coexpression Modules

According to the expression levels of genes, a heat map plot (Figure 4A) showing TOM
was generated to explore interactions between the eleven coexpression modules. There
were no differences between modules except for some high-brightness areas. In addition,
eigengene connectivity was analyzed to discover the interactions of the coexpression
modules. Eigengene cluster analysis showed that the eleven clusters divided into two
clusters (Figure 4B), in which a cluster contained a magenta module and the other cluster
contained the 10 remaining modules (red, purple, black, yellow, green, pink, turquoise,
blue, brown and grey modules).
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3.5. Module–Trait Relationships Analysis

The correlations of modules and lactation stages are shown in Figure 5A. There was a
significant positive correlation between −7 d and five modules: green (p = 0.01, r = 0.62),
turquoise (p = 0.01, r = 0.83), blue (p = 0.01, r = 0.84), brown (p = 0.01, r = 0.89) and purple
(p = 0.04, r = 0.49) modules. Late lactation had a significant positive correlation with the
black module (p = 0.01, r = 0.71). Modules that were highly correlated with the dry period
were the purple (p = 0.04, r = 0.48), red (p = 0.01, r = 0.59), pink (p = 0.01, r = 0.74) and
yellow (p = 0.01, r = 0.60) modules.
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Correlations of modules and milk yield or component are shown in Figure 5B. One
module (magenta, p = 0.01, r = 0.57) was correlated with milk yield. Milk lactose content
showed significant positive correlation with the magenta module (p = 0.01, r = 0.57). Three
modules were significantly associated with milk fat: the black (p = 0.02, r = 0.55), purple
(p = 0.04, r = 0.48), and red (p = 0.04, r = 0.48) modules. The modules that were correlated
with milk protein content were the black (p = 0.05, r = 0.47), purple (p = 0.02, r = 0.55), red
(p = 0.01, r = 0.57) and pink (p = 0.02, r = 0.54) modules.

3.6. Functional Enrichment Analysis of Critical Modules

The results of GO enrichment and KEGG pathway analysis are shown in Figures 6–8.
The magenta module showed significantly high correlation with lactose synthesis and
milk yield. In the magenta module, genes were significantly enriched in the galactose
metabolism pathway (KEGG: 00052; Figure 6A-2, File S2). The green module contained
five terms involved in ion transportation, namely, the regulation of the metal ion transport
term (GO: 0010959), the ligand-gated ion channel activity term (GO: 0015276), the ion
channel complex term (GO: 0034702), the regulation of ion transmembrane transporter
activity term (GO: 0032412), and the regulation of calcium ion transport term (GO: 0051924;
Figure 6B-1, File S1). In the turquoise module, genes were significantly enriched in the
regulation of the epithelial cell proliferation term (GO: 0050678; Figure 6C-1, File S1). The
blue module contained the positive regulation of potassium ion transmembrane transport
term (GO: 1901381; Figure 7A-1, File S1). In the brown module, genes were significantly
enriched in the extracellular matrix component term (GO: 0044420; Figure 7B-1, File S1). In
the purple module, mostly significant terms were associated with cell proliferation, such
as the microtubule cytoskeleton organization term (GO: 0000226), the mitotic cell cycle
term (GO: 0000278), the spindle organization term (GO: 0007051), the mitotic cell cycle
checkpoint term (GO: 0007093), the attachment of spindle microtubules to kinetochore term
(GO: 0008608), and the regulation of cell division term (GO: 0051302) (Figure 7C-1, File S1).
The cell cycle pathway (KEGG: 04110) was also significantly enriched in the purple module
(Figure 7C-2, File S2). In the black module, GO analysis showed that genes in the following
terms were significantly enriched: the dicarboxylic acid transmembrane transporter activity
term (GO: 0005310), the dicarboxylic acid transport term (GO:0006835), the regulation of
protein processing term (GO: 0070613), the regulation of protein maturation term (GO:
1903317), the negative regulation of protein processing term (GO: 0010955), and the negative
regulation of protein maturation term (GO: 1903318; Figure 8A-1, File S1). In the red
module, significantly enriched pathways included the base excision repair pathway (KEGG:
03410), the sphingolipid signaling pathway (KEGG: 00600), and the glycosphingolipid
biosynthesis pathway (KEGG: 00601; Figure 8B-2, File S2). In the pink module, genes were
significantly enriched in the DNA replication pathway (KEGG: 03030), the base excision
repair pathway (KEGG: 03410), the nucleotide excision repair pathway (KEGG: 03420),
and the mismatch repair pathway (KEGG: 03430) (Figure 8C-2, File S2). In the yellow
module, genes were significantly enriched in the circadian rhythm pathway (KEGG: 04710;
Figure 8D-2, File S2).
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4. Discussion

Traditional biological research on factors affecting life activities is usually based on
exploring the molecular mechanisms of DNA, mRNA, or proteins [15]. The limitations of
traditional biological research were exposed with the rapid development of sequencing
technology, namely, it only has importance in revealing the genetic mechanism of specific
traits, but it cannot fully and effectively mine biological significance contained in massive
data [38–41]. WGCNA is an effective data mining method compared with other regula-
tory networks, modularizing large data sets to obtain coexpression modules with high
biological significance on the basis of the similar expression patterns of genes [42]. In recent
years, WGCNA has been applied to explore the life activity characteristics of humans and
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plants [14,18–20]. However, studies on cattle using the WGCNA method have never been
reported. In the current study, we constructed a coexpression network of genes in Holstein
dairy cow mammary glands at six different stages from a lactation cycle for the first time
and found 10 specific modules associated with lactation stages, milk yield, lactose, fat, and
protein content.

The magenta module showed positive correlations with milk yield and lactose content,
respectively (Figure 5B). In addition, the milk lactose content and milk yield were positively
correlated according to our findings and also those of previous studies [43,44]. Lactose
is a major milk osmolyte which allows fluid to be drawn into milk secretory vesicles,
influencing milk volume, and subsequently, requires a substantial amount of lactose [44,45].
Milk lactose synthesis uses glucose absorbed by bovine mammary epithelial cells (BMECs)
as a substrate. Function analysis showed that the galactose metabolism pathway (KEGG:
00052) was significantly enriched in the magenta module (Figure 6A-2, File S2). In the
galactose metabolism pathway, lactalbumin alpha (LALBA) as a mammary epithelial-
specific protein is a subunit of lactose synthase, and regulates the synthesis and secretion
of lactose [46]. Previous studies indicated that the abundance of LALBA in the mammary
glands of lactating dairy cows was higher than that in the mammary glands of nonlactating
dairy cows [8,47].

The green, turquoise, blue, brown, and purple modules were respectively positively
correlated with −7 d. Ion transportation was more frequent in this period (Figure 5A).
The positive regulation of the potassium ion transmembrane transport term (GO: 1901381)
was activated in the blue module (Figure 7A-1, File S1). Five terms in the green mod-
ule were involved in ion transportation, namely, the regulation of metal ion transport
term (GO: 0010959), the ligand-gated ion channel activity term (GO: 0015276), the ion
channel complex term (GO: 0034702), the regulation of ion transmembrane transporter
activity term (GO: 0032412), and the regulation of calcium ion transport term (GO: 0051924;
Figure 6B-1, File S1). Another characteristic of this period was that the proliferation of
BMECs significantly increased [48]. In the purple module, mostly significant terms were
associated with cell proliferation, such as the microtubule cytoskeleton organization term
(GO: 0000226), the mitotic cell cycle term (GO: 0000278), the spindle organization term (GO:
0007051), the mitotic cell cycle checkpoint term (GO: 0007093), the attachment of spindle
microtubules to kinetochore term (GO: 0008608), and the regulation of cell division term
(GO: 0051302; Figure 7C-1, File S1). The cell cycle pathway (KEGG: 04110; Figure 7C-2,
File S2) in the purple module and the regulation of epithelial cell proliferation term (GO:
0050678; Figure 6C-1, File S1) in the turquoise also contributed to BMECs proliferation
during this period. The mammary gland is a dynamic organ that undergoes cycles of cell
proliferation, differentiation, and apoptosis during adult life. The number of mammary
gland cells is an important factor determining milk production and the newly formed cells
are about 50% of the original cells in the mammary gland of dairy cows [49].

The black module was positively correlated with late lactation (270 d) (Figure 5A).
The negative regulation of the protein processing term (GO: 0010955) and the negative
regulation the of protein maturation term (GO: 1903318) were significantly enriched in
this module (Figure 8A-1, File S1). This indicated that the mammary glands of dairy cows
attenuated protein synthesis. The apoptosis and decrease in mammary gland cells are
characteristics of mammary gland regression in late lactation [50], which is the reason
why daily milk yield decreased in late lactation. A study confirmed that the suppressor
of cytokine signaling 3 (SOCS3)-deficient mammary glands displayed an increase in ep-
ithelial apoptosis and tissue remodeling, indicating that SOCS3 was a vital attenuator of
pro-apoptotic pathways in developing mammary glands [51]. This was consistent with
our findings that SOCS3 regulated apoptosis during involution, which exhibited higher
expression in late lactation and dry period versus early, peak, and mid lactation.

The purple, red, pink, and yellow modules were positively correlated with the dry
period (315 d) (Figure 5A). Pathway analysis showed that genes in the purple module
were significantly enriched in the apoptosis (KEGG: 04215) and cellular senescence (KEGG:
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04218; Figure 7C-2, File S2); the apoptosis and decrease in mammary gland cells were
continued in 315 d. Moreover, in the purple module, we found some terms and pathways
associated with cell proliferation: the microtubule cytoskeleton organization term (GO:
0000226), the mitotic cell cycle term (GO: 0000278), the spindle organization term (GO:
0007051), the mitotic cell cycle checkpoint term (GO: 0007093), the attachment of spindle
microtubules to kinetochore term (GO: 0008608), the regulation of cell division term (GO:
0051302; Figure 7C-1, File S1), and the cell cycle pathway (KEGG: 04110; Figure 7C-2,
File S2) in the purple module. We speculated that the reason for cell proliferation during this
period was that mammary glands were repairing themselves after a cycle of lactation [9].
Correspondingly, in the pink and red modules, pathways related to DNA replication were
activated in the dry period, which contained the DNA replication (KEGG: 03030), base
excision repair (KEGG: 03410), nucleotide excision repair (KEGG: 03420), and mismatch
repair pathways (KEGG: 03430; Figure 8C-2, File S2). In the yellow module, genes were
significantly enriched in the circadian rhythm pathway (KEGG: 04710; Figure 8D-2, File
S2), meaning that the mammary glands of dairy cows had increased circadian rhythm in
the dry period compared to that in the other periods.

The black and red modules were positively correlated with dairy fat (Figure 5B). In the
red module, the sphingolipid signaling (KEGG: 00600) and glycosphingolipid biosynthesis
(KEGG: 00601) were also found to be potential candidates for lipid metabolism in lactation
mammary glands (Figure 8B-2, File S2). Sphingolipids are a major component of polar
milk fat globule membrane (MFGM) [52]. Milk fat globules (MFGs), the main form of
lipids, are necessarily enveloped by the MFGM to be released into the alveolar lumen
through exocytosis [53]. The main components of dairy fat are triglycerides (TGs) [54],
which contain one glycerol molecule and three fatty acid molecules [55]. In the black
module, the activation of the dicarboxylic acid transmembrane transporter activity term
(GO:0005310) and dicarboxylic acid transport term (GO:0006835) provided dicarboxylic
acids for the synthesis of TGs. In addition, the black module was positively correlated
with milk protein. GO analysis evidenced that numerous terms in the black module were
related to milk protein, including the regulation of the protein processing (GO: 0070613)
and protein maturation (GO: 1903317; Figure 8A-1, File S1) terms.

5. Conclusions

We constructed, for the first time, a gene coexpression network related to 18 gene
expression profiles in Holstein dairy cow mammary glands during six stages of lactation by
transcriptome sequencing, characterized the genes’ temporal patterns, detected milk yield
and the content of milk composition, and revealed the biological significance pathways
and genes associated with milk yield and composition. The current study provides an
important theoretical basis for the further molecular breeding of dairy cows.
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