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Background: The growing awareness for the high prevalence of obstructive sleep apnea (OSA) coupled with the
dramatic proportion of undiagnosed individuals motivates the elaboration of a simple but accurate screening
test. This study assesses, for thefirst time, the performance of oximetry combinedwith demographic information
as a screening tool for identifying OSA in a representative (i.e. non-referred) population sample.
Methods:A polysomnography (PSG) clinical database of 887 individuals from a representative population sample
of São Paulo's city (Brazil) was used. Using features derived from the oxygen saturation signal during sleep pe-
riods and demographic information, a logistic regression model (termed OxyDOSA) was trained to distinguish
between non-OSA and OSA individuals (mild, moderate, and severe). The OxyDOSA model performance was
assessed against the PSG-based diagnosis of OSA (AASM 2017) and compared to the NoSAS and STOP-BANG
questionnaires.
Findings: The OxyDOSAmodel had mean AUROC= 0.94± 0.02, Se= 0.87± 0.04 and Sp= 0.85± 0.03. In par-
ticular, it did not miss any of the 75 severe OSA individuals. In comparison, the NoSAS questionnaire had AUROC
=0.83± 0.03, andmissed 23/75 severe OSA individuals. The STOP-BANG had AUROC=0.77± 0.04 andmissed
14/75 severe OSA individuals.
Interpretation: We provide strong evidence on a representative population sample that oximetry biomarkers
combinedwith few demographic information, the OxyDOSAmodel, is an effective screening tool for OSA. Our re-
sults suggest that sleep questionnaires should be used with caution for OSA screening as they fail to identify
many moderate and even some severe cases. The OxyDOSA model will need to be further validated on data re-
corded using overnight portable oximetry.

© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Obstructive sleep apnea (OSA) is a public health problem that affects
a large part of the general adult population with [1,2] up to 50% of the
general adult male population and 23% of the general adult female pop-
ulation [2]. It is estimated that a large proportions of individuals with
OSA are undiagnosed and untreated [3–5]. Several studies have shown
that if untreated, OSA increases the risk of cardiovascular diseases [6],
metabolic syndrome [7] and diabetes [8]. Undiagnosed and untreated
OSA is associated with behavioral alteration [9], workplace productivity
en access article under the CC BY-NC
losses and increased motor vehicle accidents due to sleepiness on the
road, leading to high clinical and economical costs [10].

OSA screening is a priority so that treatment can be instituted before
a major health effect of OSA develops [11]. While polysomnography
(PSG) is the gold standard for diagnosing OSA, it is not suitable for
mass screening due to its high cost and lack of accessibility. A screening
toolmust be less expensive andmore convenient than the standard PSG
albeit some loss of accuracy [11]. Tools that have been studied for OSA
screening include questionnaires, analysis of upper airwaymorphology
[12] and monitoring of biosignals using portable technologies [13–16].
OSA screening can be performed on the general population or in a clin-
ical setting for a specific group of patients.

Overnight drops in oxygen saturation is characteristic of individuals
with OSA. In addition, it is possible that the repetitive nocturnal hypox-
emia in OSA causes oxidative stress contributing to the pathogenesis of
cardiovascular morbidity [17,18]. Thus, oximetry is a good candidate for
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Study database. The diagnosis is based on the ICSD-3 and AASM2017 guidelines and using
the recommended rule for hypopnea.

Diagnosis Number Percentage (%)

Non-OSA 503 56.7
Mild OSA 206 23.2
Moderate OSA 103 11.6
Severe OSA 75 8.5
Total 887

Research in context

Evidence before this study

The need for a mass screening tool for OSA has motivated the
research and development of sleep questionnaires (e.g. STOP-
BANG, NoSaS) and single channels monitors in identifying pa-
tients at risk of OSA. Oximetry has been studied as a candidate
for single channel monitoring of OSA. However, the performance
of these screening options on a representative population sample
has not been studied and their robustness against using different
hypopnea rules (recommended/alternative) and scoring indexes
(AHI/RDI) has not been assessed.

Added value of this study

This research shows, for the first time, that biomarkers derived
from oximetry are accurate predictors for mass OSA screening on
a large (n=887) representative population sample. This research
demonstrates that sleep questionnaires miss important clinical
cases of OSA. By adding oxygen saturation based biomarkers to
the predictive model (OxyDOSA), all the important clinical cases
are identified. Finally, we demonstrate the robustness of the
OxyDOSA model when using the recommended and acceptable
rules for hypopneas as well as when using different diagnostic in-
dexes (AHI/RDI).

Implication of all available evidence

The OxyDOSA model that combines some demographic infor-
mation and oxygen saturation biomarkers is an accurate and ro-
bust test for mass OSA screening. In comparison, the reliability
of sleep questionnaires for OSA screening is limited because
they fail to identify some serious cases of OSA.
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OSA screening, both because overnight oxygen desaturations are bio-
markers of the disease and because they might best reflect the conse-
quences of the disease on cardiovascular function. Oximetry has been
studied as a screening tool in sleep clinic patients [19–22], in surgical
patients [23] or group of individuals with specific comorbidities – see
del Campo et al. [24] and Uddin et al. [25] for comprehensive reviews.
However, no study evaluated the diagnostic performance of oximetry
combined with demographic information on a representative popula-
tion sample. In addition, no study assessed the stability of such model
across different diagnostic hypopnea rules (recommended and alterna-
tive) and scoring indexes (apnea hypopnea index and respiratory dis-
turbance index).

This study focuses on assessing the potential of automated oximetry
analysis as an accurate screening tool for OSA on a representative pop-
ulation sample. For that purpose, oximetry derived features as well as
demographic informationwere used to train a logistic regression classi-
fier. The predictive value of this model, termed the Oxygen saturation
and Demographics based model for OSA (OxyDOSA) was evaluated
against the reference polysomnographic and clinical diagnosis (AASM
2017 [26]) and compared to the performance of the STOP-BANG [27]
and the recently introduced NoSAS questionnaire for OSA screening
[28]. The NoSAS is based on a subset of the STOP-BANG questionnaire
features, namely: age, sex, BMI, neck circumference and snoring. The
predictive performances of the OxyDOSA are evaluated for different
hypopnea rules and scoring indexes.
2. Methods

2.1. Database

Weused the São Paulo Epidemiologic Sleep Study (EPISONO) cohort
study database [1,29] which consists of a sleep surveywith a probabilis-
tic three-stage cluster sample of São Paulo inhabitants representative of
the population according to gender, age (20–80 years), and socio-
economic status. Face-to-face interviews and in-lab full-night PSG
using a nasal cannula and a thermistor were performed. A total of
1042 volunteers underwent PSG (refusal rate = 5.4%). The data were
recorded using the Embla system (Embla S7000, Embla Systems, Inc.,
Broomfield, CO., USA). The Nonin XPODpulse oximeter (NoninMedical,
Inc., Plymouth, Minnesota, USA) was used by the Embla system for re-
cording. The signal was sampled at 3 Hz and with accuracy ±2%.
Since the time of the original EPISONO study in 2007 [1] the diagnostic
recommendations provided by the American Academy of Sleep Medi-
cine (AASM) have changed. Thus, in order to use the most recent diag-
nostic guidelines the PSG recordings were fully rescored according to
the newest guidelines. The updated diagnosis used in this work follows
the AASM 2017 guidelines [30]. We used the recommended rule for the
definition of hypopneas. OSA severity was defined with respect to the
AHI, as mild (5 ≤ AHI b 15), moderate (15 ≤ AHI b 30) and severe (AHI
≥ 30). The data from 887 patients (Table 1) could successfully be
rescored using the 2017 AASM [30] guidelines (see Supplement 1.1 for
more details).

2.2. Classes

Because the end goal of the screening test is to identify patients with
OSA versus non-OSA, the following binary classification task was con-
sidered: OSA (mild, moderate, and severe) versus non-OSA. Although
the identification of moderate and severe OSA individuals is critical, an
OSA screening test should also aim at identifying mild OSA. Moderate
and severe OSA patients are the individuals a screening test should
not miss because these patients will need to be treated. By opposition,
a mild OSA patient may not be systematically treated with CPAP [24].
However, mild identification is important because the condition can
further develop and they might benefit from making lifestyle changes
such as sleeping on the side or changing their diet. In particular,
Tuomilehto et al. [25] showed that early weight reduction was a cura-
tive treatment for the vast majority of patients with mild OSA. In addi-
tion, there is some evidence that even patients suffering from mild
OSA may be at risk of hypertension [26], car accident [27] and that
they can benefit from treatment [28]. However, in order to take into ac-
count, the relative importance between mild versus moderate versus
severe individuals, the cost function of the logistic regression classifier
was penalized with weights 1, 5 and 10 for misclassifying mild, moder-
ate and severe respectively. This emphasizes the logistic regression
model to recognize moderate and severe cases.

2.3. Features

We used the following oxygen saturation features: the 3% oxygen
desaturation index (ODI), themean oxygen saturation (MSpO2), lowest



Table 3
Ordinal valued features.

Feature Healthy
(n = 503)

Mild
(n = 206)

Moderate
(n = 103)

Severe
(n = 75)

Freq. daytime fatigue
– Never 166 89 36 37
– 1–2×/month 33 9 8 5
– 1–2×/week 127 49 25 16
– 3–4×/week 48 10 10 1
– Daily 129 49 24 16

(503/503) (206/206) (103/103) (75/75)

Snoring Level
– Never 245 42 17 3
– As loud as breathing 100 54 23 14
– As loud as talking 75 39 25 20
– Louder than talking 24 17 11 10
– Can be heard in another room 25 41 24 27

(469/503) (193/206) (100/103) (74/75)

Freq. Observed Stop Breathing
– Never 278 106 54 28
– 1–2×/month 25 17 7 9
– 1–2×/week 13 10 3 5
– 3–4×/week 10 5 4 4
– Daily 25 22 17 17

(351/503) (160/206) (85/103) (63/75)

High BP
– Yes 77 57 40 42
– No 393 133 57 32

(470/503) (190/206) (97/103) (74/75)

Gender
– Female 321 94 43 29
– Male 182 112 60 46

(503/503) (190/190) (103/103) (75/75)

The numbers in parenthesis indicate the number of individuals for whom the information
was recorded out of the given subset. BP: blood pressure.
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value of oxygen saturation (SpO2 Nadir), and the proportion of time
spent with oxygen saturation under 90% (T90). The locations of the
desaturations returned by the Embla monitor were used to compute
the ODI and we computed the other oxygen saturation features from
the raw oxygen saturation time series. We defined the SpO2 Nadir fea-
ture as the first percentile of the valid oxygen saturation time series
i.e. excluding areas with abnormal values as returned by the oximeter.
The raw demographic features used for the STOP-BANG questionnaire
were also available from the study (Tables 2 and 3). Fig. S1 and S2
show the distributions/bar plots obtained for each feature and
Tables 2 and 3 show their median and interquartile ranges.

2.4. Machine Learning

The classifier model must identify the highest number of individuals
with OSA even to the detriment of having a higher proportion of false
positive (i.e. we seek a high sensitivity). However, too many false posi-
tive (i.e. a low specificity) will overload sleep clinicswith non-OSA indi-
viduals which is time consuming and costly. Typically, OSA sleep
questionnaires or oximetry based algorithms are evaluated using heu-
ristics or simple thresholding over a number of scored answers or a
hard ODI threshold. In this work, we used logistic regression to elabo-
rate our machine learningmodels. We performed nested cross fold val-
idation by rotating the test set using 5-folds with stratification of the
individuals falling in the two classes (non-OSA/OSA). This was done in
order to be able to report the average performances of the models on
thewhole dataset. Feature selectionwas performed using least absolute
shrinkage and selection operator (Lasso) [31]. Feature selection enables
to select the combination of oxygen saturation and demographic fea-
tures that give the best predictive value to a given logistic regression
model. For each model being trained the dataset is divided into: 64%
training, 16% validation and 20% test set.

Repeated random sub-sampling validation [4] (100 runs)with strat-
ification was performed for eachmodel on the training set (see Fig. S3).
In short, nested cross-validation consists of: [1] an outer k-fold cross-
validation loop that is used to split the data into training and test
folds. We used 5-folds cross-validation for the outer loop and the 5-
folds were divided the same way for all models evaluated; [2] an inner
loop which is used to select the model using cross-validation on the
training set. We used repeated random sub-sampling validation for
the inner loop. Model parameters are set by the analysis of the models
prediction on the validation sets (inner loop). Then, themodel is trained
on the whole training set and evaluated on the separate test set (outer
loop). Based on the outer test folds, the average and variance
Table 2
Median (MED) and interquartile range (±IQR) statistics on oxygen saturation based features a

Type Feature Non-OSA
(n = 503)

MED (±IQR)

Mild OSA
(n = 206)

MED (±IQR)

SpO2 ODI 0.42 ± 1.00
(503/503)

3.32 ± 3.55
(206/206)

MSpO2 96.4 ± 1.6
(503/503)

94.9 ± 1.8
(206/206)

SpO2 Nadir 94.0 ± 2.0
(503/503)

92.0 ± 3.0
(206/206)

T90 0.000 ± 0.0001
(503/503)

0.0010 ± 0.006
(206/206)

DE Age 34.00 ± 17.00
(503/503)

47.00 ± 18.00
(206/206)

Neck Circ. 34.00 ± 4.70 (486/503) 37.00 ± 5.00
(202/206)

BMI 24.56 ± 5.30
(502/503)

27.34 ± 5.59
(205/206)

The 3% oxygen desaturation index (ODI), the mean oxygen saturation (MSpO2), lowest value of
The numbers in parenthesis indicate the number of individuals for whom the informationwas r
ODI and other oxygen saturation features are computed over the total recording time.
performance of themodels are reported. This allows to evaluate the pre-
dictive capacity of a model type on the whole database. Stratification
consisted in ensuring that each fold had the same percentage of OSA
and non-OSA individuals. Repeated random sub-sampling validation
used in the inner loop consists of randomly selecting part of the training
set data for training the model and part for validation while repeating
this process a number of times (100 times in this study). The statistics
of the classifiers are reported on the test sets for a threshold at 0.5. In
order to train the LRmodel, themissing data were replaced by the aver-
age value of the correspondingmissing feature across all the training set
nd demographic features.

Moderate OSA
(n = 103)

MED (±IQR)

Severe OSA
(n = 75)

MED (±IQR)

p-value
Kruskal-Wallis

9.40 ± 5.82
(103/103)

23.32 ± 18.77
(75/75)

1.1e-116

94.7 ± 2.2
(103/103)

93.5 ± 2.2
(75/75)

1.1e-52

90.0 ± 3.0
(103/103)

86.0 ± 7.0
(75/75)

5.5e-84

2 0.0090 ± 0.0239
(103/103)

0.0435 ± 0.0914
(75/75)

3.5e-83

50.00 ± 20.00
(103/103)

57.00 ± 16.50
(75/75)

4.8e-46

38.10 ± 5.35
(98/103)

39.00 ± 7.15
(74/75)

3.1e-32

28.39 ± 5.92
(103/103)

29.24 ± 8.07
(75/75)

2.9e-29

oxygen saturation (SpO2 Nadir), and the proportion of time spent with SpO2 b 90% (T90).
ecorded out of the given subset. BMI: bodymass index, Neck Circ.: neck circumference. The
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individuals. Features were normalized by subtracting the mean and di-
viding by the standard deviation (z-transform) computed on the train-
ing sets.

Four sets of classifiers were evaluated for comparison: LR-SB for
which classifiers were trained using all the raw demographic features
provided by the STOP-BANG questionnaire [27]; LR-ODI for which clas-
sifierswere trained using the oxygen desaturation index as the sole fea-
ture; LR-SpO2 for which classifiers were trained using the four oxygen
saturation features available; the OxyDOSA model for which classifiers
were trained using features selected (using Lasso) among all oxygen
saturation and the raw demographic features available. Table 4 de-
scribes inmore details the list of the features used for each set ofmodels
evaluated. In order tomake anobjective comparison between thediffer-
ent models, the same divisions between training and test sets (i.e. divi-
sion of the folds) were used for all models.
2.5. Statistics

The statistics used were sensitivity (Se), specificity (Sp), positive
predictive value (PPV), negative predictive value (NPV), accuracy (Ac)
and the harmonic mean between the Se and PPV termed F1 measure.
In the context of this study these are defined as: Se, the percentage of in-
dividuals with OSA that have been correctly identified as OSA out of the
whole OSA population; Sp, the percentage of individuals without OSA
that have been identified as such out of thewhole non-OSA population;
PPV, the percentage of individuals correctly identified as havingOSA out
of all the individuals that were predicted as having OSA; NPV, the per-
centage of individuals correctly identified as non-OSA out of all the indi-
viduals that were predicted as not having OSA; Ac, the percentage of
individual accurately classified. We also report the area under the re-
ceiver operator curve (AUROC). Finally, we also report the per-
subclass sensitivities (Se-mild, Se-moderate and Se-severe) since mis-
classification of mild individuals does not have the same clinical impli-
cation than the misclassification of moderate and severe OSA
individuals.
Table 4
List of the features used for each of the models evaluated.

Feature SB NoSAS LR-SB LR-ODI LR-SpO2 OxyDOSA

1 Score Snore ×
2 Score Tired ×
3 Score Stop Breathing ×
4 Score High BP × × ×
5 Score BMI ×
6 Score Age ×
7 Score Neck Circ. ×
8 Score Gender × × × ×
9 Raw Snoring Level ×* × ×
10 Raw Freq. Daytime

Fatigue
× ×

11 Raw Freq. Observed Stop
Breathing

× ×

12 Raw BMI × × ×
13 Raw Age × × ×
14 Raw Neck Circ. × × ×
15 ODI × × ×
16 T90 × ×
17 MSpO2 × ×
18 SpO2 Nadir × ×

SB: STOP-BANG, BP: blood pressure, BMI: body mass index, ODI: oxygen desaturation
index, T90: time spent with SpO2 b 90%. MSpO2: mean oxygen saturation, SpO2 Nadir:
lowest value of oxygen saturation. Score values relate to the yes/no scored answer to
the STOP-BANG questionnaire whereas raw values represent the raw values of the fea-
tures used to answer the STOP-BANG questions. * For the NoSAS, snoring was considered
positive if the answer to the snoring level was at least “As loud as breathing”.
2.6. Role of the funding sources

The original clinical trial of the EPISONO study [1,29] was supported
by theAssociação Fundo de Incentivo a Pesquisa (AFIP), Coordenação de
Aperfeicoamento de Pessoal de Nível Superior (CAPES) and São Paulo
Research Foundation (FAPESP).

3. Results

Fig. 1 shows the overall distributions of the logistic regression classi-
fiers outputs by OSA severity. Any individual having a probability supe-
rior to the threshold represented by the dotted horizontal line will be
predicted as having OSA. Relative to this threshold, Table 5 summarizes
the performance of the four logistic regression models, STOP-BANG and
NoSAS questionnaires on the whole dataset (n = 887); the LR-SB ob-
tained AUROC = 0.87 ± 0.04, the LR-ODI obtained AUROC = 0.92 ±
0.01, the LR-SpO2 obtained AUROC = 0.92 ± 0.02 and the OxyDOSA
model obtained AUROC = 0.94 ± 0.02. The STOP-BANG and NoSAS
questionnaires obtained AUROC = 0.77 ± 0.04 and AUROC = 0.83 ±
0.03 respectively. Fig. 2 shows the receiver operating characteristic
curves obtained on the rotated test sets. The maximal AUROC and Se
were obtained for theOxyDOSA (Table 5). Analysis of the feature impor-
tance of OxyDOSA showed that ODI, Age and the Snoring Level were the
most relevant features (Fig. 3) in elaborating the predictive model.
Study of the false negatives for the NoSAS (Table 5) showed that a
total of 208 patients with OSA were not identified among which 139
were mild (67% of all mild cases), 46 were moderate (45% of all moder-
ate cases) and 23 had severe OSA (31% of all severe cases). Similarly the
STOP-BANG missed many moderate and severe cases (Table 5). The
AUROC for the STOP-BANG and NoSAS were AUROC = 0.77 ± 0.04
and AUROC= 0.83 ± 0.03 respectively. LR-SB missed very fewmoder-
ate (3/103) and severe (2/75) cases and it had anAUROC=0.87±0.04.
However, LR-SB had a low Sp = 0.64 ± 0.05.

There were no significant differences between using the ODI only
(LR-ODI) and using all the four available oxygen saturation features
(LR-SpO2). The LR-ODI had AUROC = 0.92 ± 0.01, Se = 0.82 ± 0.03
and Sp = 0.88 ± 0.03 (Table 5). A total of 69 OSA individuals were
not identified by LR-ODI among which 63 were mild (31% of all mild)
and 6 were moderate (6% of all moderate).

The OxyDOSA model had AUROC = 0.94 ± 0.02, Se = 0.87 ± 0.04
and Sp = 0.85 ± 0.03. The study of the false negatives for OxyDOSA
showed that 49 patients with OSA were not identified among which
48 were mild (23% of all mild cases), and only one was moderate
(0.97% of all moderate cases). The standard deviations of all the perfor-
mance statisticswere small (Table 5) thus demonstrating the stability of
the model.

Table S1 summarizes the individuals' reference diagnosis when
using the acceptable rule for hypopnea definition (AHI A2017) and
when using the respiratory disturbance index (RDI). Depending on
the hypopnea rule used and the index (AHI/RDI), the prevalence of
OSA varied from 28.1% to 51.2%.

The Kruskal–Wallis testwas conducted to examine the differences be-
tween the features reported in Table 2 for patients in the different sub-
groups (non-OSA, mild, moderate, severe). For all the features of Table 2
the test rejected the null hypothesis that the sample data come from
the same distribution under the null hypothesis: Age (χ2 = 213.6, p =
4.8e−46, df = 3), Neck Circ. (χ2 = 149.6, p = 3.1e-32, df = 3), BMI
(χ2 = 135.9, p = 2.9e−29, df = 3), ODI (χ2 = 539.9, p = 1.1e−116,
df = 3), MSpO2 (χ2 = 539.9, p = 1.1e−52, df = 3), SpO2Nadir (χ2 =
389, p = 5.5e−84, df = 3), T90 (χ2 = 385, p = 3.5e−83, df = 3).

4. Discussion

Our first major finding is that questionnaires (NoSAS and STOP-
BANG) performances are limited for accurate OSA screening as they
fail to identify some moderate and severe individuals (Table 5). It is



Fig. 1.Overall distributions (‘violin plots’) of logistic regressionmodels outputs for thedifferent groups of individuals (Non-OSA,mildOSA,moderateOSA, severeOSA). The threshold at 0.5
is displayed in dotted horizontal line. Any individual having a probability superior to this threshold will be predicted as having OSA by the LR model. The individual crosses highlight the
outlier individuals. In particular, note that the OxyDOSA model only misses one moderate out of all the moderate and severe patients. For the NoSAS the distributions were obtained by
normalizing the NoSAS score by the total number of points (i.e. NoSAS score divided by 17).
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important to note that theNoSAS questionnaire was originally designed
for identifying individuals with AHI N 20 [28]. It is thus not surprising
thatwithin the context of our study it had a lowoverall Se sincewe con-
sider as OSA all individuals having AHI N 5. Yet, the NoSAS missed over
45% of the moderate (15 ≤ AHI b 30) and 31% of the severe (AHI ≥ 30)
OSA cases which demonstrates some limitations of the model. In Craig
et al. [32], the authors showed on the MOSAIC randomized controlled
trial that continuous positive airway pressure improves sleepiness but
not calculated vascular risk in minimally symptomatic OSA individuals.
We thus decided to investigate whether the 14 severe cases missed by
the STOP-BANG were individuals with no symptoms reported as part
of the STOP-BANG. Table S2 summarizes the STOP-BANG answers for
these individuals together with the AHI and ODI. Out of the 14 patients:
two presented symptoms of snoring and 9 of daytime tiredness. Overall
out of the 14misclassified severe, 11 had at least one symptom. In addi-
tion, we investigated if the 14 STOP-BANG misclassified individuals
were “borderline” moderate. The mean AHI was 42.6 among these pa-
tients and four had an AHI above or equal to 50. One individual even
had an AHI of 77. These results suggest that the STOP-BANG missed
Table 5
Performance of the models (average and standard deviation for the test sets) evaluated agains

Statistics/model AUROC Ac F1 NPV PP

NoSAS 0.83 ± 0.03 0.72 ± 0.03 0.58 ± 0.07 0.69 ± 0.03 0.81 ±

STOP-BANG 0.77 ± 0.04 0.72 ± 0.02 0.65 ± 0.04 0.73 ± 0.03 0.70 ±

LR-SB 0.87 ± 0.04 0.75 ± 0.04 0.76 ± 0.04 0.89 ± 0.04 0.66 ±

LR-ODI 0.92 ± 0.01 0.85 ± 0.03 0.83 ± 0.03 0.87 ± 0.02 0.84 ±

LR-SpO2 0.92 ± 0.02 0.85 ± 0.02 0.82 ± 0.03 0.87 ± 0.03 0.82 ±

OxyDOSA 0.94 ± 0.02 0.86 ± 0.03 0.84 ± 0.04 0.90 ± 0.03 0.82 ±

Four sets of classifiers were evaluated for comparison. These are denoted: LR-SB for which clas
naire; LR-ODI forwhich classifierswere trainedusing the oxygen desaturation index as the sole
OxyDOSA for which classifiers were trained using features selected from all oxygen saturation
reported for the test sets.
clinically relevant cases. Interestingly, most of these cases were
women with neck-sizeb40 cm and BMI b 35 kg/m2. As a conclusion,
overall, questionnaires miss moderate and even some severe OSA
cases which highlight their limitation for accurate OSA screening in a
representative population sample.

Second, we show that by training a logistic regression model over
the raw demographic features (by opposition to binary answers to the
STOP-BANG/NoSAS questionnaires) of the STOP-BANG, the LR-SB
model outperform the STOP-BANG and NoSAS questionnaires signifi-
cantly: AUROC was 0.87 ± 0.04 for the LR-SB against 0.77 ± 0.04 and
0.83 ± 0.03 for the STOP-BANG and NoSAS respectively. This result en-
courages using raw features (rather than using ordinal valued features)
and weighting them with decimal weights (rather than with integer
weights). Although, the LR-SB loses some human ‘interpretability’, in
that it is not anymore the result of a sum of integers weighting each of
the questions, its higher performances should encourage the adoption
of such data-driven models. Investigation of the feature weights for
the LR-SB (Fig. S7) revealed that Age, Snoring Level, Neck Circumfer-
ence, BMI and Gender were the most predictive in accordance with
t the AHI R2017.

V Se Se-mild Se-moderate Se-severe Sp

0.04 0.46 ± 0.08
(176/384)

0.33 ± 0.04
(67/206)

0.54 ± 0.14
(57/103)

0.69 ± 0.14
(52/75)

0.92 ± 0.02
(463/503)

0.03 0.61 ± 0.05
(233/384)

0.47 ± 0.06
(97/206)

0.71 ± 0.13
(75/103)

0.81 ± 0.11
(61/75)

0.81 ± 0.02
(405/503)

0.04 0.90 ± 0.04
(345/384)

0.84 ± 0.04
(172/206)

0.97 ± 0.03
(100/103)

0.97 ± 0.06
(73/75)

0.64 ± 0.05
(324/503)

0.04 0.82 ± 0.03
(315/384)

0.70 ± 0.04
(143/206)

0.94 ± 0.04
(97/103)

1.00 ± 0.00
(75/75)

0.88 ± 0.03
(443/503)

0.01 0.83 ± 0.05
(317/384)

0.70 ± 0.07
(143/206)

0.96 ± 0.04
(99/103)

1.00 ± 0.00
(75/75)

0.86 ± 0.01
(435/503)

0.03 0.87 ± 0.04
(335/384)

0.77 ± 0.05
(158/206)

0.99 ± 0.02
(102/103)

1.00 ± 0.00
(75/75)

0.85 ± 0.03
(428/503)

sifiers were trained using all the demographic features used for the STOP-BANG question-
feature; LR-SpO2 forwhich classifierswere trained using all the oxygen saturation features;
and the demographic features available from the STOP-BANG questionnaire. Statistics are



Fig. 2. The receiver operating characteristic (ROC) curves obtained on the validation sets
for the following evaluated models: LR-SB, LR-SpO2 and OxyDOSA. The statistics
obtained for the NoSAS and STOP-BANG are also plotted as symbols. Crosses represent
the points on the ROC curves which were selected for the different logistic regression
models. Corresponding AUROC and other statistics are summarized in Table 5.
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the results of Marti-Soler et al. [28] in elaborating the NoSAS
questionnaire.

The thirdmajor finding is that using oximetry (LR-ODI and LR-SpO2)
it was possible to significantly outperform the questionnaires and the
LR-DE performances. This demonstrates that night oximetry is an accu-
rate predictor for OSA. However, although no severe cases weremissed,
oximetry alone still missed six (LR-ODI) and four (LR-SpO2) moderate
cases.

The fourthmajor finding is that by combining both the oximetry and
the demographic features we could further improve the prediction ac-
curacy of the logistic regression classifier (Table 5). We termed the
resulting model OxyDOSA. OxyDOSA did not missed any of the severe
cases and only one moderate case. Thus we showed that by using the
OxyDOSA model, we could identify all the important cases of OSA
while keeping a reasonable specificity (Sp = 0.85 ± 0.03).

In addition to the overall statistic performance of OxyDOSA, the
model has the merit to output a probability value of being OSA
Fig. 3. Box plots of the feature weights on the outer loop folds. This figure highlights the
relative importance of the different features in identifying individuals with OSA. This
shows that the OxyDOSA prediction mainly relies on the ODI, Age, Snoring Level, SpO2

Nadir, MSpO2, Gender, Neck Circumference and BMI.
(Fig. 1). This probabilistic output enables to distinguish between indi-
viduals who might be suffering from mild OSA from the more severe
cases. In particular, individuals with a clear positive test for OSA
would be diagnosed based on the oximetry test i.e. without the need
for a PSG. Conversely, individuals where oximetry and symptoms are
equivocal would be recommended to have a PSG. In order to evaluate
whether the prediction could be improved by usingmore advancedma-
chine learningmodels we tried a random forest approach. No improve-
ment was obtained with respect to logistic regression model. In
addition, we noted that combining oxygen saturation features (LR-
SpO2) versus using the ODI only feature (LR-ODI) did not significantly
improved the prediction of themodel with respect to LR-ODI. We inter-
pret the lack of improvement reached by usingmore advancedmachine
learningmodels and additional oxygen saturation features, to be due to
the intrinsic definition of sleep apnea i.e. the medical condition was
originally defined as an event count thus favoring very specific features
and their count rather than other characteristics embedded in the
signal.

Finally, to test whether our conclusions for the logistic regression
models were robust across different hypopnea rules (recommended/al-
ternative) and diagnostic indexes (AHI/RDI), we re-trained all the
models against the AASM 2017 guidelines using the alternative rule
(AHI A2017) and against the RDI based diagnosis for the recommended
and acceptable rules (RDI R2017 and RDI A2017). Table S1 summarizes
the number of individuals in each category with respect to the diagnos-
tic indexes and hypopnea scoring rule. Performance statistics and distri-
butions are provided in Tables S3–S5 and Figs. S4–S6. The OxyDOSA had
the largest AUROC in all cases and missed less moderate and severe
cases than the alternative models. The LR-SB provided improved results
over the NoSAS or STOP-BANG questionnaires in all instances. We also
noted that questionnaires performance varied significantly with respect
to the diagnostic index and the hypopnea rule used; for example, the
STOP-BANG sensitivity varied from 0.61 with AHI R2017 up to 0.73
with AHI A2017. This highlights that the questionnaires are tuned
against a particular diagnostic guideline, index and hypopnea rule. We
showed that the OxyDOSA can be trained against alternative guidelines
or diagnostic rules and that its comparative performances to other
models stays superior.

Untreated OSA increases healthcare utilization and reduces work
performance [33]. At present, connected oximetry for mass OSA screen-
ing may be particularly worthwhile for places with barriers to symp-
tomatic patients accessing diagnostic services but where those with a
positive diagnosis would be able to access CPAP treatment and long-
term follow-up.

4.1. Comparison with Other Studies

Theusage of oximetry as a test forOSA screeninghas been explored by
a number of other studies [19–22,34] – see del Campos et al. [24] and
Uddin et al. [25] for comprehensive reviews. However, often these studies
suffer from some important limitations: low sample size, old AASM diag-
nostic guidelines, hardODI threshold (instead of learning it from thedata)
and database biased toward a specific group of individuals (e.g. individ-
uals referred to the sleep clinic, preoperative patients or patients with
no other known pulmonary or cardiac condition). See Supplement 2.1
for more discussion. Our study offers a data-driven approach to create
an algorithm capable of screening OSA individuals from a single channel
sensor and few demographic features. We prove the viability of this ap-
proach on a large dataset (n = 887) of a representative population sam-
ple and using the latest AASM guidelines. We also show that our
conclusions are robust to the hypopnea rule and the diagnostic index.

4.2. Limitations

The Embla monitor we used only considers desaturations that hap-
pen during sleep periods. In order to use oximetry as a single channel
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test, all desaturation (i.e. including the ones that could be detected dur-
ingwake periods) should be considered. This point represents themain
limitation of this study. Second, although we used a relatively large
dataset of 887 patients, the data were recorded for a South American
population and thus it will be valuable to validate our conclusions on
a separate dataset from a different ethnic group such as the HypnoLaus
study [2]. Third, the oxygen saturation features that were used in this
study were obtained from oximetry of sleep studies performed in the
sleep clinic. It will be important to repeat a similar analysis on data re-
corded using a portable oximeter used within the patient home. Last,
we estimated the AHI A2017 and RDI A2017 (Table S1) using the origi-
nal oxygen desaturations annotations from the EPISONO study i.e. 3%
desaturations although the acceptable rule considers 4% desaturations.
Thus the AHI A2017 and RDI A2017 used are estimates.

4.3. Outlook on the Future of OSA Screening

The creation of intelligent algorithms combinedwith the ongoing in-
novations in designing novel wearable biosensors offers an unprece-
dented opportunity to monitor and manage patients remotely. In
particular, it is realistic to expect that in a near future oximetry will be-
come available in smartwatches such as the Apple watch (which al-
ready includes an ECG sensor). At this point the efforts necessary for
performing a night oximetry test for sleep apnea will become even
less than filling a sleep questionnaire online.

5. Conclusion

Our study shows on a representative population sample that oxime-
try combined with some minimal demographic information (the
OxyDOSA model) is a viable option for accurate mass OSA screening.
The OxyDOSA model had an overall Se = 0.87 ± 0.04 and Sp = 0.85
± 0.03 and identify all the most important OSA cases. In comparison,
the reliability of sleep questionnaires for OSA screening is limited be-
cause they fail to identify some serious cases of OSA (moderate and se-
vere). The elaboration of data-driven screening tests in combination to
the development of wearable biosensors will enable mass remote
screening andmonitoring of OSA. The OxyDOSA has been implemented
as a web app and is available at: https://aim-lab.github.io/oxydosa.html
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