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Abstract

Background: Tamoxifen is the most widely used drug for treating patients with estrogen receptor-sensitive breast cancer. 
There is evidence that breast cancer patients treated with tamoxifen exhibit cognitive dysfunction. However, the underlying 
neural mechanism remains unclear. The present study aimed to investigate the neural mechanisms underlying working 
memory deficits in combination with functional connectivity changes in premenopausal women with breast cancer who 
received long-term tamoxifen treatment.
Methods: A total of 31 premenopausal women with breast cancer who received tamoxifen and 32 matched healthy control 
participants were included. The participants completed n-back tasks and underwent resting-state functional magnetic 
resonance imaging, which measure working memory performance and brain functional connectivity, respectively. A seed-
based functional connectivity analysis within the whole brain was conducted, for which the dorsolateral prefrontal cortex 
was chosen as the seed region.
Results: Our results indicated that the tamoxifen group had significant deficits in working memory and general executive 
function performance and significantly lower functional connectivity of the right dorsolateral prefrontal cortex with the 
right hippocampus compared with the healthy controls. There were no significant changes in functional connectivity in 
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the left dorsolateral prefrontal cortex within the whole brain between the tamoxifen group and healthy controls. Moreover, 
significant correlations were found in the tamoxifen group between the functional connectivity strength of the dorsolateral 
prefrontal cortex with the right hippocampus and decreased working memory performance.
Conclusion: This study demonstrates that the prefrontal cortex and hippocampus may be affected by tamoxifen treatment, 
supporting an antagonistic role of tamoxifen in the long-term treatment of breast cancer patients.

Keywords:  breast cancer, endocrine therapy, working memory, functional connectivity, tamoxifen

Introduction
Endocrine therapies are an important component of system-
atic treatment for breast cancer. Tamoxifen (TMX), one type of 
endocrine therapeutic agent, is the most widely used drug for 
treatment of patients with estrogen receptor-sensitive breast 
cancer. TMX is a selective estrogen receptor modulator. It exerts 
differential effects by binding to estrogen receptors throughout 
the body and is recognized as having a mixed estrogen agonist/
antagonist effect. TMX acts as an estrogen antagonist in breasts 
and is used to prevent and treat breast cancer. By acting as an 
estrogen receptor agonist, it also increases the risk of adverse 
side effects, including uterine cancer, vision problems, cardio-
vascular disease, and venous thrombosis (Perez, 2007).

TMX readily crosses the blood brain barrier and binds to estro-
gen receptors in the nervous system (Lien et al., 1991; McEwen 
and Alves, 1999), but its effects on the human brain remain 
unclear. Estrogen receptors are present in neurons of forebrain 
regions, such as the basal forebrain, the hypothalamus, the 
prefrontal cortex, and the hippocampus (Toran-Allerand et al., 
1999). Thus, the actions of TMX on brain structure and func-
tion would be associated with cognitive function. Interestingly, 
emerging data show that breast cancer patients exhibit cogni-
tive impairments related to TMX treatment, including memory 
deficits (Shilling et  al., 2003; Schilder et  al., 2009; Boele et  al., 
2015), visuospatial ability (Ahles et al., 2010), and executive dys-
function (Shilling et al., 2003; Palmer et al., 2008; Schilder et al., 
2010). These cognitive impairments have a significant influence 
on patients’ daily function and quality of life and have become 
an important area of research.

As a major component of cognitive functions, memory is 
involved in accumulating and preserving individual experiences 
and plays an important role in the entire brain and mental 
activities. Previous studies focusing on this topic have shown 
that breast cancer patients who receive TMX treatment have  
significant memory deficits, such as verbal memory (Palmer 
et al., 2008; Collins et al., 2009; Schilder et al., 2010; Breckenridge 
et  al., 2012) and visuospatial memory (Bender et  al., 2007;  
Ahles et  al., 2010). However, several studies reported that no 
adverse effects of TMX were observed on memory performance 
in breast cancer patients (Fan et al., 2005; Hermelink et al., 2008; 
Le Rhun et al., 2015). On the contrary, TMX treatment exerts pos-
itive effects on the relative protection of verbal episodic memory 
function from cholinergic blockades in postmenopausal women 

(Newhouse et al., 2013). These inconsistent results may be due to 
different experimental designs, methodological discrepancies, 
and population heterogeneity (Bakoyiannis et al., 2016).

Working memory is a key area of study of the memory 
system and is considered as a core component of many other 
cognitive functions, including language comprehension, learn-
ing, reasoning, and problem solving (Baddeley, 1992). There 
is an emerging consensus that working memory plays an 
important role in temporary information processing and guid-
ance of complex cognitive behavior involving reentrant loops 
among the frontal and posterior cortical structures and sub-
cortical areas (Eriksson et  al., 2015). Evidence has suggested 
that brain areas in the dorsolateral prefrontal cortex (DLPFC) 
are involved in working memory functions (Owen et al., 2005; 
Barbey et  al., 2013). Previous animal studies (Funahashi et  al., 
1989; Levy and Goldman-Rakic, 2000) and clinical brain lesion 
studies (D’Esposito and Postle, 1999) have demonstrated that 
the DLPFC is causally involved in normal working memory 
function. Human neuroimaging studies have suggested persis-
tent neural activity in the DLPFC during working memory tasks 
(Curtis and D’Esposito, 2003; Feredoes et al., 2011; Brunoni and 
Vanderhasselt, 2014). Several meta-analyses have reported the 
fundamental role of the DLPFC based on activation in working 
memory operations (Nee et al., 2013; Brunoni and Vanderhasselt, 
2014). Resting state functional connectivity, which is measured 
by resting state functional magnetic resonance imaging (fMRI), 
assesses the temporal correlations of intrinsic low-frequency 
fluctuations across individual blood oxygenation level-depend-
ent (BOLD) time points during rest and has been used to explore 
the complex cognitive processes and brain networks and syn-
chronous brain activity (van den Heuvel and Hulshoff Pol, 2010; 
Rosazza and Minati, 2011). Using this technique, researchers 
have found disrupted functional connectivity in various types of 
neurological impairment, including Alzheimer’s disease (Chase, 
2014), Parkinson’s disease (Campbell et al., 2015), and psychiat-
ric disorders (Schilbach et al., 2015). Neuroimaging studies have 
also shown that both structural and functional brain changes 
occur in females who undergo TMX treatment, such as infe-
rior and dorsal lateral prefrontal lobe hypometabolism based 
on positron emission tomography and decreased hippocam-
pal volume revealed by MRI (Eberling et al., 2004). Therefore, it 
is reasonable to presume that TMX has negative effects on the 
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Previous studies have reported that the breast cancer patients treated with tamoxifen (TMX) had cognitive dysfunction. But the 
underlying neural mechanism remains unclear. We report that TMX users had deficits in working memory performance and 
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functional connectivity strength of the DLPFC-HP is associated with decreased working memory performance for TMX users. 
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connectivity of the DLPFC and that these effects are associated 
with working memory performance.

Several neuroimaging methods can be used to examine the 
effects of TMX on brain structure and function to investigate 
the underlying mechanisms contributing to cognitive changes. 
Studies examining the effects of TMX for treatment of breast 
cancer on brain functional connectivity are limited, and the 
effects are confounded by menopausal symptoms, chemother-
apy treatment, and age (Ahles and Saykin, 2007; Palmer et al., 
2008). Thus, the aim of the present study was to investigate the 
neural mechanisms underlying working memory deficits in 
combination with functional connectivity changes in premeno-
pausal women with breast cancer who were treated with TMX 
but not chemotherapy. Based on the data mentioned above, we 
chose the DLPFC as the seed region and calculated the func-
tional connectivity within the whole brain via resting state 
fMRI. We hypothesized that breast cancer patients treated with 
TMX would have decreased working memory performance and 
altered functional connectivity of the DLPFC with whole brain, 
particularly with hippocampus, compared with healthy control 
participants. We also examined the relationship between work-
ing memory deficits and the functional connectivity strength of 
the DLPFC.

Materials and Methods

Participants and Clinical Diagnosis

The current study was approved by the Research Ethics 
Committee of the First Affiliated Hospital of Anhui Medical 
University. Following a complete description of the study objec-
tive, all participants provided written informed consent. All 33 
patients with breast cancer (stages I-II, female) were recruited 
from the First Affiliated Hospital of Anhui Medical University, 
where they were treated with TMX (20 mg daily) for a mean of 
40.45  ±  9.63  months, and TMX was administered for at least 
24  months. All the participants were carefully screened by 
self-report screening questionnaires to ensure that they were 
premenopausal and had received no chemotherapy treatment; 
had not been diagnosed with dementia, brain injury, psychiat-
ric treatment, or alcohol or drug abuse; and exhibited no MRI 
contraindications. Thirty-three age- and education-matched 
healthy controls recruited from the local community and from 
among the patients’ relatives also participated in this study. 
Particularly, these relatives were not first-degree relatives of the 
included breast cancer patients. All participants had no subtle 
or severe affective disorders (Hamilton Depression Rating Scale 
(HAMD) scores <8 and/or Hamilton Anxiety Rating Scale (HAMA) 
scores <8). The detailed information gathered from each partici-
pant is described in Table 1.

Neuropsychological Background Tests

All participants were evaluated using neuropsychological back-
ground tests, which were conducted by skilled psychologists 
and required approximately 60 minutes to complete. The Beijing 
Version of the Montreal Cognitive Assessment Test (MoCA Test) 
was administered to assess general cognitive function. The 
digit span test was used to measure short-term memory. The 
Stroop test and Trail Making test were conducted to evaluate 
general executive function. The HAMD and HAMA tests were 
used to assess the participants’ symptoms of depression and 
anxiety, respectively. The Functional Assessment of Cancer 
Therapy-Breast questionnaire was used to assess quality of life; 

it included three subscales of physical, social, and functional 
well-being.

Working Memory Performance

Working memory was evaluated via a letter n-back task, includ-
ing a 0-back, a 1-back, and a 2-back task block. The 0-back task 
block was the primary task to measure attention. The advanced 
task including 1-back and 2-back task blocks was also carried 
out to assess the working memory performance. The letter 
stimuli were presented to the participants on a computer, and 
the responses were collected via two mouse buttons. During 
the 0-back task block, the letter was presented randomly at the 
center of the field, the participants were instructed to press the 
left mouse button if the letter that appeared on the screen was 
“X”, and otherwise to press the right mouse button. During the 
1-back and 2-back task blocks, the participants were instructed 
to press the left mouse button if the letter that appeared on the 
screen was identical to the one presented either 1 or 2 letters 
earlier, respectively, and otherwise to press the right mouse 
button. Each task block consisted of 20 trials. Each letter stimu-
lus was presented for 500  ms with an inter-stimulus interval 
of 2500  ms. “No Response” was recorded if the individual did 
not press the mouse button within 3000 ms. Before the experi-
ment, the participants were verbally instructed and performed 
a practice block. Thereafter, the participants were guided to per-
form the tasks 0-back, 1-back, and 2-back in order. E-Prime 1.0 
software (Psychology Software Tools, Pittsburgh, PA) was used to 
present the stimuli and to collect the accuracy and mean reac-
tion time (RT).

Image Data Acquisition

The neuropsychological background tests and working memory 
task were performed in a quiet room outside the MRI scanner 
before performing magnetic resonance scanning for each par-
ticipant. All the participants’ MRI images were collected by using 
the same GE 3.0 T magnetic resonance scanner (GE Medical 
Systems, Milwaukee, WI) equipped with a standard head coil. 
During the MRI scans, all participants were instructed to keep 
their eyes closed, think of nothing in particular, relax, move 

Table 1.  Participant Demographic Characteristics

TMX group
(n = 31)

HC group
(n = 32)

t PMean (SD) Mean (SD)

Age (y) 44.97 (4.56) 43.66 (4.66) 1.126 0.264
Education (y) 10.74 (2.02) 11.53 (2.26) -1.462 0.149
Breast cancer stage
  I 25 NA NA NA
  II 6 NA NA NA
Received radiotherapy 12 NA NA NA
HAMA 4.97 (1.30) 4.47 (1.39) 1.468 0.147
HAMD 5.03 (1.02) 4.81 (1.35) 0.727 0.470
FACT-B
  PWB 1.42 (1.09) 1.03 (0.86) 1.572 0.121
  SWB 1.13 (0.76) 1.06 (0.80) 0.337 0.737
  FWB 1.45 (1.23) 0.97 (1.00) 1.709 0.092

Abbreviations: FACT-B, Functional Assessment of Cancer Therapy-Breast ques-

tionnaire; FWB, functional well-being; HAMA, Hamilton Anxiety Rating Scale; 

HAMD, Hamilton Depression Rating Scale; HC, healthy control; NA, not applica-

ble; PWB, physical well-being; SWB, social/ family well-being; TMX, tamoxifen.
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as little as possible, and not to fall asleep. High-resolution 3D 
T1-weighted brain volume MRI images were obtained with the 
following parameters: repetition time (TR)/echo time (TE) ratio = 
8.676/3.184 milliseconds, inversion time = 800 milliseconds, flip 
angle = 8 degrees, field of view (FOV) = 256 × 256 mm2, matrix 
size = 256 × 256, slice thickness = 1 mm, voxel size = 1 × 1 × 1 
mm3, and number of slices = 188. The acquisition time of the 
sequence was 5 minutes and 45 seconds. Subsequently, resting-
state functional MRI images were collected with the following 
parameters: TR/TE ratio = 2000/22.5 milliseconds, flip angle = 30 
degrees, 33 slices, thickness/gap ratio = 4.0/0.6 mm, voxel size = 
3.4 × 3.4 × 4.6 mm3, matrix size = 64 × 64, and FOV = 220 × 220 mm2. 
Resting state functional MRI images were continuously acquired 
across 240 scans within 8 minutes.

T2-weighted TSE (19 transversal slices, 240 × 240-mm2 FOV, 
5-mm slice thickness, 5290 ms TR, and 120 ms TE) and a FLAIR 
(19 transversal slices; 240 × 240 mm2 FOV, 136.6 ms TE, 9000 ms 
TR, 5-mm slice thickness, and 256 × 256 matrix) were also 
acquired to search for primary brain pathology as an exclusion 
criterion. The participants were asked whether they had fallen 
asleep during and after the scanning to ensure that none of 
them had fallen asleep.

fMRI Preprocessing

The fMRI data preprocessing was completed by using the 
Analysis of Functional NeuroImages software tool (Medical 
College of Wisconsin, Milwaukee, WI). First, we discarded the 
first 10 volumes of data to allow the magnetization to reach the 
equilibrium. Then, the anatomical and functional images were 
reconstructed and realigned using a unified orientation. Next, 
we performed skull stripping and motion correction, followed by 
coregistration between functional and anatomical images and 
normalization to the standard Montreal Neurological Institute 
(MNI) 152 brain atlas and resampled with the voxel size of 
3 × 3 × 3  mm3. We excluded from subsequent analyses partici-
pants with head motion >2  mm of maximal displacement or 
0.2 mm of temporal differential displacement (in any direction: 
x, y, or z) or 2º maximum spin or 0.2º mm of relative spin in any 
angular dimension. All data were band-pass filtered (0.01–0.08 
Hz) to remove low-frequency drift and high-frequency noise 
and spatially smoothed by using a 6-mm Gaussian kernel at 
full-width at half-maximum. Then, several sources of spurious 
covariance were removed from the data by linear regression, 
including the signals from the cerebrospinal fluid and white 
matter, and the 6 head motion parameters were obtained by 
rigid body correction. After preprocessing, the individual data 
were used for further functional connectivity analyses.

Functional Connectivity Analyses

For each participant, we calculated the functional connectiv-
ity within the whole brain based on 2 seed regions in the left 
and right DLPFC as the regions of interest (ROIs). The ROIs were 
defined as 2 spherical regions with a 6-mm radius centered at 
the MNI coordinate of left DLPFC (-42, 33, 33) and right DLPFC 
(42, 33, 33) according to a previous meta-analysis study (Rottschy 
et al., 2012). It should be noted that these MNI coordinates of 
DLPFC were calculated from the MNI coordinates of left and 
right caudal lateral prefrontal cortex as reported in the meta-
analysis study. First, we computed the Pearson’s correlation 
coefficients between the average BOLD time series in the ROIs 
and those from each voxel in the brain. Then, the correlation 
coefficients were transformed to better fit a normal distribution 

using Fisher’s Z transformation. Thus, the values of whole brain 
functional connectivity with the DLPFC were obtained for each 
participant.

Statistical Analysis

We used the 2-sample t tests to assess the differences in the 
participants’ demographic characteristics between the TMX 
user group and the healthy control group. Voxel-wise 2-sample 
t tests with one covariate (age) were performed to assess the 
differences in the whole brain functional connectivity with the 
DLPFC among these 2 groups. The Monte Carlo method correc-
tion was performed using a whole brain mask of the MNI tem-
plate. The voxel-wise threshold of statistical significance was 
set to P = .005, α = 0.005 and a minimum cluster size of 52 voxels. 
A Pearson’s correlation analysis was further performed to assess 
the association between the changes in functional connectivity 
and working memory performance.

Results

Among the 66 participants, 2 patients and 1 healthy control were 
excluded from the analysis because of excessive head motion 
artifacts during data acquisition. Therefore, the final analytical 
sample size was 31 patients and 32 healthy controls. Participant 
demographic and clinical information are shown in Table 1. No 
significant differences in age, years of education, quality of life, 
depression, and anxiety score were observed between the TMX 
group and healthy controls.

Neuropsychological Background Tests

As shown in Table  2, there were no significant differences 
observed between the TMX group and the healthy control group 
with respect to general cognitive function (MoCA), short-term 
memory (digit span), or proceeding speed (the Stroop color and 
word tests, Trail Making Test A). The TMX group performed sig-
nificantly worse in the tests that evaluated general executive 
function (the Stroop Interference Test and Trail Making Test B). 
Compared with the healthy control group, TMX users had statis-
tically significant differences with respect to the accuracy and 
RT in the 1-back and 2-back tasks but not in the 0-back task.

Functional Connectivity and Correlation

In this study, we explored the whole-brain functional connectiv-
ity differences in the DLPFC between the TMX group and healthy 
controls. We found that the TMX group had significantly lower 
functional connectivity of the right DLPFC with the right hip-
pocampus (peak voxel MNI coordinate: x = 36, y = -21, z = -16; 
corrected P < .005; T = 3.599; cluster size = 79) compared with the 
healthy controls (Figure 1A-B). However, we observed that there 
were no significant functional connectivity changes in the left 
DLPFC with any other brain areas between the TMX group and 
healthy controls. To study the correlation between FC and work-
ing memory performance, a mean value of functional connectiv-
ity is calculated for each participant by computing the Pearson’s 
correlation coefficient between the averaged BOLD series within 
the seed regions of the DLPFC and hippocampus. The Pearson’s 
correlation analysis showed that there were significant correla-
tions between the functional connectivity strength of the right 
DLPFC with the right hippocampus (DLPFC-HP) and the accuracy 
in the 1-back task (r = 0.451, P = .011) and 2-back task (r = 0.439, 
P = .013), and the RT in the 2-back task (r = -0.383, P = .033), but 
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not in the 1-back task (r  =  -0.267, P  =  .146) in the TMX group 
(Figure 1C). No significant correlations were observed between 
the strengths of the functional connectivity of the DLPFC-HP 
and the ages of the participants, the MoCA, or duration of TMX 
treatment, HAMD, or HAMA scores, as well as between the work-
ing memory performance and demographic variables above (all 
P > .05). Within the healthy control group, no correlations were 
found demonstrated among these variables (all P > .05).

Discussion

Previous studies have reported evidence that breast cancer 
patients who received TMX treatment exhibit cognitive impair-
ments (Palmer et al., 2008; Buwalda and Schagen, 2013). In the 
current study, we chose the n-back tasks and resting state func-
tional connectivity to investigate the neural mechanisms under-
lying working memory deficits in long-term survival breast 
cancer patients treated with TMX. Our findings demonstrated 
that the TMX users had working memory impairments and 
lower functional connectivity of the right DLPFC-HP compared 
with healthy controls. In addition, significant correlations were 
found between the accuracy and RT in working memory tests 
and the DLPFC-HP connectivity for TMX users. Furthermore, 
consistent with previous studies results (Schilder et  al., 2009, 
2010; Breckenridge et  al., 2012), we also found that the TMX 
users performed worse in some neuropsychological background 
tests (the Stroop Interference test and the TMTB) that evaluated 
general executive function compared with the healthy controls.

Previous studies have found marked effects of estrogen on 
the brain, suggesting its potential neuroprotective properties 
(Sherwin, 2003; Eberling et al., 2004; Krug et al., 2006). Basic 
studies have demonstrated that estrogen may exert neuro-
protective effects by binding estrogen receptors to modulate 
molecules and by increasing the concentration of choline 

Figure 1.  Effect of tamoxifen (TMX) on the right dorsal lateral prefrontal lobe (DLPFC) with the right hippocampus (DLPFC-HP) functional connectivity and working 

memory performance. (A) An analysis of seed-based functional connectivity of the whole brain using the right DLPFC (seed voxel Montreal Neurological Institute [MNI] 

coordinate: x = 42, y = 33, z = 33) as the seed region revealed increased DLPFC connectivity with the right HP (peak voxel MNI coordinate: x = 36, y = -21, z = -16) in the 

TMX group compared with healthy controls (Monte Carlo method corrected P < .005). (B) The 2-sample t tests showed that the values of DLPFC-HP functional connectiv-

ity were different between the 2 groups. (C) The TMX users’ functional connectivities of the DLPFC-HP were positively correlated with the accuracy in the 1-back and 

2-back tasks and negatively correlated with the reaction time in the 1-back task but not the 2-back task.

Table 2.  Summary of Neuropsychological Test and Working Memory 
Performance

TMX group
(n = 31)

HC group
(n = 32)

t PMean (SD) Mean (SD)

MoCA 25.94 (1.21) 26.50 (1.61) -1.572 0.121
Short term memory

WAIS Digit Span 
(forward)

5.84 (1.16) 6.16 (1.30) -1.024 0.310

WAIS Digit Span 
(backward)

5.00 (1.21) 5.28 (1.20) -0.927 0.358

Processing speed
Stroop Color test 

(sec)
15.20 (2.60) 14.37 (3.21) 1.120 0.267

Stroop Word test 
(sec)

18.82 (2.84) 17.90 (3.10) 1.230 0.223

Trailmaking A (sec) 53.18 (11.64) 51.52 (10.15) 0.607 0.546
Executive function

Stroop Interference 
test (sec)

34.35 (6.90) 29.96 (6.32) 2.628 0.011

Trailmaking B (sec) 102.41 (13.48) 94.83 (10.73) 2.475 0.016
Working memory
 Primary task

0-back ACC (%) 94.52 (6.75) 96.56 (5.45) -1.325 0.190
0-back RT (ms) 666.97 (136.86) 610.13 (128.13) 1.702 0.094

 Advanced task
1-back ACC (%) 76.77 (11.22) 82.97 (9.41) -2.378 0.021
1-back RT (ms) 831.70 (186.03) 737.98 (163.54) 2.125 0.038
2-back ACC (%) 59.52 (11.57) 67.50 (10.08) -2.923 0.005
2-back RT (ms) 1129.1 (222.66) 956.85 (254.45) 2.861 0.006

Abbreviations: ACC, accuracy; HC, healthy control; MoCA, Montreal Cognitive 

Assessment Test; RT, reaction time; TMX, tamoxifen; WAIS, Wechsler Adult Intel-

ligence Scale.
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acetyltransferase (Sherwin, 2003). There is strong evidence 
that estrogen could enhance plasticity in neural network 
connectivity, neurogenesis, and synaptic transmission in the 
brain, particularly in the hippocampus and prefrontal cortex 
(Brinton, 2009). The majority of clinical studies have found 
beneficial effects of estrogen on the performance of several 
tasks, primarily including executive function tasks and verbal 
and spatial working memory tasks (Krug et al., 2006; Sherwin 
and Henry, 2008). Estrogen receptors are present in the pre-
frontal cortex and the hippocampus (Toran-Allerand et  al., 
1999). As we know, estrogen is necessary for the prefrontal 
cortex to control different brain functions, including attention, 
working memory, the inhibition of competing responses, and 
executive functions (Alvarez and Emory, 2006). Furthermore, 
many studies have suggested that patients with hippocampal 
lesions have visuospatial recognition memory impairments 
(Olson et al., 2006), given the crucial role of the hippocampus 
in tasks involving working memory (Baddeley et al., 2011). In 
this study, we report that TMX users exhibit worse perfor-
mance in memory and executive function during n-back tasks 
and neuropsychological background tests. The altered perfor-
mances in the neuropsychological executive function tests are 
consistent with previous reports that investigated executive 
function in breast cancer patients who received TMX treat-
ment (Palmer et al., 2008; Schilder et al., 2010). As mentioned 
above, TMX, binding to estrogen receptors in the nervous sys-
tem, affects cognitive function and brain structure, such as the 
hippocampus and the prefrontal cortex, suggesting a plausible 
antagonist influence. Based on these findings, it is possible to 
hypothesize that TMX may play an antagonistic role in brain 
structure and function.

Given the aforementioned evidence in the introduction, it 
can be inferred that the DLPFC plays an important role in work-
ing memory performance. Human and animal research has pro-
vided key insights into the neuronal basis of working memory, 
with the DLPFC playing a critical role by exerting top-down con-
trol over other working memory-related brain areas (Levy and 
Goldman-Rakic, 2000; Edin et al. 2009; Gazzaley and Nobre 2012). 
In the current study, to investigate the neural mechanisms 
underlying working memory deficits, we compared the differ-
ences in the functional connectivity across the whole brain 
with seed regions of DLPFC between TMX users and healthy 
controls. The results showed that TMX users had significantly 
lower functional connectivity of the right DLPFC with the right 
hippocampus, but not with other brain regions. Additionally, the 
functional connectivity strength of the DLPFC-HP was signifi-
cantly associated with working memory performance. Recent 
neuroimaging studies have also provided evidence that dorso-
lateral prefrontal-hippocampal interactions are implicated in 
working memory. Liu et al. (2014), using the same resting-state 
functional connectivity technique, found that the DLPFC-HP 
connectivity of healthy controls affected working memory per-
formance differently depending on the individual genotype. 
A task fMRI study showed that DLPFC-HP coupling may repre-
sent a systems-level mechanism specific to working memory, 
recommending its utility for modeling cognitive dysfunction in 
translational neuroscience (Bahner et  al., 2015). Furthermore, 
these DLPFC-HP interactions existed in psychiatric conditions 
with cognitive dysfunction, such as schizophrenia (Meyer-
Lindenberg et  al., 2005). Hence, in light of our results and the 
aforementioned investigations, we believe that TMX may influ-
ence changes in DLPFC-HP functional connectivity, resulting 
in an impaired working memory performance, and that these 

deficits may be due to the antagonistic effect of TMX in patients 
with breast cancer.

However, many nonhuman studies have indicated neuro-
protective effects of TMX via inhibiting excitotoxicity, boosting 
antiapoptotic cell death, and attenuating microglial inflamma-
tory responses (Liu et al., 2010; Kuo et al., 2012; Tsai et al., 2014). 
Recently, several studies have reported that TMX improved allo-
centric memory performance and increased pyramidal neu-
ronal dendritic density (Velazquez-Zamora et al., 2012; Zabihi 
et al., 2014). It has also been shown that TMX could enhance 
memory function by reducing dopamine metabolism and 
increasing acetylcholine levels in an amyloidosis mouse model 
(Pandey et al., 2015). Human studies have shown the beneficial 
effect of TMX on reversing cholinergic impairment in post-
menopausal women (Ernst et al., 2002; Newhouse et al., 2013). 
All of the above data suggest that TMX may exert an effect 
similar to that of estrogen if administered in the absence of 
estradiol (Newhouse and Dumas, 2015). There seem to be 2 rea-
sons accounting for these inconsistent results in our findings. 
The low estrogen level in vivo is a principal reason. In these 
animal studies, researchers used ovariectomized rodents for 
estrogen-deprived models to explore the relationship between 
the effect of TMX and cognitive performance. The participants 
who received TMX treatment were postmenopausal women, 
which was also the case in the above-mentioned human stud-
ies. However, there is evidence that TMX treatment is related 
to reduced memory performance in intact animal models 
(Chen et al., 2002; Esmaeili et al., 2009) and in human studies 
for which the participants were premenopausal women, where 
these studies indicated an antagonistic role of TMX (Palmer 
et  al., 2008). Our findings seem to support the latter case. 
Another reason is the different durations of TMX treatments 
considered in these studies. The short duration treatments, 
from 2 to 12 weeks, were considered in the aforementioned 
studies, supporting the similar effects of TMX and estrogen. 
However, human studies that considered more than 1-year 
duration of TMX treatment suggested the antagonistic effect of 
TMX (Eberling et al., 2004; Palmer et al., 2008; Boele et al., 2015). 
Interestingly, Legault et al. (2009) reported significant changes 
in verbal memory through the course of their study; they found 
that the memory performance increased during the first year 
but significantly decreased after 2 years. Considering all data, 
including our findings, a plausible explanation of these results 
is that TMX, by binding to estrogen receptors in the brain, ini-
tially has estrogen-like effects. As time progresses, the ERs in 
the brain cannot bind more estrogen in vivo because of the 
high binding of TMX leads to estrogen-blocking. TMX was then 
shown to play an antagonistic role of estrogen at the late stage 
of treatment. Therefore, it is likely that the effect of TMX, acting 
as an estrogen agonist or antagonist in the human brain, cor-
responds to an inverted U-shaped curve on the memory per-
formance, with an optimum mid-duration level being related 
to the best performance. It is worth noting that it is necessary 
to carry out longitudinal studies to identify this direct effect of 
TMX on memory performance in future studies.

Although we have excluded confounding factors, including 
menopausal symptoms and chemotherapy treatment, to bet-
ter investigate the potential mechanism contributing to work-
ing memory changes in breast cancer patients treated with 
TMX, several limitations should be noted. First, the aim of this 
study was to show that patients with breast cancer treated 
with TMX have working memory deficits from the perspective 
of functional connectivity and to investigate the mechanism of 
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this decline in performance. We did not completely rule out the 
factor of cancer diagnosis or explore the direct effects of TMX 
on working memory. However, for the TMX users in the cur-
rent study, the average duration of the disease was more than 
3 years, and the scores of quality of life, depression, and anxiety 
did not differ from those of healthy controls, suggesting that the 
TMX users had possibly restarted cancer-free lifestyles resem-
bling those of the healthy controls. Future studies should recruit 
healthy participants treated with TMX but free of other diseases 
to assess the effects of TMX on working memory and functional 
connectivity. Second, this study is a cross-sectional study. None 
of the performance tasks and functional connectivity data were 
obtained from the patients prior to the TMX treatment. As our 
current findings showed that the premenopausal women with 
breast cancer who were treated with TMX exhibited changes in 
working memory and DLPFC-HP functional connectivity, it is 
necessary for further longitudinal studies to determine whether 
these changes are a consequence of the effect of TMX. Third, 
12 of 31 patients had received radiotherapy in this study. There 
are reports suggesting that radiotherapy may impair cognition 
(Phillips et al., 2012; Stouten-Kemperman et al., 2015), although 
others showed no significant differences in cognitive function 
between patients with and without radiotherapy (Boele et  al., 
2015). We did not find significant cognitive changes between 12 
patients with radiotherapy and 19 patients without radiother-
apy, but it is difficult to conclude that the observed effects are 
due to TMX alone. We need to rule out the influence of radio-
therapy to explore the effects of TMX on working memory in the 
future study.

In conclusion, this study represents a step toward under-
standing working memory deficits in the premenopausal 
women with breast cancer who are treated with TMX. Our 
results showed that TMX users have lower functional connectiv-
ity of the DLPFC-HP, which is associated with decreased working 
memory performance. Furthermore, these findings suggest that 
the prefrontal cortex and the hippocampus may be affected by 
TMX treatment, supporting an antagonistic role of TMX for long-
term treatment in breast cancer patients.
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