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Abstract: In an autonomous vehicle, the lane following algorithm is an important component,
which is a basic function of autonomous driving. However, the existing lane following system has
a few shortcomings: first, the control method it adopts requires an accurate system model, and
different vehicles have different parameters, which needs a lot of parameter calibration work. The
second is that it may fail on road sections where the lateral acceleration requirements of vehicles
are large, such as large curves. Third, its decision-making system is defined based on rules, which
has disadvantages: it is difficult to formulate; human subjective factors cannot guarantee objectivity;
coverage is difficult to guarantee. In recent years, the deep deterministic policy gradient (DDPG)
algorithm has been widely used in the field of autonomous driving due to its strong nonlinear fitting
ability and generalization performance. However, the DDPG algorithm has overestimated state action
values and large cumulative errors, low training efficiency and other issues. Therefore, this paper
improves the DDPG algorithm based on the double critic networks and priority experience replay
mechanism. Then this paper proposes a lane following method based on this algorithm. Experiment
shows that the algorithm can achieve excellent following results under various road conditions.

Keywords: deep reinforcement learning; autonomous driving; deep deterministic policy gradient;
lane following

1. Introduction

Lane following is one of the most important autonomous driving subsystems. Only
after successfully implementing the lane following function can other advanced subsys-
tems of autonomous driving such as obstacle avoidance and car following be further
developed [1]. The existing lane following algorithm only considers the lateral motion of
the vehicle, and rarely considers the influence of the longitudinal dynamics of the vehicle.
However, because the lateral dynamics and longitudinal dynamics of the vehicle are cou-
pled with each other, its applicable occasions are limited to situations with low speed or
small steering angles [2]. When the vehicle needs a large steering angle input, its control
strategy is difficult to meet the requirements. Such lane following control methods include
linear quadratic regulator (LQR), model predictive control (MPC), etc. These methods have
higher requirements for system models. Due to different parameters and different models,
it is difficult to obtain a universal system model. The decision-making part of the existing
lane following system is constructed based on rules. When modeling it, it is necessary to
consider a lot of working conditions and adapt suitable solutions for it. This is likely to
miss several working conditions that may occur during the vehicle driving process and the
manual decision-making methods for various working conditions may not be optimal [3].

In recent years, artificial intelligence technology applied to autonomous driving has
developed rapidly, especially reinforcement learning technology [4-8]. The first control
example based on reinforcement learning (RL) was inspired by the concept of ALVINN [9].
Like ALVINN, the output of the neural network is a discrete steering angle. The architecture
is a simple feedforward network in which raw camera data is used as input. In [10], there
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is a better concept, which uses the deep Q network algorithm to train a neural network
to predict the appropriate yaw acceleration for lane changing operations. The authors
of [11] combine reinforcement learning with fuzzy logic to create a hybrid method for
vehicle longitudinal control. The RL method is a network of Q estimators while fuzzy
inference is Takagi-Sugeno. In [12], an agent based on policy gradient is proposed, which
uses a multi-objective reward function to train the agent to complete the control task of
cooperative adaptive cruise control. The authors in [13] propose a parameterized batch
actor-critic algorithm, which uses policy-based and value-based model-free RL technology
to solve the longitudinal control problem. In [14], the author introduced a method based
on deep Q learning (DQN), which is specifically used to control the braking system to
automatically avoid collisions. In [15], the authors proposed a concept using inverse
reinforcement learning (IRL), and they managed to train the agent to learn different driving
styles from the demonstration. In addition, a good review of imitation and behavioral
cloning methods applied in this field can be found in [16].

Recently, some scholars have tried to use deep reinforcement learning methods to
design lane-following system for autonomous vehicles. In [17], a method that combines
supervised learning and deep Q learning(DQN) is proposed. The author uses precise ideas
to formulate his own algorithm to solve the lateral and longitudinal control tasks at the
same time. The control task is formulated as keeping the vehicle on the road. In [18], the
author compares DOQN and deep deterministic actor-critic (DDAC) algorithms to show
the importance of using continuous actions in this control problem. These algorithms
have one shortcoming, that is, automatic driving is a continuous control problem, but
these algorithms can only be applied to discrete problems, so the control quantity must be
discretized, and this process will inevitably lead to the inability to deal with the surrounding
environment dynamic factors in the system and imprecise control [19-21].

In order to solve this problem, the authors in [22] propose the DDPG algorithm, which
is an algorithm based on direct policy search that can directly output continuous action
values, which is very suitable for continuous control environments. The author applied it
to lane following and achieved good results in the TORCS environment. It combines actor-
critic algorithm [23], deterministic policy gradient [24], and DQN algorithm [25]. However,
using it directly in autonomous driving scenarios will have the following problems. First,
in the DDPG algorithm, each iteration of the actor network will overestimate the Q value.
When the number of training increases, the cumulative error will accumulate greatly.
At the same time, the inaccurate estimation of the Q value will also lead to the decline
of the strategy update effect. The second reason is that each step will produce a small
error 0(s, a) during the TD update. When multiple updates are performed, the error
will be accumulated in a large amount, resulting in an inaccurate Q value. Since the
decision-making and planning layer of autonomous vehicles has higher requirements for
the accuracy of the output action values, slight disturbances in the steering or throttle may
cause the driving effect to decrease or even accidents [26]. The third is that experience
replay is to randomly sample data stored in the experience pool, which will result in low
expectations of the sampled samples and slower training [27]. For autonomous driving,
a project that requires a lot of manpower and material resources will cause much waste
of resources.

For dealing with this problem, this paper proposes double critic networks and priority
experience replay deep deterministic policy gradient (DCPER-DDPG) algorithm. First,
this paper proposes a lane following algorithm architecture based on deep reinforcement
learning; secondly, designs the reward function, exploration strategy, and improved DDPG
algorithm; finally, the algorithm proposed in this paper is tested and verified on the TORCS
simulation platform.
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2. Algorithm Architecture
2.1. Lane Following Algorithm Framework

The general framework of the lane following algorithm adopted in this paper is shown
in Figure 1. The execution process of the algorithm is as follow:

e A set of action values is generated by the actor network, namely steering, throttle,
and braking values, and random noise is added and input into the TORCS simulation
software;

e  TORCS input the next state s’ into the reward function module according to the action,
and store it into the experience pool together with the current state s, reward value 7,
and action value a;

e  Sample a certain number of samples from the experience replay buffer, each sample
contains s, a, r, s’. Then respectively pass s, s’ to the actor network, and s, a, r, s” to the
critic network for an iterative update;

e  For the actor network, it accepts s and s’, then outputs a to TORCS together with
random noise. Meanwhile, it outputs the next action a’ to the critic network. After
that, accepts the gradient of the state action value Q(s, a) to a’ to update the network.

e  For the critic network, it accepts s’, a” to calculate Q(s’, a’). Next, it combines Q(s’, a")
with r to calculate a label for the iterative update of the network. At the same time, s
and a are input into the critic network, and the mean square error between the output
and the label is used as the loss function to update the network iteratively. Finally,
calculate the gradient of the Q value to 4’ under s and return that to the actor network
for an iterative update.

driving decision algorithm

ou
noise

TORCS actor critie
network network
5
5

IIHII
reward

module

Figure 1. Lane following algorithm framework.
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2.2. Input Data Selection

The input of the algorithm is composed of environmental information obtained by a
variety of sensors. The environmental information includes the longitudinal speed of the
vehicle, the lateral speed of the vehicle, the angle between the vehicle heading and the lane,
the distance between the vehicle and the centerline of the road, and the distance between
the vehicle and the edge of the road. The specific definitions are shown in Table 1.
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Table 1. Definition of selected sensing signals.

Name Range (Unit) Description
B Vehicle speed along the longitudinal axis of the
speedX (—o00, +00) (km/h) vehicle (the direction of driving)
speedY (—00, +00) (km/h) Vehicle speed along the transverse axis of the vehicle
anele [, +71] (rad) The angle between the direction of the vehicle and the
& § direction of the road axis
The distance between the car and the road axis, this
trackpos (— 0, +0) value is normalized by the width of the road, 0 means
p ’ the car is on the central axis, and greater than 1 or less
than —1 means the car runs off the road
A vector of 19 rangefinder sensors, each sensor returns
track (0, 200) (m) the distance between the vehicle and the edge of the

road within 200 m

2.3. Network Structure

The overall framework design of the actor network and critic network refers to [28].

2.3.1. Actor Network Structure

The sensor input data type in this article only has low-dimensional data and no picture
input, so the actor network does not use a convolutional layer, and its architecture is shown
in Figure 2.

hidden layerl hidden layer2
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300 neurons 400 neurons
Wl w2 - W3
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. . .
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Figure 2. Actor network structure.

The network includes 4 layers, which are 1 input layer, 2 hidden layers, and 1 output
layer. The input layer contains 29 neurons, which respectively represent the 29 sensor
state values given by the TORCS environment. In [28] the two hidden layers include 300
and 600 neurons respectively, and each neuron uses relu as an activation function. This
paper changes the number of neurons in the second hidden layer to 400 in order to reduce
overfitting. The output layer contains 3 neurons, which output the three values of steering,
throttle, and braking respectively.

Among them, the neuron that outputs the steering value uses tanh as the activation
function, and the value range is [-1, +1]. When the output value is +1, it means that the
vehicle’s left-turning motion is the largest, and when it is —1, it means the right-turning
motion is the largest. The neurons that output throttle and brake both use sigmoid as the
activation function, and the value range is [0, 1]. When the output throttle action value is
1, it means that the maximum acceleration is output, and when it is 0, it means that the
vehicle is not accelerating at this time. When the output brake value is 1, it means that the
output is the maximum deceleration action, and when it is 0, it means that no deceleration
action is performed.
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2.3.2. Critic Network Structure

The structure of the critic network is shown in Figure 3. The input layer is divided
into two parts, one is the environment state information given by the TORCS software,
and the other is the action value output by the actor network. The environmental state
information is processed by hidden layer 1 and combined with the action value to be input
into hidden layer 2, the two layers also include 300 and 400 neurons respectively. Then
state information is processed by output neurons to obtain the state action value.

input layer hidden layerl
(st ) zelu )

hidden layer?2

relu

W3
output layer

fsméx g J‘i=§ 2em ) ’;mu: Q (s,a)

input layer2

Figure 3. Critic network structure.

3. Lane Following Strategy
3.1. Reward Function

In the reinforcement learning algorithm, since the initialization of the network is
random, the agent can only interact with the environment under the guidance of the
reward function. The reward function is generally a scalar, a positive value represents a
reward, and a negative value represents a penalty. The reinforcement learning algorithm
is to optimize in the direction that can maximize the reward value. The selected working
condition in this paper is lane following so the vehicle is required to stay in the center of
the lane as much as possible and the vehicle’s forward direction is as consistent as possible
with the road axis, and at the same time, increase the speed as much as possible on this
basis. The reward function used in this article is as follows:

. { —200, the vehicle drives off the road 1)

VxC0SW — VxSinw — vy |trackpos|, the vehicle drives normally on the road

where vy, is the speed of the vehicle along the longitudinal axis of the vehicle, w is the angle
between the direction of the vehicle and the axis of the road, and trackpos is the normalized
distance between the vehicle and the lane center. The reward function is expected to
maximize the axial speed of the vehicle and let the vehicle drive along the road axis.

3.2. Exploration Strategy

In deep reinforcement learning algorithms, appropriate exploration strategies must
be set to prevent the algorithm from falling into a local optimum. Common exploration
strategies such as e-greedy are not suitable for autonomous driving scenarios. As we have
three combined actions (steering, accelerator, braking), if we just randomly select actions
from a uniform distribution, some useless combinations may be generated. For example,
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the value of braking is greater than the value of acceleration, so that the vehicle cannot
drive. Therefore, here we use the Ornstein—Uhlenbeck process to add noise:

dxt = @(y — xt)dt + Uth (2)

In the formula: ¢ represents the speed at which the response variable returns to the
mean, y represents the balance or average, ¢ represents the degree of fluctuation of the
process, and W; is the Wiener process. The values of {, y, and o in this process are shown
in Table 2.

Table 2. OU process parameter values.

¢ " d
Steer 0.60 0.00 0.30
Throttle 1.00 0.50 0.10
Brake 1.00 —0.10 0.05

3.3. Double Critic Networks and Priority Experience Replay of DDPG Algorithm

In order to solve the problems of over-estimation of the Q value, large accumulated
error, and slow training speed of the DDPG algorithm, this paper adopts the following
steps to design DCPER-DDPG algorithm:

(1) Q value is overestimated

The target value used by the two critic networks for updating can be written as:

v = r+1Qy (¢, 7o, (1)) ®)

Yo=r+ "}/Qei (S/r Ty, (S/)) (4)

where 7 is the current reward value, - is the discount factor, Qgi and Q% are the Q values
calculated by the two critic target networks respectively, 77,5, and 77, are the action values
calculated by two actor networks, respectively.

The two Q values will always appear one large and one small, and the high value will
be overestimated. Therefore, choose the minimum value as the final Q value.

y = r+yminQy (s, (<)) ®)

(2) Accumulative error processing

First, the actor network and the target network are updated with a delay. That is, the
critic network is updated a certain number of times and then the actor network and the
target network are updated.

(3) Speed up training

This paper measures the priority of the sample according to the TD error of the sample.
The sample priority expression is as follows:

Pm=£% ©)

This paper adopts the proportional prioritization method to calculate p;, that is,
pi = |6;| + €, where € is a small number to prevent the unsampled state from being given
priority to 0, 6 is TD error, « determines how much priority is used, when « is 0, it is
uniform sampling.

This sampling method introduces bias because it changes the data distribution, which
in turn changes the expected value. Thus this paper uses importance sampling to modify

this weight:
1 1 \F
W—(Np@>- @)
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where N is the size of batch, and B is a parameter that is between 0 and 1.

When calculating the critic network later, it is multiplied by the importance sampling
parameter to adjust the weight.

The improved algorithm is shown in Algorithm 1.

Algorithm 1: DCPER-DDPG

Randomly initialize the actor network 7t and critic networks Qg, and Qp,
Initialize the weights of the target networks 0] < 01, 05 < 65, ¢/ < ¢
Initialize the replay buffer R, Set the maximum storage capacity of the buffer S
Initialize state Sy, batch_size = K
Initialize maximum priority D, priority parameters «, 3
for episode =1, ... ,Mdo:
Initialize random noise ¢
fort=0,...,Tdo:
Select actions based on the actor network and add random noise a; = m,,(st) + ¢; and get the next
state given by the environment s; 1, reward r;
Store (s, at, rt, S+1) into replay buffer R, and set the maximum priority Dy = max;;D;
ift>S:
forj=1,Kdo:
Sample transition according to priority:(s;, aj, 7j, Sj+1)
Calculate the optimization goal of the critic network:
y=r+ nglliang,l (s', mg;(s))
Calculate the corresponding importance sampling weight W; and TD error §;
According to the absolute value of TD error |4; | update the priority of transition
end for
Update the two critic networks separately by minimizing the loss function:
L= Y;wo?
if t mod policy_update_frequency == 0:
Use policy gradient to update the actor network:

vvn‘si ~ % X vtlQ(Shaf) s:s,-,u:nq,(s,-)v(Pn(sf) 5i
Use update rate y to update the weight of the target network Qp, Qg and 7y
end if
end if
end for

end for

4. Experiment
4.1. Simulation Environment

The simulation experiment in this paper is carried out on the TORCS platform. TORCS
is a highly portable and open-source game platform, which is popular in fields such as
intelligent control. The platform provides accurate vehicle dynamics models and different
maps, which can better simulate real scenes. This paper uses Python-based Gym-TORCS
as the platform and interface with TORCS to control vehicle movement in real time [29].

4.2. Termination Condition Setting

In the process of smart car training, there may be scenes that are not conducive to the
convergence of the algorithm, such as the vehicle not moving or driving in the opposite
direction. Intervention can be made to improve the convergence speed during simulation.

(1) The vehicle stalls. If the longitudinal speed of the target vehicle is always less than
5 km/h in 100 time steps, it will end the current episode and start a new episode.

(2) The vehicle drives off the track. If the vehicle runs off the track, it will automatically
end the current episode and restart a new episode.

(3) The vehicle travels in reverse. If the vehicle’s forward direction reverses, a new
episode is started.
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4.3. Scene Selection

This paper chooses Aalborg as the training track, as shown in Figure 4. The map has a
total length of 2587.54 m and a width of 10 m. The typical features of the track are obvious,
such as lane lines and static obstacles. The length of the straight line of the Aalborg track
is appropriate, and the curvature of the curve is large, which is suitable for verifying the
deep reinforcement learning algorithm;

Figure 4. Aalborg map.

Since the road features of CG track 2 are similar to that of Aalborg, which is shown in
Figure 5, this paper chooses it as the test track.

Figure 5. CG track 2 map.

4.4. Training Parameter Settings

The network training parameter settings of this paper are shown in Table 3.

Table 3. Training parameter settings.

Parameter Value
Buffer size 100,000
Batch size 32
Discount factor 0.99
Soft update factor 0.001
Actor network learning rate 0.0001
Critic network learning rate 0.001
Max steps 100,000

Delayed policy update frequency 2
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5. Result Analysis
5.1. Training Average Reward

In deep reinforcement learning, the single-step average reward value of each episode
is an important indicator to measure the training effect [30-33]. This paper counts the
average single-step rewards of [22] and DCPER-DDPG algorithm in 6000 episodes. Figure 6
is a comparison of the two after the data is Gaussian smoothed.

—— DDPG

] - yaVa
801 — DCPER-DDPG / \f,\,w\_\ -~ -

///’\/

(I) 10IOO 20‘00 30‘00 40IOO SOIOO 60‘00
episode
Figure 6. Comparison of single-step average reward value between DDPG and DCPER-DDPG
algorithm.

It can be seen from Figure 6 that due to the delayed update of the actor network in
the DCPER-DDPG algorithm, the reward value of the previous training period is lower
than that of the original algorithm. However, since about the 800th episode, the reward
value of DCPER-DDPG algorithm has exceeded the original algorithm, indicating that the
algorithm in this paper has a stronger learning ability and a more stable training process.

5.2. Number of Steps Completed in One Episode

In the deep reinforcement learning training process, the vehicle continuously explores
the environment, and each exploration is called a “step”. When a vehicle commits an illegal
behavior, the current episode of training is terminated. The more steps in each episode, the
further the vehicle runs. Therefore, the number of steps completed in each round is also an
important indicator for judging the speed and effectiveness of driverless vehicle learning.

Figure 7 is the number of steps completed in the episode of DDPG algorithm in [22]
and DCPER-DDPG algorithm. By comparing the two figures, it can be seen that the number
of steps completed in each episode of the improved algorithm is significantly greater than
that of the original algorithm, indicating that the improved algorithm runs farther in each
round and has a lower probability of violations.

80,000

0

1000

70,000
60,000 1
50,000 1

& 40,000

g 40,

30,000

20,000 4

10,000 4

2000 3000 4000 5000 6000 0°
episode

[ 1000 2000 3000 4000 5000 6000
episode

(a) DDPG (b) DCPER-DDPG

Figure 7. Comparison of Steps between DDPG and DCPER-DDPG.
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5.3. Analysis of Comparative Results

Put the trained model into the original track to collect the reward value, longitudinal
speed, the angle between the vehicle heading, and the lane and the distance between
the vehicle and the centerline of the road within 1000 time steps and then calculate their
average. The results of comparing the two algorithms are shown in Table 4.

Table 4. Test results of Aalborg map.

DDPG DCPER-DDPG
Reward 75.38 85.82
Speed (km/h) 97.15 100.86
Angle (rad) 0.00042 0.00030
Trackpos 0.037 0.019

Due to the many corners of the Aalborg map, the vehicle must decelerate when
passing the curve, so the improved algorithm speed is only slightly higher than the DDPG
algorithm. Since the value of the reward in the setting of our reward function is largely
dependent on the vertical speed, the increase is relatively small, about 13%. However, the
most important driving performance along the road in the lane following task has been
greatly improved. For example, the angle with the lane axis is reduced by 40%, and the
distance from the road centerline is reduced by 49%, indicating that the algorithm in this
paper is processing the lane following task is significantly better than the DDPG algorithm.

In order to avoid the original model only remembering the features of the original
map and failing on another map, we put the model into the CG track 2 track for testing.
The test results are shown in Table 5.

Table 5. Test results of CG track 2 map.

DDPG DCPER-DDPG
Reward 87.69 101.98
Speed (km/h) 127.62 140.58
Angle (rad) 0.0029 0.00054
Trackpos 0.13 0.09

CG track 2 has more straight roads, so the speed and reward function of the improved
algorithm have been greatly improved compared with [22]. In the comparison of the angle
with the lane, the improved algorithm reduced by 81%, the effect was greatly improved,
and the distance from the center of the road was also greatly reduced. It can be seen that
the DCPER-DDPG algorithm has a stronger generalization ability than the original DDPG
algorithm in lane following tasks.

5.4. Vehicle Characteristics under the Control of Deep Reinforcement Learning Model

After the training on the Aalborg map, the vehicle was placed on the original map and
the CG track 2 map to test its lane following ability. Figures 8 and 9 are the characteristic
distributions of the angle between the vehicle’s driving direction and the lane centerline in
Aalborg and CG track 2, respectively.

According to the analysis in Figures 8 and 9, the trained model can follow the lane
well. The angle between the driving direction of the vehicle and the centerline of the lane is
mostly within the range of —0.05 to 0.05. The angle is approximately normally distributed
as a whole.

Figures 10 and 11 show the lane keeping of the vehicle in CG track 2 more intuitively.
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Figure 8. Normalized vehicle and lane centerline angle distribution in Aalborg.
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Figure 9. Normalized vehicle and lane centerline angle distribution in CG track 2.
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0
—0.100 —0.075 —0.050 —0.025 0.000 0.025 0.050 0.075 0.100

road sideline
road centerline

driving track
1 2 3 4 > 6 7 8 9 10
trackpos | 0.047 | 0.010 | 0.021 | 0.068 | 0.060 | 0.090 | 0.026 | 0.072 | 0.044 | 0.038
angle 0.032 | 0.061 | 0.042 | 0.024 | 0.007 | 0.032 | 0.023 | 0.031 | 0.018 | 0.016

Figure 10. Schematic diagram of lane following of the trained DRL controller vehicle in Aalborg.
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road sideline
road centerline
driving track

1 2 3 4 5 6 7
trackpos 0.042 0.059 0.029 0.003 0.062 0.035 0.021
angle 0.013 0.019 0.009 0.012 0.021 0.016 0.012

Figure 11. Schematic diagram of lane following of the trained DRL controller vehicle in CG track 2.

It can be seen from Figures 10 and 11 that whether it is on a straight road or a big
curve like (8) in Figure 10, the vehicle can maintain a small lateral offset, that is, stay in the
center of the lane better. Moreover, the driving direction of the vehicle basically coincides
with the axis of the road, showing good lane following performance. Especially in big
curves, its lane following performance is basically similar to that of straight lines, which
overcomes the shortcoming of the existing lane following system that failure in big curves.

6. Conclusions

This paper proposes a lane following method based on the DCPER-DDPG algorithm,
designs the input and output, reward function, and exploration strategy of the lane fol-
lowing method, and improves the DDPG algorithm which is widely used in the field of
autonomous driving to meet the requirement of lane following situation. Subsequently, the
method was experimentally verified under the TORCS platform. The experimental result
shows that the reward value and the number of steps in each episode of the DCPER-DDPG
algorithm during the training process are higher than those of DDPG, and the trained
model also shows that whether lateral deviation or the angle between the vehicle heading
and the lane is better than those of DDPG. In terms of lane keeping performance, this
method has the characteristics of fewer parameters and strong generalization ability, and
its performance is also excellent in large curves, which overcomes the defects of the existing
lane keeping systems.
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