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Obesity is a chronic metabolic disease caused by genetic and environmental factors that has
becomea serious global health problem. There is evidence that gutmicrobiota is closely related to
the occurrence and development of obesity. Erchen Decoction (ECD), a traditional Chinese
medicine, has been widely used for clinical treatment and basic research of obesity and related
metabolic diseases in recent years. It can significantly improve insulin resistance (IR) and lipid
metabolism disorders. However, there is no microbiological study on its metabolic regulation. In
this study, we investigated the effects of ECD on obesity, especially lipid metabolism and the
composition and function of gut microbiota in Zucker diabetic fatty (ZDF) rats, and explored the
correlation between the biomarkers of gut microbiota and metabolite and host phenotype. The
results showed that ECD could reduce body weight, improve IR and lipid metabolism, and
reduce the concentration of free fatty acids (FFA) released from white adipose tissue (WAT) due
to excessive lipolysis by interfering with the insulin receptor substrate 1 (IRS1)/protein kinase B
(AKT)/protein kinaseA (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathway in ZDF
rats. Additionally, ECD gradually adjusted the overall structure of changed gut microbiota,
reversed the relative abundance of six genera, and changed the function of gut microbiota
by reducing the content of propionic acid, ametabolite of gutmicrobiota, in ZDF rats. A potentially
close relationship between biomarkers, especially Prevotella, Blautia, and Holdemania, propionic
acid and host phenotypes were demonstrated through correlation analysis. The results
suggested that the beneficial effects of ECD on obesity, especially lipid metabolism disorders,
are related to the regulation of gutmicrobiota in ZDF rats. This provides abasis for further research
on the mechanism and clinical application of ECD to improve obesity via gut microbiota.
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INTRODUCTION

With the improvement of living standards and changes in lifestyles, the number of obese people
is increasing sharply. The latest data has showed that, there were more than 1.9 billion adults
worldwide who were overweight (about 39% of the total), and 650 million who were obese (about
13% of the total). 38 million children under the age of five were overweight or obese1. Obesity is

Edited by:
Sayeed Ahmad,

Jamia Hamdard University, India

Reviewed by:
Bin Geng,

Chinese Academy of Medical
Sciences and Peking Union Medical

College, China
Štefan Zorad,

Slovak Academy of Sciences (SAS),
Slovakia

*Correspondence:
Libin Zhan

zlbnj@njucm.edu.cn
Shenlin Liu

lsljsszyy@126.com

Specialty section:
This article was submitted to

Ethnopharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 30 December 2020
Accepted: 13 July 2021
Published: 22 July 2021

Citation:
Zhao T, Zhan L, Zhou W, Chen W,

Luo J, Zhang L, Weng Z, Zhao C and
Liu S (2021) The Effects of Erchen

Decoction on Gut Microbiota and Lipid
Metabolism Disorders in Zucker

Diabetic Fatty Rats.
Front. Pharmacol. 12:647529.

doi: 10.3389/fphar.2021.647529

1World Health Organization. (2020). Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-
overweight. [Accessed December 20, 2020].

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 6475291

ORIGINAL RESEARCH
published: 22 July 2021

doi: 10.3389/fphar.2021.647529

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.647529&domain=pdf&date_stamp=2021-07-22
https://www.frontiersin.org/articles/10.3389/fphar.2021.647529/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.647529/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.647529/full
http://creativecommons.org/licenses/by/4.0/
mailto:zlbnj@njucm.edu.cn
mailto:lsljsszyy@126.com
https://doi.org/10.3389/fphar.2021.647529
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.647529


an important risk factor for many metabolic diseases (Saltiel
and Olefsky, 2017), cardiovascular diseases (Luo et al., 2018),
and even certain types of cancers (Majchrzak et al., 2019). At
present, obesity, especially primary obesity, is considered to be
a common disease. How to effectively prevent obesity and
reduce the occurrence and development of related diseases has
become a major research focus.

Adipose tissue is a main depot for storing and releasing energy
and plays a key role in energy homeostasis, especially lipid
metabolism balance. Dysfunction and metabolic disorder in
adipose tissue is a characteristic pathological change in obesity
and an important cause of local inflammation and systemic insulin
resistance (IR) (Caprio et al., 2017). Insulin signaling is of crucial
importance for maintaining adipose tissue function (Czech, 2017),
whether from circulation or central insulin signaling (Scherer et al.,
2011). Adipose tissue IR, especially an impaired insulin-signaling
pathway, affects the key enzymes of lipolysis (Frühbeck et al.,
2014), which leads to enhanced lipolysis as an important
manifestation of metabolic disorders in adipose tissue.

Erchen Decoction (ECD), a traditional Chinese medicine
formula, was first recorded in the Taiping Huimin Formula
Bureau in the Song Dynasty, and is mainly used to treat
phlegm dampness syndrome due to spleen dysfunction and
dampness accumulation. Modern studies have found that ECD
has beneficial weight loss, anti-inflammatory, and anti-oxidation
effects, and significantly improves decreased insulin sensitivity
(Zhang et al., 2017) and glucose and lipid metabolism disorders,
especially lipid metabolism in metabolic diseases (Gao et al., 2015;
Ding et al., 2018; Zhang et al., 2020b; Lee et al., 2020). In recent
years, growing evidence has linked changes in gut microbiota with
insulin sensitivity (Pedersen et al., 2016) and lipid metabolism
(Kindt et al., 2018), and is now a target for obesity treatment

(Maruvada et al., 2017). The potential therapeutic mechanism of
Chinese herbal medicines to ameliorate related metabolic diseases
by improving the gut microbiota is also gradually being discovered
(Gong et al., 2020). Previous studies have reported that the
metabolism improvement of main traditional Chinese medicines
(such as Wolfiporia extensa (Peck) Ginns (syn. Poria cocos
(Schwein.) F.A.Wolf) and Zingiber Officinale Roscoe (Wang
et al., 2020)) and their extracts (such as Citrus reticulata Blanco
extract (Zhang et al., 2020c)) and active ingredients (such as
glycyrrhiza polysaccharide (Zhang et al., 2018)) in ECD was
closely related to the modulation of gut microbiota. A series of
studies have been conducted on the effects by which ECD
improves obesity. However, the role of ECD as a compound
recipe in gut microbiota and whether the effect of ECD on
improving IR or lipid metabolism disorders is related to
changes in intestinal microbiota are still unclear.

The aim of this study was to observe whether ECD
intervention could induce changes in IR and lipid metabolism
disorders, delay the development of obesity, and affect the
composition and function of gut microbiota in Zucker diabetic
fatty (ZDF) rats, a spontaneous obesity model. More importantly,
our goal was to determine the underlying correlation between the
biological effects of ECD and the changes of gut microbiota and to
provide a theoretical basis by which ECD improves obesity and
related metabolic diseases via a gut microbiological mechanism.

MATERIALS AND METHODS

Preparation of ECD
ECD is composed of six components, as shown in Table 1. All
herbs were purchased from Sanyue Chinese Traditional Medicine

GRAPHICAL ABSTRACT | Erchen Decoction could inhibit excessive lipolysis and improve lipid metabolism disorders by regulating the IRS1/AKT/PKA/HSL
signaling pathway in white adipose tissue of ZDF rats. The delay in developing obesity was related to changes in gut microbiota composition and function in ZDF rats.
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Co., Ltd. (Nantong, China) and prepared according to the
Chinese Pharmacopeia method (Chinese Pharmacopoeia
Commission, 2015). The medicines were soaked in eight
weight/volume (1:8, w/v) distilled water for 2 h. After boiling
on high heat, they were simmered at low heat for 30 min. They
were extracted twice, and the filtrate combined and concentrated
until the final crude drug concentration was 0.23 g/ml for low
dose, 0.46 g/ml for medium dose, and 0.92 g/ml for high dose.
The medium dose is clinically effective dose of ECD. The samples
were stored in a refrigerator at 4°C.

Chemical Composition of ECD Samples
High performance liquid chromatography (HPLC) was
performed on a Waters 2,695 system (Waters Corporation,
Milford, MA, United States), consisting of a binary solvent
delivery manager, an auto-sampler, and a PDA detector.
Chromatographic separations were performed on an Alltima
C18 column (250 × 4.6 mm, 5 μm). Flow rate and column
temperature were set at 1 ml min−1 and 30°C, respectively. A
mobile phase system consisting of 0.1% formic acid in H2O (A)-
acetonitrile (B) was applied with the following gradient program:
0–5 min, 95% A; 5–15 min, 95–75% A; 15–24 min, 75% A;
24–29 min, 75–65% A; 29–34 min, 65% A; 34–39 min, 65–55%
A; 39–44 min, 55–50% A; 44–50 min, 50% A; 50–55 min, 50–30%
A; 55–60 min, 30% A; 60–70 min, 30–10% A; 70–75 min, 10% A;
75–80 min, 10–0% A; 80–83 min, 0% A; 83–86 min, 0–95% A;
86–90 min, 95% A. The injection volume was 10 μL.
Ultraperformance liquid chromatography-electrospray
ionization-quadrupole-time of flight-mass spectrometry
(UHPLC-ESI-Q-TOF-MS) was also performed on ECD
samples. Details of the detection method are described in the
supplementary materials.

Animal Model
We used 32 ZDF rats (Fa/Fa) with body weights of 130 ± 10 g,
and six Zucker lean (ZL) rats (Fa/+) with body weights of 102 ±
12 g. All rats were 5 weeks old, male, with animal quality
certificate No. SCXK (Beijing) 2016–0,006 provided by Vital
River Laboratories (Beijing, China). They were raised in the
specific pathogen-free animal experiment center at Nanjing
University of Chinese medicine (Nanjing, China) at a
temperature of 24 ± 2°C, humidity of 65 ± 5%, light/dark
cycle of 12 h/12 h, and were provided food and water ad
libitum. All animal experiments were approved by the Animal
Ethics Committee of Nanjing University of Chinese Medicine
(approval No. 201909A017). All studies were conducted in

accordance with the recommendations of Guide for the Care
and Use of Laboratory Animals.

Experimental Design
After adaptive feeding, rats were randomly divided into five groups:
control group (L, n � 6), model group (Z, n � 8), ECD low-dose
group (EC-L, n � 8), medium-dose group (EC-M, n � 8), and high-
dose group (EC-H, n � 8). Group L was fed with a normal diet
(MD17121, Mediscience, China), and the others were given
formula feed (Purina#5008, Lab diet, United States). Dietary
composition is shown in Supplementary Table 1. From 5 to
9 weeks old, ECD treatment groups (EC-L, EC-M, and EC-H
groups) were orally administered the low (2.28 g/kg), medium
(4.57 g/kg), or high (9.14 g/kg) doses of ECD, and the L and Z
groups were given high-pressure-sterilized water instead of ECD
once a day with a volume of 1 ml/100 g. These dosages were
calculated from the equivalent conversion of the body surface
area between animals and humans.

Fresh fecal samples were collected into sterile tubes, avoiding
contact with skin or urine of rats, at the end of adaptive feeding (5-
week-old rats) and before the end of the experiment (9-week-old
rats), then stored at −80°C before processing for 16S rRNA gene
sequencing. The body weights, abdominal circumferences, and
food intakes of rats in all five groups were measured weekly. At the
age of 9 weeks, an insulin tolerance test (ITT) was performed by
intraperitoneal injection of insulin (5 U/kg) after fasting for 6 h,
and the area under the curve (AUC) was calculated.

After the experiment, the rats were fasted for 12 h and then
anesthetized with isoflurane. Blood was taken from the
abdominal aorta. The supernatant was collected after
centrifugation at 4°C and 180 g for 10 min, and the levels of
total cholesterol (TC), high-density lipoprotein cholesterol
(HDL-C), low-density lipoprotein cholesterol (LDL-C), and
triglycerides (TG) also with alanine aminotransferase (ALT),
aspartate aminotransferase (AST), blood urea nitrogen (BUN)
and creatinine (Cr) were measured by an automatic biochemical
analyzer (Chemray 240, Rayto, China). Fasting serum insulin
levels were determined by enzyme-linked immunosorbent assay
(10–1,250–01, Mercodia, Sweden), and the Homeostasis Model
Assessment-Insulin Resistance (HOMA-IR) index was calculated
as follows: HOMA-IR � fasting plasma glucose (mmol/L) ×
fasting serum insulin (mIU/L)/22.5 (Matthews et al., 1985).
The remaining samples were used for determination of fasting
serum free fatty acids (FFA). The weights of perirenal WAT and
epididymal WAT were measured, and the fat body ratio was
calculated as follows: Fat body ratio � (perirenal or epididymal)

TABLE 1 | The components of ECD.

Herbal name Botanical Latin name Place of origin Part used Amount used

Ban-Xia Pinellia ternata (Thunb.) Makino Jiangsu dried tuber 15 g
Chen-Pi Citrus × aurantium L. Zhejiang dried mature pericarp 15 g
Fu-Ling Wolfiporia extensa (Peck) Ginns (syn. Poria cocos (Schwein.) F.A.Wolf) dried sclerotia 9 g
Gan-Cao Glycyrrhiza uralensis Fisch. ex DC. Gansu dried root and rhizome 4.5 g
Sheng-Jiang Zingiber Officinale Roscoe Jiangsu fresh rhizome 7 pieces
Wu-Mei Prunus mume (Siebold) Siebold and Zucc. Fujian dry near-mature fruit 1 piece
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WATweight (mg)/body weight (g) × 100%; Total fat body ratio �
(perirenal + epididymal) WAT weight (mg)/body weight (g) ×
100%. The epididymal WAT from the same part of each rat was
collected for hematoxylin-eosin (HE) staining and western
blotting. Cecal contents (fresh feces in the cecum) were
collected for targeted metabolomics analysis. EC-M group was
used as the representative of EC groups for subsequent HE
staining, western blotting, FFA determination, gut microbiota
sequencing, and short-chain fatty acids (SCFAs) content
detection. Except the paraformaldehyde fixed WAT was stored
at 4°C, all samples were stored at −80°C.

HE Staining
To detect the difference of cell morphology in WAT, the three
most representative rats in groups L, Z, and EC were respectively
selected and their WAT were dehydrated and embedded, and
then prepared into 5-µM paraffin sections (RM2245, Leica,
Germany). After stained with HE staining solution (R20570-2,
Yuanye, China), WAT was observed and photographed using a
microscope (BX53, Olympus, Japan).

Western Blotting and FFA Determination
The four most representative rats in groups L, Z, and EC were
respectively selected for western blotting and FFA determination.
Epididymal WAT samples in three groups were homogenized in
RIPA buffer (P0012B, Beyotime, Beijing, China) supplemented with
a mixture of 100 × protease inhibitor cocktail (5871s, CST,
United States) and 100 × phosphatase inhibitor cocktail (5870s,
CST, United States) to obtain their protein samples. The same
amounts of protein samples were subjected to sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted
with the following antibodies: phospho-Insulin Receptor Substrate 1
(IRS1) (Ser307) (#2381, CST, United States, 1:1,000), IRS1
(ab52167, Abcam, United Kingdom, 1:500), phospho-Protein
Kinase B (AKT) (Ser473) (4058S, CST, United States, 1:1,000),
AKT (9272S, CST, United States, 1:1,000), phospho-Protein Kinase
A (PKA) α/β/γ (Thr197) (ab75991, Abcam, United Kingdom, 1:
5,000), PKA α/β/γ (SC-390548, Santa Cruz, United States, 1:1,000),
Phospho-hormone-sensitive triglyceride lipase (HSL) (Ser563)
(AF2350, Affinity, United States, 1:2000), HSL (AF6403, Affinity,
United States, 1:2000), adipose triglyceride lipase (ATGL) (A6245,
ABclonal, 1:1,000) and β-actin (3700S, CST, United States, 1:1,000).
The membranes were incubated with secondary antibodies
conjugated to HRP (BA-1054/BA1050, Boster, Hubei, China, 1:
2000). The immunoreactive bands were treated with
chemiluminescence solution (ECL, Tanon, Shanghai, China) and
detected by X-ray films. The blots were visualized with an
Amersham Imager 600 (General Electric Company, United States).

According to the instruction of the determination kit (A042-2-
1, Jiancheng, China), the concentrations of FFA in the serum
samples of rats in groups L, Z, and EC were detected.

Gut Microbiota Sequencing and Data
Analysis
The fecal samples of rats in L, Z, and EC groups at 5 and 9 weeks
old were sequenced for the 16S rRNA gene (Shanghai Personal

Biotechnology Co., Ltd., Shanghai, China). According to the
manufacturer’s protocol, total microbial DNA was extracted
from stool samples, and DNA was quantified by a Nanodrop.
The quality of DNA extraction was detected by 1.2% agarose gel
electrophoresis. The V3-V4 region of the 16S rRNA gene was
amplified by polymerase Chain Reaction (PCR). The amplified
products were quantified by fluorescence (Microplate reader,
BioTek, FLx800), and the samples were mixed according to
the corresponding proportions. The sequencing Library
(TruSeq Nano DNA LT Library Prep Kit, Illumina company)
was prepared, and double-ended sequencing (MiSeq PE300
sequencer) was performed with a Miseq Regent Kit V3 (600
cycles).

The analysis was carried out using Quantitative Insights into
Microbial Ecology (QIIME2) and R language ggplot2 package
software. The sequence denoising was performed by a DADA2
analysis process (Callahan et al., 2016). According to the
distribution of amplitude sequence variables (ASVs) among
the groups, the Simpson index at 5 and 9 weeks of age was
evaluated to characterize alpha diversity, and a box plot was
drawn using R script. The differences in beta diversity at 5 and
9 weeks of age were evaluated by principal coordinates analysis
(PCoA) based on unweighted UniFrac distance, a classical
multidimensional scaling (cMDScale) analysis method
(Ramette, 2007). Sample two-dimensional sorting graphs of
PCoA were drawn by R script, and the significance of the
differences was evaluated by adonis analysis. The number of
common and unique ASVs between groups was shown by a
Venn diagram. At the level of taxonomic composition, species at
5 and 9 weeks of age in each group was displayed at the phylum
and genus levels to understand the overall microbial
composition. At the genus level, the UPGMA algorithm was
carried out to perform hierarchical clustering analysis based on
the Bray-Curtis distance matrix to show the similarity of the
microbial composition among groups. Linear discriminant
analysis (LDA) effect size (LEfSe) analysis, a nonparametric
Kruskal-Wallis and Wilcoxon rank sum test combined with
LDA effect size (Segata et al., 2011), was applied to explore the
difference between groups at 5 and 9 weeks of age, and measure
the changes in microbiota during the development of obesity
and ECD treatment. An LDA value distribution histogram was
used to show the species significantly enriched and their degree
of importance. A cladogram was constructed to display the
taxonomic hierarchical distribution of biomarkers in each
group. Random forest analysis was applied to show the order
of importance of biomarkers among groups at 9 weeks of age.
The functional potential was predicted and analyzed based on
Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States (PICRUSt) 2. The abundance of secondary
functional pathways in the KEGG pathway database (http://
www.genome.jp/kegg/pathway.html) was calculated for gut
microbiota of 9-week-old rats. The functional units were
identified by PCoA based on Bray-Curtis similarity, and
differential metabolic pathways were predicted by
metagenomeSeq. Spearman correlation analysis was used to
determine the correlation between biomarkers and
differential metabolic pathways. A heat map was constructed
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to investigate the potential relationship between the biomarkers
and host phenotype.

The raw sequences of Miseq sequences from 44 fecal samples
of rats have been submitted to NCBI Project under accession
number PRJNA686642 with NCBI Sequence Read Archive under
accession number SRP298569.

SCFAs Analysis
The targeted metabolism technology, ultraperformance liquid
chromatography-tandem mass spectrometry (UPLC-MS/MS),
was used to quantitatively detect SCFAs in the cecal contents
of L, Z, and EC groups (Metabo-Profile, Shanghai, China).
According to the manufacturer’s protocol, approximately
10 mg of sample was put in a 1.5 ml tube, and 25 μL of water
and 185 μL of acetonitrile:methanol (8:2) was added to extract
metabolites. After high-speed centrifugation (18,000 g, 20 min),
15 μL of internal standard was added to the 135 μL supernatant,
which was aliquoted and diluted. UPLC-MS/MS (Waters
ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford, MA,
United States) was used for SCFA detection. TargetLynx
software (Waters Corp., Milford, MA, United States) was used
to process the original data files generated by UPLC-MS/MS, and
the peaks of each metabolite were integrated, calibrated, and
quantified. Partial least squares discrimination analysis (PLS-DA)
was applied to show the composition of SCFAs among groups.
Integrated Metabolomic Analysis Platform v1.0 (Metabo-Profile,
Shanghai, China) was used for statistical analysis. A heat map was
constructed to show the potential relationship between the
biomarker and host phenotype.

Statistical Analysis
The data of ZDF rat phenotypes was expressed as means ±
standard error of the mean (SEM). The statistical differences
between groups were evaluated by analysis of variance (ANOVA)
using GraphPad Prism 8.0 software (GraphPad, La Jolla, CA,
United States), and the specific analysis method is shown in the
legend of each figure. ImageJ v1.8.0 (Rawak Software Inc.,
Stuttgart, Germany) was used to analyze the number and
cross-sectional area of adipocytes in WAT. The target protein
bands were quantified with ImageQuant TL 1D software (GE
Healthcare, United States). Spearman correlation analysis was
conducted to evaluate correlations between the biomarkers in gut
microbiota and SCFAs and host phenotype. Significant
differences were accepted at p values of <0.05.

RESULTS

The Chemical Composition of ECD
A characteristic HPLC chromatogram of an ECD sample is
shown in Figure 1. ECD contained four compounds, liquiritin,
hesperidin, glycyrrhizic acid, and 6-gingerol, which are
flavonoids, saponins, and phenols, and is basically consistent
with the results of previous studies (Lee et al., 2020). UHPLC-ESI-
Q-TOF-MS total ion chromatogram and results of ECD sample
are shown in Supplementary Figure 1 and Supplementary
Table 2. One hundred and twenty-six compounds in the

positive ion mode and 20 compounds in the negative ion
mode were detected, including naringin and 8-gingerol that
were not detected by HPLC. Nobiletin was found in the
positive ion mode, and five compounds were found in both
the positive ion and negative ion mode. Previous studies have
predicted that hesperidin, naringin, nobiletin, glycyrrhizic acid,
and 6-gingerol might be the main bioactive components and
medicinal material bases of ECD intervention in metabolic
diseases (Lee et al., 2018).

ECD Delayed the Development of Obesity in
ZDF Rats
To observe the effects of ECD on obesity in ZDF rats, we
compared the changes of body weight, abdominal
circumference, and food intake in the five groups. The results
revealed that the difference of body weight age-dependently
increased in group Z comparison to group L. ECD treatment
notably reduced the body weight of rats at 8 weeks old. At 9 weeks
of age, the body weight gain compared with the baseline of the
ECD-treated groups was significantly lower than that of group Z
(Figures 2A,B). The weekly changes in abdominal circumference
showed the same trend as that of body weight, with ECD
treatment at 7 weeks of age significantly reducing the enlarged
abdominal circumference (Figure 2C), which illustrated that
ECD had intervention effects on abdominal obesity. However,
the intervention effect of ECD was not realized through the
control of food intake (Figure 2D).

Insulin sensitivity was evaluated by ITT at 9 weeks of age. The
results revealed a higher blood glucose level at each time point
and AUC in group Z, while ECD treatment effectively improved
insulin sensitivity (Figures 2E,F). Additionally, fasting serum
insulin levels and HOMA-IR indexes increased significantly in
group Z, while ECD treatment attenuated IR of ZDF rats
(Figures 2G,H).

The fat body ratio and blood lipids were standardized at the end
of the experiment. The results showed an obvious increase of fat
body ratio and various indexes of blood lipids in group Z. ECD
markedly reduced epididymal and total fat body ratio, serum LDL-
C, and TG (Figures 2I,J), indicating that ECD could regulate
abnormal lipid metabolism in vivo. These data illustrated that ECD
could effectively prevent and treat obesity and improve IR and lipid
metabolism disorders in ZDF rats as expected.

The dose used in group EC-M is a clinically effective dose,
which had basically same effect while less negative impact on liver
and kidney function of rats compared with group EC-H (mainly
manifested in significantly elevated ALT andmore notably higher
Cr level in group EC-H, as shown in Supplementary Figure 2).
Therefore, EC-M was taken as the representative of treatment
groups for subsequent studies.

ECD Improved Insulin Signal Transduction
and Decreased Lipolysis in WAT of ZDF
Rats
WAT stores TG as an energy reserve and provides energy to
tissues in the form of FFA. In pathological conditions, excessive
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FIGURE 1 | Chemical composition of ECD. Chromatogram of (A)mixed standards and (B) ECD sample by HPLC. (C) Chemical structures of four components in
ECD sample. 1) liquiritin, 2) naringin, 3) hesperidin, 4) glycyrrhizic acid, 5) 6-gingerol, 6) 8-gingerol, 7) 10-gingerol in each figure.

FIGURE 2 | ECD delayed the development of obesity in ZDF rats. (A) Weekly weight change. (B) Weight gain at 9 weeks of age. (C) Weekly abdominal
circumference change. (D)Weekly food intake change. (E) Blood glucose levels during ITT. (F) AUC based on ITT data. (G) Fasting serum insulin levels. (H) HOMA-IR
index. (I) Perirenal, epididymal, and total fat body ratios. (J) Serum TC, HDL-C, LDL-C, and TG levels at 9 weeks of age. Data are expressed asmeans ± SEM (n � 5–8. Z
vs. L, **p < 0.01, ***p < 0.001, ****p < 0.0001; EC-L, EC-M, and EC-H vs. Z, #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001). (A), (C), (D), and (E) were analyzed by
two-way ANOVA, the rest were analyzed by one-way ANOVA.

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 6475296

Zhao et al. Erchen Decoction for Obesity

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 3 | ECD improved insulin signal transduction and decreased lipolysis in WAT of ZDF rats. (A) Representative image (bar: 100 µM) and (B) number and
average area of adipocytes of WAT HE staining (n � 3. Z vs. L, ****p < 0.0001; EC vs. Z, ##p < 0.01, ###p < 0.001). (C) Representative bands and (D) relative protein
expression of p-IRS1/IRS1, p-AKT/AKT, p-PKA/PKA, p-HSL/HSL, and ATGL. (E) Serum FFA concentration (n � 4. Z vs. L, **p < 0.01, ***p < 0.001, ****p < 0.0001; EC
vs. Z, #p < 0.05, ##p < 0.01). (B), (D), and (E) were analyzed by one-way ANOVA.
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lipolysis is a characteristic pathological change of obesity. At the
histological level, HE staining results showed that the adipocytes
in group L were uniform in size, clear in boundary and tightly
arranged. However, in the same field of vision, the number of
adipocytes decreased, the diameter and cross-sectional area of
adipocytes increased in group Z, while ECD treatment increased
the number of adipocytes, reduced the area of adipocytes tended
to be normal (Figures 3A,B). Insulin has an important regulatory
effect on lipolysis. It activates insulin signaling by binding to
receptors on adipocytes and regulates downstream PKA activity.
HSL, a key enzyme in the process of hydrolyzing diacylglycerol
into glycerol and FFA, is an important target for PKA control.
The expressions of p-IRS1/IRS1, p-AKT/AKT, p-PKA/PKA, and
p-HSL/HSL in the epididymalWAT of ZDF rats were determined
by western blotting to explore the underlying effect of ECD on
lipolysis. The results showed that there were no significant
changes in total protein levels of IRS1, AKT, PKA, or HSL
levels in the three groups. However, we observed the
differences in phosphorylation with a significant increase in p-
IRS1/IRS1, p-PKA/PKA, and p-HSL/HSL levels and
downregulation of the level of p-AKT/AKT in group Z.
Compared with group Z, ECD could regulate the
phosphorylation status of these molecules in the opposite
direction, thereby improve significantly the activity. ATGL is
the rate-limiting enzyme which decomposes triacylglycerols to
diacylglycerol, which provides substrate for HSL. Contrary to
HSL, its activity does not seem to be regulated by phosphorylation
(Zimmermann et al., 2004). Therefore, the expression of ATGL
protein was also measured. Compared with group L, ATGL
protein content in group Z was notably reduced, but ECD did
not modify it. These results suggested that there might be
abnormal lipolysis in WAT of ZDF rats, and the effect of ECD
on the lipolysis relied more on the improvement of IRS1/AKT/
PKA/HSL signaling pathway rather than on a direct regulation of
HSL or ATGL (Figures 3C,D). The regulation of insulin on
ATGL is not mediated by AKT (Yin et al., 2019) or PKA
(Zimmermann et al., 2004), which may explain why ECD had
no effect on ATGL. The level of lipolysis affects the content of
FFA in the circulation. Thus, we compared the concentrations of
fasting serum FFA in three groups to confirm the effect of ECD on
lipolytic function of ZDF rats. Compared with group L, the FFA
concentration of group Z increased, while ECD treatment
significantly reduced the FFA concentration of ZDF rats
(Figure 3E). The above results indicated that there were
abnormal cell morphology and excessive lipolysis in WAT of
ZDF rats, and ECD could possess protective effect on the
morphology of adipocytes and reduce the release of FFA from
excessive lipolysis of WAT by interfering with insulin signal
transduction, which might be related to the improvement of
IRS1/AKT/PKA/HSL signaling pathway.

ECD Modulated the Overall Structure and
Composition of Gut Microbiota in ZDF Rats
To explore whether the biological effects of ECD were related to
changes in gut microbiota, an important target for the
development of obesity, fecal samples from rats at 5 and

9 weeks of age were collected and the 16S-V3V4 regions of the
gut microbiota were pair-end sequenced using the Illumina high-
throughput sequencing platform. A total of 1,610,611 sequences
were gathered after denoising, and 1,113,709 high-quality
sequences were obtained after quality control from 44 samples.
The 17,692 sequence abundances of each sample ensured that all
samples were analyzed at the same level of sequencing depth after
leveling.

We first assessed the changes in the structure of gut microbiota
of rats. At 5 weeks of age, the Simpson index of ZDF rats was no
different from that of the control. While at 9 weeks of age, the
Simpson index of group Z was significantly higher than that of L,
ECD intervention significantly reduced this index and changed
the alpha diversity of gut microbiota in ZDF rats (Figure 4A).
PCoA based on unweighted UniFrac distance (Figure 4B)
illustrated that the bacterial structure of groups Z and L were
separated significantly at 5 weeks of age. With the development of
obesity, the bacterial structure of group Z changed (Z-5W vs. Z-
9W: R2 � 0.322,165, p � 0.002), and the difference between groups
Z and L was more obvious at 9 weeks of age (L-5W vs. Z-5W: R2 �
0.127,367, p � 0.002 < L-9W vs. Z-9W: R2 � 0.321,536, p � 0.001).
ECD also gradually changed the bacterial structure of ZDF rats
(EC-5W vs. EC-9W: R2 � 0.361,867, p � 0.002). At 9 weeks, the
bacterial structures of EC and Z groups could be distinguished
significantly (Z-5W vs. EC-5W: R2 � 0.061437, p � 0.701 < Z-9W
vs. EC-9W: R2 � 0.238,092, p � 0.001).

We further observed the changes in the composition of gut
microbiota of rats. We found that from 5 to 9 weeks of age, the
shared ASVs between groups L and Z decreased from 890 to 312,
and those between groups Z and EC decreased from 1,237 to 689
(Figure 4C), indicating that both the development of obesity and
the intervention of ECD might cause some changes in the
composition of rat gut microbiota. The top 10 phyla and top
15 genera in relative abundance of fecal microbiota in each group
of rats at 5 and 9 weeks old are shown in Figures 4D,E,
respectively. Firmicutes and Bacteroidetes were the two main
phyla, followed by Proteobacteria and Actinobacteria, which
was similar to the situation of human gut microbiota. At the
genus level, Lactobacillus was the dominant genus in all stages of
rats in each group. Hierarchical clustering analysis of the top 10
abundant genera of gut microbiota of each group at the two stages
showed that the microbial composition of the EC group was
similar to that of group Z at 5 weeks of age, while at 9 weeks of
age, the microbial composition of the EC group was more similar
to that of group L due to the intervention of ECD (Figure 4F).
These results indicated that ECD gradually regulated the overall
structure and genus composition of gut microbiota in ZDF rats.

ECD Regulated the Abundance of
Biomarkers at the Genus Level of Gut
Microbiota in ZDF Rats
To detect biomarkers at the genus level, we compared
horizontally the composition of gut microbiota among three
groups at 5 and 9 weeks of age, and compared vertically the
changes of gut microbiota of each group from 5 to 9 weeks of age.
The gut microbiota changed significantly with the development
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of obesity and ECD treatment were explored. We found that the
differences of gut microbiota at genus level were not significant at
5 weeks of age. However, from 5 to 9 weeks, the promotion of
nine genera (Prevotella, Blautia, Dorea, SMB53, Allobaculum,
Coprobacillus, [Ruminococcus], Holdemania, and Sutterella) and
the reduction of five genera (Akkermansia, Oscillospira,
Adlercreutzia, Dehalobacterium, and
f_Erysipelotrichaceae_g_Clostridium) were established during
the development of obesity, which had a significant difference
in group Z comparison to L at 9 weeks of age, implying the
potential relevance of these genera to obesity progression
(Supplementary Table 3). At the same time, ECD treatment
gradually changed the relative abundance of four genera
mentioned above, including decreasing Prevotella, Blautia,
Coprobacillus and Holdemania, and increasing Akkermansia.
In addition, ECD also gradually reduced the amount of
Ruminococcus. At 9 weeks of age, the relative abundance of
these genera in group EC were markedly different from group
Z and tended to a normal level, which are the bacterial targets of
ECD. LDA value distribution histogram and corresponding
cladogram were used to show microbiota and their taxonomic

hierarchies with significant differences between groups at 9 weeks
of age (Figures 5A,B). The relative abundances of ECD
intervention biomarkers are shown in Figure 5C, and their
LDA and p values are shown in Supplementary Table 4. The
importance order of these genera is shown by random forest
analysis. In particular, Prevotella, Ruminococcus, Blautia and
Holdemania have a greater impact on the formation of
differences among groups (Figure 5D).

ECD Regulated the Function of Gut
Microbiota in ZDF Rats
To observe whether the changes in the composition of gut
microbiota further leads to functional changes, we further carried
out the prediction of the function of microbiota, and detected the
changes in the content of important microbiota metabolites, SCFAs.
The function of gut microbiota in 9-week-old rats was mainly
focused on genetic information processing and metabolism,
especially energy metabolism and the metabolism of the three
major energy substances, amino acids, carbohydrates, and lipid
(Figure 6A). However, PCoA showed that there was a certain

FIGURE 4 | ECD modulated the overall structure and composition of gut microbiota in ZDF rats. Gut microbiota among groups at 5 and 9 weeks of age. (A)
Simpson diversity. The Kruskal-Wallis rank sum test and Dunnett’s test were used as post hoc tests to verify the significance of the difference. *p < 0.05, **p < 0.01. (B)
PCoA based on unweighted UniFrac distance. The ellipse confidence was 0.95. (C) ASV Venn diagram. (D, E) Gut microbiota composition at phylum and genus levels.
(F) Hierarchical clustering analysis at the genus level. The left panel is a hierarchical clustering tree diagram and the right is a stacked column chart of genera.
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separation of microbial functions among the three groups in rats. In
the PC1 dimension, the functional composition of the EC group was
more similar to that of group L, with a contribution rate of 51%

(Figure 6B). There were significant differences in eight signaling
pathways, including the insulin signaling pathway (ko04910)
(Figure 6C). Its abundance was significantly positively correlated

FIGURE 5 | ECD regulated the abundance of biomarkers at the genus level of gut microbiota in ZDF rats. All three groups were at 9 weeks of age. (A) LDA value
distribution histogram and cladogram of biomarkers between groups L and Z. (B) LDA value distribution histogram and cladogram of biomarkers between groups Z and
EC. LDA score threshold >2 in (A) and (B). (C) Relative abundances of Prevotella, Blautia, Ruminococcus, Holdemania, Coprobacillus, and Akkermansia among three
groups. The p-value was determined by LEfSe analysis. (D) Random forest analysis of differential gut microbiota. The intensity of colors represents the abundance
distribution of gut microbiota in each sample (red, the corresponding abundance was higher; blue, the corresponding abundance was lower).
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with the relative abundance of Prevotella, Blautia, Ruminococcus,
Holdemania, and Coprobacillus (Figure 6D), implying a potential
role for these ECD intervention biomarkers. The metabolites
secreted, modified, and degraded by gut microbiota are important
mediators of the host-microbiota dialogue, which participate in the
regulation of host metabolism. SCFAs are metabolites that have a
high concentration in the cecum, and mainly include acetic acid,
propionic acid, and butyric acid. The metabolism of SCFAs in the
cecum of groups at 9 weeks of age was analyzed. The results showed
that ZDF and ZL rats were separated in their composition of SCFAs
(Figure 6E). Compared with group L, there were significant changes

in the contents of five SCFAs in group Z, among which propionic,
butyric, and isovaleric acid were notably increased, while isobutyric
and 3-hydroxyisovaleric acid were obviously reduced. ECD
treatment significantly reduced propionic acid and tended to
reduce butyric and isovaleric acid while raising isobutyric and 3-
hydroxyisovaleric acid in the cecum of rats (Figure 6F). Prevotella
(De Vadder et al., 2016), Blautia (Reichardt et al., 2014) and
Ruminococcus (Krautkramer et al., 2020) strains have been
reported to produce propionic acid by fermentation. Therefore,
ECD might reduce the abundance of these bacteria to reduce the
content of propionic acid. Acetic acid is the fermentation product of

FIGURE 6 | ECD regulated the function of gut microbiota in ZDF rats. All three groups were at 9 weeks of age. (A) The abundance of KEGG functional pathways at
the secondary classification level of gut microbiota. (B) PCoA of gut microbiota functional units based on Bray-Curtis similarity. The ellipse confidence was 0.95. (C)
Different metabolic pathways of gut microbiota. The intensity of colors represents the degree of association between gut microbiota and signaling pathways in each
sample (red, strong correlation; blue, low correlation). (D) Correlation analysis between Prevotella, Blautia, Ruminococcus, Holdemania, Coprobacillus,
Akkermansia, and the insulin signaling pathway (ko04910). (E) 2D and 3D PLS-DA of SCFAs. (F) Contents of propionic, butyric, isovaleric, isobutyric, and 3-
hydroxyisovaleric acid in cecal contents. The differences were analyzed by one-way ANOVA (Z vs. L, *p < 0.05, **p < 0.01, ***p < 0.001; EC vs. Z, #p < 0.05). (G)
Correlation between microbial and SCFA biomarkers and host phenotype. The panel shows the associations of six different genera and propionic acid with obesity, IR
and lipid metabolism disorder phenotypes, and expression of the IRS1/AKT/PKA/HSL signaling pathway. Color intensity represents the degree of association (red,
positive correlation; blue, negative correlation). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Except (F) n � 5–8, the rest n � 6–8.
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most intestinal bacteria. Butyric acid- and propionic acid-producing
bacteria were almost different, which explains why there were no
differences in acetic acid among the groups or a significant change in
the content of butyric acid after the intervention.

ECD significantly improved IR and lipid metabolism disorders,
especially in WAT of ZDF rats. Therefore, we analyzed the
correlation between the six core genera and propionic acid,
which changed after ECD intervention, and host phenotype
(Figure 6G). We observed that Prevotella and Blautia were not
only markedly correlated positively with obesity phenotypes such as
body weight and abdominal circumference, but also with
pathological manifestations such as IR and abnormal lipid
metabolism, while Holdemania was mainly associated positively
with lipid metabolism disorder-related indexes. Prevotella, Blautia,
Ruminococcus, Holdemania, andCoprobacillus also showed different
degrees of correlation with the expression of the IRS1/AKT/PKA/
HSL signaling pathway in WAT. In addition, the content of the gut
microbiota metabolite propionic acid was significantly positively
correlated with body weight, abdominal circumference, and
phenotypes related to lipid metabolism disorders. These results
revealed a potentially close relationship between the host
phenotype and biomarkers, especially Prevotella, Blautia,
Holdemania, and propionic acid. These might be important
targets for ECD to improve obesity, especially lipid metabolism
disorders via gut microbiota. The regulation of the insulin signaling
pathway might also play an important role.

DISCUSSION

In this study, we found for the first time that ECD changes the
composition and function of gut microbiota in ZDF rats, which
led them towards a healthier state. Interestingly, the changes in
gut microbiota induced by ECD intervention were closely related
to the improvement of IR and lipid metabolism disorders,
especially in WAT, indicating that the beneficial effects of
ECD on obesity, especially lipid metabolism disorders, were
related to the regulation of gut microbiota in ZDF rats.

ZDF rats are characterized by obesity, IR, and hyperlipidemia
due to mutations in the extracellular region of the leptin receptor
(Habegger et al., 2014). Compared with traditional dietary model,
this animal model has a shorter time interval and is stable, which
makes it ideal to study obesity. We found that ECD treatment
could help the negative effects of obesity, including weight loss,
improvements in IR, and the regulation of dyslipidemia, which is
consistent with previous studies (Gao et al., 2015; Zhang et al.,
2017; Ding et al., 2018; Zhang et al., 2020b; Lee et al., 2020) and
illustrates that ECD has a regulatory effect on obesity caused by
genetic factors. However, the regulatory effects of ECD on TC and
HDL-C in blood lipids are not currently consistent, which might
be related to the different models and drug concentrations.

Previous studies have investigated the biological effects by
which ECD modulates metabolism. ECD can promote the
expression of CDKAL1 and improve the function of islet cells,
thereby ameliorating insulin secretion (Gao et al., 2015). Moreover,
the intervention effects by which ECD improves lipid metabolism
include the inflammatory response (Lee et al., 2020) and lipid

transport (Ding et al., 2018). The lipid metabolic balance is the
result of a combination of lipogenesis and lipolysis. Studies have
found that ECD upregulates the expression of peroxisome
proliferator-activated receptor gamma (PPARγ) in visceral fat
and skeletal muscle and lipoprotein lipase (LPL) in skeletal
muscle (Zhang et al., 2020b), and reduces the lipid
accumulation caused by IR by inhibiting the expression of IRS1
phosphorylation in the liver (Zhang et al., 2017). Adipose tissue is
an important target organ for the treatment of obesity (Kusminski
et al., 2016), as it expands in obese individuals. Due to homeostatic
regulation and continuous low-level inflammation (Shiau et al.,
2019), excessive fat leads to lipolysis, resulting in FFA releases to
the circulation and liver, skeletal muscle, pancreas, and other
tissues, which leads to lipid toxicity and IR throughout the
body. In particular, visceral adipocyte hypertrophy results in
decreased insulin sensitivity, a weakened insulin anti-lipolytic
effect, and enhanced lipolytic activity in adipocytes (Roden and
Shulman, 2019). Studies have found that the anti-lipolytic effect of
insulin can be adjusted through the AKT/PKA/HSL signaling
pathway (Yin et al., 2019), and inhibiting excessive lipolysis of
adipose tissue (Park et al., 2020) is an important way to treat
metabolic diseases. Consistent with previous results, we found that
adipocytes expanded, IRS1 phosphorylation increased, AKT
activity decreased, and insulin signal transduction was impaired,
while PKA-mediated HSL activity was upregulated and the ability
to release FFA into the circulation was enhanced in the WAT of
ZDF rats. ECD not only changed the histological morphology, but
also improved lipolysis in WAT by modulating the IRS1/AKT/
PKA/HSL signaling pathway and reverting it to normal. Under the
condition of basically the same food intake and calories, ECD
changed the weight of ZDF rats, which might be related to the
increase of energy consumption. Both previous studies and our
studies have shown that ECD could improve the metabolic
regulation of adipose tissue, which might be accompanied by
changes in the function of mitochondria in adipose tissue,
because the location (Brestoff et al., 2020) and activity (Joffin
et al., 2021) of mitochondria in adipose tissue play a key role in the
homeostasis of lipid metabolism.

Host genetics affect the composition of gut microbiota
(Goodrich et al., 2014), and gut microbiota in turn regulate
host energy homeostasis and glucose and lipid metabolism
(Tremaroli and Backhed, 2012). In addition, environmental
factors also importantly affect the gut microbiota (Rothschild
et al., 2018). Many studies have revealed a close underlying
connection between changes in gut microbiota and the
occurrence and development of obesity. Targeting gut
microbiota could improve insulin sensitivity (Udayappan
et al., 2016), thereby regulating insulin-mediated lipid
metabolism in adipocytes (Kimura et al., 2013) and
improving host obesity. In our previous work, we observed
the effects of fecal microbiota transplantation on the
progression of obesity-susceptible diabetic mellitus (Zhang L.
et al., 2020) and dynamic changes in fecal microbiota in the
diabetic mellitus stage of ZDF rats (Zhou et al., 2019). We
revealed a potential role for the gut microbial structure and
composition in the disease progression of ZDF rats. At the same
time, we found that the traditional Chinese medicine formula,
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ECD could delay the development of obesity in ZDF rats. Based
on this, here we investigated the intervention effect of ECD on
gut microbiota in the obesity stage of ZDF rats. We found that
ECD reversed the changed diversity, adjusted the overall
structure, and shifted the composition of gut microbiota at
the genus level to render them normal during the
development of obesity, especially the relative abundances of
Prevotella, Blautia, Ruminococcus, Holdemania, Coprobacillus,
and Akkermansia in ZDF rats. Current studies indicate that the
association of Prevotella and Blautia with host health or disease
status is controversial. Some researchers believe that increased
Prevotella abundance can promote glycogen storage
(Kovatcheva-Datchary et al., 2015) and produce succinic acid
to activate intestinal gluconeogenesis, which is related to the
improvement of glucose metabolism and insulin tolerance (De
Vadder et al., 2016). However, some studies have found that
Prevotella can participate in the biosynthesis of branched-chain
amino acids, which is an important risk factor for the decreased
insulin sensitivity, glucose tolerance, and the occurrence of type
2 diabetes (De Filippis et al., 2019). In addition, high levels of
Prevotella can activate immune and stromal cells to release more
inflammatory mediators, promote chronic inflammation
(Larsen, 2017), and participate in the disease process. In
obese (Si et al., 2017) and non-alcoholic fatty liver disease
(Zhu et al., 2013; Schwimmer et al., 2019) individuals,
Prevotella is significantly enriched. We found that ECD
intervention reduced the elevated Prevotella in ZDF rats, and
in addition to insulin resistance, Prevotella abundance was
markedly positively correlated with lipid metabolism
disorders, while previous studies focused on carbohydrate
and amino acid metabolic pathways (Petersen et al., 2017).
Blautia is an important SCFA producing bacteria (Liu et al.,
2015), with anti-inflammatory effects (Benítez-Páez et al., 2020)
that aid in the recovery of intestinal mucosal damage (Zhou
et al., 2017); it is inversely associated with visceral fat content
(Ozato et al., 2019) and plays a beneficial therapeutic role in
metabolic disorders (Rodriguez et al., 2020). However, some
studies have suggested that higher Blautia is associated with
increased intestinal permeability (Leclercq et al., 2014), and its
abundance is positively correlated with metabolic diseases and
related to cardiovascular disease predictors such as plasma
glutamate and branched-chain amino acids (Ottosson et al.,
2018). In metabolic diseases such as obesity (Stanislawski et al.,
2017), diabetes (Egshatyan et al., 2016; Wei et al., 2018), and
nonalcoholic steatohepatitis (Del Chierico et al., 2017), the
abundance of Blautia is increased. This might be related to
the decrease in the abundance of other SCFA producing bacteria
(Becker et al., 2011), or the result of inflammatory responses in
different disease stages (Tuovinen et al., 2013). Our results
indicated that ECD reduced Blautia, which was remarkably
enriched in ZDF rats, and its abundance was significantly
positively correlated with the negative effects of insulin
sensitivity and lipid metabolism. Ruminococcus can degrade
resistant starches (Ze et al., 2012), thereby increasing intestinal
energy absorption, which promotes weight gain in individuals
(Cotillard et al., 2013). It also affects intestinal health by
promoting oxidative stress (Hall et al., 2017) and

inflammatory responses (Rajilić-Stojanović et al., 2015; van
den Munckhof et al., 2018), and is considered to be related
to negative human health consequences (Hills et al., 2019). ECD
reduced the relative abundance of this genus. Members of the
Erysipelotrichaceae family are closely related to clinical
indicators of impaired glucose and lipid metabolism and are
important targets of metabolic diseases (Kaakoush, 2015;
Lippert et al., 2017). Both Holdemania and Coprobacillus are
members of the Erysipelotrichaceae family. Holdemania is
related to the occurrence of inflammatory reaction
(Barandouzi et al., 2020; Jang et al., 2020), elevated in
patients with type 1 diabetes (Biassoni et al., 2020), and is
considered to be a predictor of hypertension (Hsu et al., 2020).
Coprobacillus is an important butyric acid producer and can be
cross-fed with Anaerostipes, Roseburia, and Bifidobacterium to
maintain butyric acid concentrations in the colon
(Muthuramalingam et al., 2020). It affects intestinal function
and mediates related intestinal diseases (Kassinen et al., 2007)
through the inflammatory response (Shi et al., 2018; Seo et al.,
2019). Its abundance is also positively correlated with the
expression of immune function related genes (Elderman
et al., 2018). Through the influence of lipid metabolism (Kim
et al., 2018), its abundance in the intestines of obese animals and
humans is increased (Wang et al., 2018; Terzo et al., 2020). ECD
effectively reduced the relative abundance of these two genera of
Erysipelotrichaceae in ZDF rats, and we found that the relative
abundance of Holdemania was significantly and positively
correlated with abnormal lipid metabolism. Akkermansia is
currently one of the most widely studied probiotics, and it
might be suitable for treating metabolic syndrome. It can
improve metabolic disorders in obese animals and humans,
including decreased insulin sensitivity and glucose and lipid
metabolism disorders (Anhê et al., 2015; Dao et al., 2016;
Depommier et al., 2019). It restores intestinal barrier
function (Desai et al., 2016) through the immunomodulatory
effect of cell membrane protein AMUC-1100 binding to toll-like
receptor 2 (Plovier et al., 2017) reducing macrophage
infiltration, proinflammatory cytokines, and chemokine
expression, therefore reducing the risk of cardiovascular
disease (Li et al., 2016). ECD increased the relative
abundance of Akkermansia that was decreased in ZDF rats.
The inconsistency of current research results is not only related
to differences in disease states, animal models, interventions,
diets, etc., but also indicates that effects of microbiota cannot be
generalized simply as beneficial or harmful. Differences at the
species level might lead to different results, and disease
phenotypes are often only related to a small number of
strains (Truong et al., 2017). Therefore, it is necessary to
further explore the changes of specific strains under each
genus in future research.

Gut microbiota is an important endogenous factor in
regulating WAT browning (Li et al., 2017) and brown
adipose tissue activity (Quan et al., 2020), and it can
regulate WAT inflammation (Virtue et al., 2019) and affect
WAT function. Studies have showed that intestinal barrier
injury in obese individuals can lead to the translocation of
intestinal flora or flora components (Anhê et al., 2020), and the
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number of bacteria in adipose tissue is related to immune cell
infiltration, inflammation, and metabolic indicators, which
affect the metabolic health of obese individuals (Massier
et al., 2020). Treatment with obesity-related harmful strains
increases the hypertrophy of adipocytes in obese mice,
resulting in decreased insulin sensitivity and increased
lipolysis in adipose tissue (Keskitalo et al., 2018). We found
that the relative abundances of Prevotella, Blautia, and
Holdemania were not only clearly positively correlated with
the host phenotype, but also with the expression of the IRS1/
AKT/PKA/HSL signaling pathway in WAT, suggesting that
Prevotella, Blautia, and Holdemania might be important
targets for ECD to enhance insulin sensitivity, thereby
reducing excessive lipolysis in WAT of ZDF rats. However,
the specific mechanism is still unclear, which is a direction
worthy of attention in future research.

This study is the first to examine gut microbiota targets of
ECD intervention. In addition to gut microbiota, their
metabolite SCFAs may be an important pathway for exerting
their metabolic effects (De Vadder et al., 2014). Although
SCFAs are related to metabolism, the role of SCFAs in
energy homeostasis is ambiguous at present (Canfora et al.,
2015). Some animal and human studies have shown that
obesity is associated with high levels of SCFAs (Freeland and
Wolever, 2010; Kim et al., 2019). Gut microbiota ferment
undigested carbohydrates (such as resistant starch and
dietary fiber) and proteins in the small intestine to produce
SCFAs, which increases energy absorption and then de novo
synthesis of lipids and glucose in the whole body, providing
about 10% of an individual’s energy requirements, potentially
leading to obesity (Turnbaugh et al., 2006). Consistently,
propionic and butyric acid, the two most important SCFAs,
increased significantly in the cecal contents of 9-week-old ZDF
rats. This change might be the result of an increase in intestinal
bacteria producing these two SCFAs or a decrease in bacteria
utilizing them in the intestinal tract of ZDF rats. The changes
may also be related to the fermentation or utilization rates of
different gut microbiota, microbial cross-feeding, mucosal
absorption and transport rate and other complex factors
(Schwiertz et al., 2010; Fernandes et al., 2014). Studies have
shown that butyric acid is the main energy source for intestinal
epithelial cells and can increase lipid synthesis (Birt et al.,
2013). The presence of propionic acid in feces is related to
increased risk of type 2 diabetes (Sanna et al., 2019).
Furthermore, both propionic and butyric acid can stimulate
lipolysis in adipocytes (Rumberger et al., 2014). We found that
the content of propionic acid was significantly positively
correlated with the phenotypes of obesity and lipid
metabolism disorders. Decreased propionic acid content
could be used as an independent predictor of the
improvement of insulin sensitivity (Tirosh et al., 2019). ECD
administration reduced the concentration of propionic acid in
ZDF rats, possibly by adjusting the gut microbiota to change
the content of fermentation products. Studies have shown that
Blautia strains ferment the deoxy sugars rhamnose and fucose
to form propionic acid through the propylene glycol pathway
(Reichardt et al., 2014). Prevotella (De Vadder et al., 2016) and

Ruminococcus (Krautkramer et al., 2020) produce succinate, an
intermediate product of propionic acid, through the succinate
pathway. Therefore, propionic acid might be an important
medium for gut microbiota of ECD intervention and a
subject for future research. Different SCFAs might exert
their biological effects through synergy and antagonism (Li
et al., 2020). In addition, the content of SCFAs in different
intestinal segments is different (Cummings et al., 1987), and
SCFAs in circulation are more closely related to peripheral
insulin sensitivity, systemic lipolysis, and metabolic health
(Müller et al., 2019). Therefore, the regulatory effect of ECD
on SCFAs still needs to be further explored.

In conclusion, we found that ECD could regulate lipid
metabolism, improve lipolysis in WAT, and modulate the
composition and function of gut microbiota in ZDF rats.
There was a significant correlation between biomarkers and
host phenotype, suggesting that the beneficial effects of ECD on
obesity, especially lipid metabolism disorders, were related to
the modulation of gut microbiota. The limitations of this
research were that, first of all, isoflurane anesthesia may
aggravate the pre-existing IR (Fang et al., 2020), thereby
affecting the judgment of the degree of IR in ZDF rats.
Secondly, genetic levels and even more molecular
experiments may be required to confirm the complex
crosstalk among molecules for the changes in the lipolytic
function of WAT. Moreover, the dietary factors cannot be
ignored. The dietary components of ZL and ZDF rats were
different (Supplementary Table 1), and the food intake of ZDF
rats was much higher than that of ZL rats (Figure 2D), which
led to different types and amounts of substrates fermented by
gut microbiota, resulting in metabolic differences (Makki et al.,
2018). Finally, the causal relationship between the regulation of
gut microbiota by ECD and the improvement of lipid
metabolism remains to be further explored.

CONCLUSION

We found that ECD delayed the development of obesity, inhibited
excessive lipolysis by improving the activity of the IRS1/AKT/PKA/
HSL signaling pathway in WAT of ZDF rats. In addition, ECD had
an impact on the composition and function of obesity-related gut
microbiota, reduced the content of Prevotella, Blautia, and
Holdemania, and the metabolite propionic acid. These biomarkers
were significantly positively correlated with host obesity phenotype,
especially lipid metabolism disorders. This study provides new
insights into the role of ECD in improving obesity and regulating
lipid metabolism disorders via gut microbiota and helps to further
clarify the mechanism of ECD in the treatment of obesity.
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GLOSSARY

AKT protein kinase B

ALT alanine aminotransferase

ANOVA analysis of variance

AST aspartate aminotransferase

ASVs amplitude sequence variables

ATGL adipose triglyceride lipase

AUC area under the curve

BUN blood urea nitrogen

Cr creatinine

ECD Erchen Decoction

FFA free fatty acids

HDL-C high-density lipoprotein cholesterol

HE hematoxylin-eosin

HOMA-IR homeostasis model assessment-insulin resistance

HPLC high performance liquid chromatography

HSL hormone-sensitive triglyceride lipase

IR insulin resistance

IRS1 insulin receptor substrate 1

ITT insulin tolerance test

LDA linear discriminant analysis

LDL-C low-density lipoprotein cholesterol

LEfSe LDA effect size

PCoA principal coordinates analysis

PKA protein kinase A

PLS-DA partial least squares discrimination analysis

SCFAs short-chain fatty acids

SEM standard error of the mean

TC total cholesterol

TG triglycerides

UHPLC-ESI-Q-TOF-MS ultraperformance liquid chromatography-
electrospray ionization-quadrupole-time of flight-mass spectrometry

UPLC-MS/MS ultraperformance liquid chromatography-tandem mass
spectrometry

WAT white adipose tissue

ZDF rats Zucker diabetic fatty rats

ZL rats Zucker lean rats
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