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Abstract

Motivation: Drug repurposing is a potential alternative to the traditional drug discovery process. Drug repurposing
can be formulated as a recommender system that recommends novel indications for available drugs based on
known drug-disease associations. This article presents a method based on non-negative matrix factorization (NMF-
DR) to predict the drug-related candidate disease indications. This work proposes a recommender system-based
method for drug repurposing to predict novel drug indications by integrating drug and diseases related data sour-
ces. For this purpose, this framework first integrates two types of disease similarities, the associations between
drugs and diseases, and the various similarities between drugs from different views to make a heterogeneous drug-
disease interaction network. Then, an improved non-negative matrix factorization-based method is proposed to
complete the drug-disease adjacency matrix with predicted scores for unknown drug-disease pairs.

Results: The comprehensive experimental results show that NMF-DR achieves superior prediction performance

when compared with several existing methods for drug—disease association prediction.
Availability and implementation: The program is available at https:/github.com/sshaghayeghs/NMF-DR.

Contact: sadeghi3@uwindsor.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drug repurposing (DR) is based on the idea that drugs can be used
for treating disease conditions other than the initial target of treat-
ment (Sercinoglu and Sarica, 2019). DR has become a widespread
tactic as this strategy is efficient, cost-effective and a low-risk alter-
native for drug discovery (Zhou et al., 2020). Computational drug
repurposing (CDR) aims to find novel indications for existing drugs
to treat diseases other than the drugs’ original purpose via using
computational methods such as machine learning (Shim and Liu,
2014). Compared with the experimental means, CDR methods are
more efficient in providing treatment solutions for all diseases such
as rare, acute, neglected diseases and cancer indications (Hernandez
etal.,2017). Besides, in epidemic disease outbreaks such as COVID-
19, the use of derivatives of previously known antiviral drugs is a
useful strategy (Dotolo ef al., 2021; Shah et al., 2020; Wang, 2020).

To date, a variety of computational methods have been proposed
to solve these problems and to predict new interactions between
known drugs and diseases accurately. They fall into two categories
(i) network-based and (ii) learning-based (Supplementary Fig. S1).
However, these methods still suffer from various computational
challenges such as handling heterogeneous data, scalability and class
imbalance for learning-based methods and sparsity for network-
based methods. To overcome these limitations, we propose in this
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work a novel network-based method (Non-Negative Matrix
Factorization-based Drug Repurposing) NMF-DR, to accurately
predict potential new drug—disease interactions.

CDR can also be modeled as a recommendation system that rec-
ommends the top-ranked diseases for given drugs (Luo et al.,
2018a). Recommendation systems nicely model this problem and
also are able to deal with existing challenges in CDR. There are
network-based DR methods that have been presented to infer new
drug-disease interactions with modeling associations between bio-
logical concepts in biological networks. Network-based DR can be
classified into two approaches, i.e. random walk (RW) approach;
such as RWHNDR (Luo et al., 2018a), TL-HGBI (Wang et al.,
2014b), MBiRW (Luo et al., 2016); and matrix factorization (MF)
approach; such as DRRS (Luo et al., 2018a), KBMF (Géonen et al.,
2013), MSBMF (Yang et al., 2021), SCPMF(Meng et al., 2021).
RW approach is more scalable and popular, but MF approach
achieves higher accuracy (Luo et al., 2018a).There are also other
MF-based methods which instead of drug-disease networks, they
use drug-protein network for DR purpose such as Ceddia et al.
(2020), Ceddia et al. (2019) and Dissez et al. (2019).

The network-based strategy is more successful in increasingly
attracting attention from the pharmaceutical community in recent
years. Also, due to the advances of high-throughput technology and
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an increasing number of available data sources (e.g. genetic,
pharmacogenomics, clinical, chemical agent, etc.), this approach can
be broadly used in the CDR field (Luo et al., 2018a). As for
Learning-based methods, there are some successful methods. Most
of the well-known learning-based methods, such as
PREDICT(Gottlieb er al., 2011), PreDR(Wang et al., 2013),
SMKF(Moghadam et al., 2016), focus on the prepossessing steps
and try different kernel-based integrating methods for fusing drug—
drug similarities and disease—disease similarities.

Network-based methods and MF-based methods have the fol-
lowing advantages that make them stand out. In the DR problem,
we have more unknown interactions than known interactions be-
tween drugs and disease. This issue can lead to the class-imbalance
problem in learning-based approaches and sparsity in network-
based approaches. In a network-based approach, unknown interac-
tions are treated as unlabeled associations instead of negative
associations. This helps avoid the problem of wrong label assign-
ment, which would affect the performance of models to some extent
(Shahreza et al., 2017).

MF-based methods provide a principled framework for the inte-
gration of heterogeneous network data (Gligorijevi¢ and Przulj,
2015). In addition, these methods show higher accuracy than
learning-based methods (Sadeghi and Keyvanpour, 2019b). As a re-
sult, the CDR method proposed in this article, a network-based MF
method, is proposed to deal with sparsity, heterogeneous data and
scalability, which are some of the most critical challenges in drug
repurposing problem (Sadeghi and Keyvanpour, 2020).

Hence, in this study, we propose an improved network-based
MF-based model called NMF-DR. The novelty of this model can be
explained based on its two phase:

1. Pre-Processing phase: (I) we propose a method for analyzing and
normalization of similarity matrices; (II) we propose a weighting
approach for constructing a heterogeneous network of drugs
and diseases.

2. Relation Prediction Phase: for estimating the missing values of
links between drugs and diseases, we propose an improved non-
negative matrix factorization (NMF) method that contains (I) a
rank selection method based on minimum descriptive length
(MDL) methods; (II) a matrix initialization method based on sin-
gular value decomposition (SVD) methods; (III) an accelerated
NMF method for relation prediction step.

The rest of the article is organized as follows. In Section 2, the
proposed method is introduced. Experiments and the evaluation
results are presented in Section 3, followed by the concluding
remarks in Section 4.

2 Materials and methods

In this problem, we have three type of input networks—drug-drug
similarity network, disease-disease similarity network and drug—dis-
ease association network.

We constructed a single drug—drug similarity by combining mul-
tiple drug-drug similarity networks using SNF (Section 2.2.1). We
assume that R = {r1,72,...,7,} is a set of drugs, where m is the
number of drugs. Each edge in this network is a weighted edge that
connects the two drugs.

Arbitration is made similarly for the disease—disease network.
We constructed a single disease—disease similarity by combining
multiple disease—disease similarity networks using SN?F (Section
2.2.1). We assume that D = {dy,ds,...,d,} is a set of disease,
where 7 is the number of diseases. Each edge in this network is a
weighted edge that connects the two diseases.

The drug—disease association network is modeled as a bipartite
graph G(R, D, E), where E(G) C R x D is the set of edges between
R and D. The adjacency matrix of this network Mj; is such that if
there is a known association between 7; and dj, the value is equal to
one (M;; = 1) and otherwise zero (M;; = 0).
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Fig. 1. Block diagram of NMF-DR: a computational drug repurposing system

Table 1. Notations and variables used in this article

Symbol Description

Mg, Drug-disease association matrix

M,, — Myy Drug-drug and disease—disease similarity matrix
NMy; — NM,, Normalized matrix

M, Drug-disease adjacency matrix

Sr Suitable rank

W, H Low-rank matrices

M, Completed adjacency matrix

SN?F Similarity network normalization and fusion
WGC Weighted graph construction

A-MDL Accelerated minimum description length
A-HALS Accelerated-hierarchical alternating least square
MU Multiplicative updates

PG Projected gradient

As shown in Figure 1, the drug—disease association matrix
(Mg,), drug similarity (M,,) and disease similarity (M,,), matrices
are inputs of the NMF-DR method. New drug-disease associa-
tions between ith drug with jth disease (r;,d;) constitutes the
output.

Accordingly, NMF-DR involves two phases: the pre-processing
phase and the relation prediction phase. In the first phase, an adja-
cency matrix is constructed, and in the second phase, new drug-
disease relations are predicted. The description of abbreviations
used in Figure 1 is presented in Table 1.
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2.1 Pre-processing phase

2.1.1 SNZF: analysis and normalization of similarity matrices
Research has shown that small similarities provide weak and poor
information for predicting relationships (Luo et al., 2016), which is
why normalizing similarity matrices positively affect prediction sys-
tems’ ability. In this study, a normalization method is used to trans-
form similarity matrices that are less informative for prediction into
more informative similarity matrices.

We propose a method called SN*F that is derived from the
Similarity Network Fusion (SNF) method (Wang et al., 2014a).
While SNF is used for fusing similarity matrices originally, we use
the same algorithm for normalization purpose too. SNF can com-
bine several types of similarity criteria that exist for a particular type
of data. In this study, we use and modify the SNF algorithm not
only for the purpose of fusing similarity matrices but also for nor-
malization, and we called it SN?F. SNF resembles a network in-
stance and then iteratively converts it to a single network based on
the K-Nearest Neighbor (KNN) algorithm. These networks are com-
bined in such a way that shared and type-dependent communica-
tions are available in the final network, and the final network most
closely resembles all networks (Wang et al., 2014a). The data fusion
method used in this study is non-linear, which has the advantage of
being able to have the same information along with the complemen-
tary information in different data types. It is also proposed to use
this method as a normalizer of a similarity matrix to reinforce the
large similarities and to zero the small similarities with a clustering-
based approach derived from the KNN algorithm. The magnitude of
each similarity value is calculated based on the initial similarity val-
ues of the edges throughout the network.

2.1.2 WGN: construction of the heterogeneous network
Network-based CDR methods, in addition to nodes and edges, some
methods utilize additional information such as the features of shared
drug—target interactions. Using side information for link predictions,
especially in sparse networks, can be very useful. Since graph struc-
ture information and side information represent various types of in-
formation as input to the predictor system, this information is
expected to increase system performance (Menon and Elkan, 2011).
Previous studies show that combining homogeneous information
from multiple sources can lead to improved prediction accuracy.

In this study, drug similarity information, disease similarity
and drug-disease relationship information are combined to form a
heterogeneous network and then predict new drug—disease relation-
ships by completing the neighborhood matrix of these heteroge-
neous data. Drug-drug similarity and disease—disease similarity
networks by the drug—disease association network are combined to
form a heterogeneous network.

This idea is derived from the basic structure of weighted MF and
RW methods (Supplementary Fig. S2). According to this method we
can say:

Mg (Mgg - Mg, - Myy) = M, (1)

The equation uses matrix multiplication operation and
Hadamard product (elementwise multiplication) to create M/;,. The
weighted MF method is very popular for predicting missing entities.
Since the subject under consideration is also a missing relationship
prediction system (Wang and Zhang, 2013), it seems appropriate to
use this idea as a method to combine similarity matrices. Although
in this work instead of using the Kronecker product that was used in
the original article we used matrix multiplication and pairwise
multiplication to avoid creating a bigger matrix which has a bigger
computational complexity than basic matrix product operation.

2.2 Relation prediction phase

We formulate the problem of drug repurposing as a drug—disease
link prediction task. Link prediction problem is related to the miss-
ing value estimation problem solved in recommender systems
(Zhang et al., 2017) as well as in collaborative filtering methods
(Sadeghi and Keyvanpour, 2019a). We use non-negative matrix

factorization (NMF) method as mean of predicting missing drug dis-
ease association values in a bi-layered drug-disease association net-
work. As we mentioned earlier, although, the use of RW-based
methods are popular among methods used to predict the relation-
ships between biological networks, especially in the case of DR (Luo
etal.,2018b, Wang et al., 2014b, Luo et al., 2016). MF-based meth-
ods have higher accuracy in comparison to RW-based methods,
which makes this approach useful in this study (Luo et al. (2018a)).
Also, MF-based methods are able to handle sparsity and scalability
challenges (Bokde et al., 2015). Therefore, methods based on the
MEF seem to be able to theoretically satisfy the purpose of this study.

In addition to the advantages of using matrix factorization algo-
rithms, there are two important challenges to using matrix decom-
position algorithms: (i) Choosing the right rank, and (i)
Appropriate initialization of decomposition matrices (Qiao, 2015).
Therefore, in this research, an attempt is made to provide a system
that can use appropriate ways to deal with these two basic chal-
lenges of these algorithms. This system is divided into three main
sections: appropriate rank selection, initialization and matrix com-
pletion by matrix decomposition algorithms.

The observed drug-disease associations can be formulated as a
bipartite network, and represented by a binary matrix My, € R™",
where 7 is the number of drugs, and m is the number of diseases.
M_,ij is the (i, j)th entry of M. If the drug vertex 7; and the disease
vertex d; are connected, My,; = 15 otherwise My,;j = 0. NMF-DR
factorizes the drug—disease association matrix My, into two low-
rank feature matrices W € R”* and H € R"**, where k is the di-
mension of drug feature and disease feature in the low-rank spaces
(Zhang et al., 2018).

2.2.1 A-MDL: rank selection in non-negative matrix factorization

NMF is a problem of estimating the non-negative matrix X as the
product of two non-negative matrices. Suppose X € RZ" and m, n,
7 are integers, then two matrices W € RZ" and H € R’ are found
such that X =~ WH. The objective function is to minimize the

Frobenius Norm of X—WH, that is:
min|| X — WH|| 2 (2)

One of the primary parameters of NMF algorithms is the value
of the matrix analysis rank. All known algorithms in this field de-
pend on the predetermined value of the rank (the sizes of the new
sub-matrices). In NMF, the sizes of sub-matrices have real meanings;
in fact, this rank selects the number of extracted features. If the
selected rank is too small, we may lose useful features, and if the
rank is too large, we may model the noise. That is why choosing the
right rank for both noise reduction, and modeling demonstrates
the fundamentals of efficiency. In this study, we use a minimum de-
scriptive length-based (MDL) method (Squires et al., 2017) to find
appropriate ranks. MDL is a method for selecting models with dif-
ferent complexities. The main idea of this MDL method is that the
best model is a model that can compress the data best while preserv-
ing useful information as much as possible. Because the best way to
compress data is to have the lowest cost of transmitting the message
when the message is encrypted, the issue of the shortest message can
be replaced with the lowest cost of message transmission.

In the NMF problem, the message is matrix X, which is esti-
mated by the product of two matrices W and H. The model is sim-
pler when rank is small, and consequently, W and H have few
elements and therefore it is cheaper to encode. Yet, X ~ WH will
most likely be a bad approximation and will need additional infor-
mation to improve this poor estimate (Squires et al. (2017)). The
MDL principle is to choose the model that minimizes the total mes-
sage length without any interest in how to optimally encode the mes-
sage. By trading off the complexity and accuracy of the model, we
hope to find the level of complexity that minimizes the transmission
of noise while maximizing the transmission of real features. A-MDL
is an accelerated version of Squires et al. (2017)) which address the
high computational cost of this method by defining a threshold
around the best rank computed in Luo et al. (2018a). DRRS (Luo
et al., 2018a) use a cross-validation approach which find the best
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Table 2. The gold standard datasets used in this study

Datasets Drugs (Registered By) Diseases (Listed By) Known Relations Sparsity

PREDICT dataset (Gottlieb et al., 2011) 593 (DrugBank database) 313 (OMIM database) 1933 1.04172

TL-HBGI dataset (Wu et al., 2013) 1409 (DrugBank database) 5080 (OMIM database) 1461 2.0417*

DrugNet dataset (Martinez et al., 2015) 1490 (DrugBank database) 4516 (Disease Ontology) 1008 1.498~*
(Schriml et al., 2019)

CDataset (Luo et al., 2018a) 663 (DrugBank database) 409 (OMIM database) 2532 9.33773

rank with maximizing the Area Under Curve (AUC). This approach
might lead to overfitting. Yet, NMF-DR address this challenge with
using A-MDL method. This minor change in MDL method will not
affect the final results since it does not change the algorithm signifi-
cantly, yet it helps us to reduce the computation time.

2.2.2 Multi-SVD: SVD-based initialization strategy for non-
negative matrix factorization
The initialization of W and H matrices is crucial in the implementa-
tion of MF. Good initialization can induce faster convergence and
better result of the optimization algorithm (Atif ez al., 2019).
Initialization can be carried out randomly, or can be improved
by SVD. The initial estimate in this study is based on Singular value
decomposition methods (SVD). The two well-known NNSVD and
SVD-NMF methods, as well as the new NNSVD-LRC method, are
applied alongside the randomized initialization method for this
study, and then at each iteration, the best result (the method with
the lowest error rate) is used as the initial value of the matrix decom-
position algorithm (Supplementary Table S1). In most cases, the
new NNSVD-LRC method will be able to achieve better results than
other methods with relatively equal computational costs. Due to the
complexity of NMF in this study, it is recommended to use several
primary quantification methods and select the best result (Atif et al.,
2019).

2.2.3 A-HALS: relation prediction using non-negative matrix
factorization

As mentioned earlier, one of the challenges of using matrix analysis
algorithms instead of RW models is the high computational cost of
these algorithms. One way to deal with this challenge is to choose
the right algorithm or improve available algorithms to increase the
computational speed while maintaining their accuracy.

One of the safest of these algorithms is a method called alternat-
ing squares (ALS). The most important feature of the ALS method is
mapping negative values to zero in each repetition of the
algorithm(Berry et al., 2007). This algorithm works by keeping W
or H constant, the problem becomes the least squares with an infin-
ite constraint problem (Ho, 2008). HALS is an improvement of
ALS, which works by keeping the H constant while it successively
updates each column of W with an optimal and easy-to-compute
closed-form solution (Cichocki and Phan, 2009). Therefore, in this
study, we use an improved speed method called A-HALS
(Accelerated-Hierarchical Alternating Least Square) proposed by
(Gillis and Glineur, 2012) as a matrix analysis optimization algo-
rithm. The main idea of this method is to use the heaviest part of the
HALS algorithm in such a way that the lighter parts of the algorithm
are repeated only a limited number of (but reliable) times in each it-
eration (Gillis and Glineur, 2012). The A-HALS method is used in
this study as a relationship prediction algorithm. According to this
algorithm, by setting the stop conditions for the HALS algorithm,
the convergence speed and prediction of these methods are
increased.

3 Result

3.1 Datasets
In this article, we have used four gold standard datasets used in the
CDR studies shown in Table 2 (Gottlieb et al., 2011; Luo et al.,

2016; Martinez et al., 2015; Wang et al., 2013). We also show the
results of each improvement that we have made in this study on the
gold standard dataset (PREDICT dataset) obtained from (Gottlieb
et al., 2011). To be specific, drugs for all the mentioned datasets are
collected from the DrugBank database (Wishart et al., 2008).
Diseases are collected from human phenotypes defined in the Online
Mendelian Inheritance in Man (OMIM) database (Hamosh et al.,
2005). Although, DrugNet uses diseases annotated by Disease
Ontology (DO) terms (Schriml et al., 2019).

Drug—drug similarity measures for PREDICT dataset (Gottlieb
et al., 2011) include: (i) drug chemical similarity; (ii) drug side effect
similarity; (iii) sequence similarity; (iv) closeness in a PPI network;
and (v) GO similarity measures. While, disease-disease similarity
measures include: (i) phenotype similarity; and (ii) semantic pheno-
typic similarity measures.

For TL-HBGI dataset (Wu et al., 2013), drug-drug similarities
were calculated based on their chemical structures, a phenotype-
based disease-disease similarity dataset downloaded from
MimMine. For DrugNet dataset (Martinez et al., 2015), Drug simi-
larity is measured based on anatomical therapeutic chemical (ATC)
codes, and disease similarity is measured based on Disease Ontology
(DO) terms. Cdatasets is produced by combining DrugNet
(Martinez et al., 2015), and the gold standard dataset used in Luo
et al. (2018a). In Cdatasets, drug similarity is measured based on
chemical structures, and disease similarity is measured based on phe-
notypes using MimMiner. For more information on used datasets in
this study see Supplementary Table S2.

3.2 Comparison and analysis of the results of the

proposed system with other methods

We applied our NMF-DR method on four well-known benchmark
datasets listed in Table 2, and reported cross-validated results in
Table 3. Ten-fold cross-validation was used for the PREDICT,
DrugNet and CDataSet datasets, whereas as we used 5-fold cross-
validation for the TL-HGBI dataset (the original research that used
TL-HBGI evaluated their model using 5-fold cross-validation only).
Table 3 compares the AUC performance of NMF-DR with that of
few existing repurposing methods applied on the same datasets.
Additional comparison results also appear in the Supplementary
Table S1. NMF-DR significantly outperforms all the other methods
across all datasets, reaching AUC results of 0.97 on PREDICT data,
0.98 on both DrugNet and CDataSet data and 0.99 on TL-HBGI
data.

Since different similarity matrices were available for PREDICT
dataset, we could test our method with all the steps in NMF-DR
method including fusion and normalization of all similarity matrices
using SN?F. In this comparison, the power of MF methods such as
NMF-DR and DRRS can also be demonstrated against RW methods
such as RWHNDR and MBiRW as well as learning-based methods
such as PREDICT.

One of the important points in this article is that, despite the
varying degree of sparsity of the mentioned datasets, NMF-DR was
able to perform reasonably well and does not reduce the ability of
the method. It can also be said that the NMF-DR is also able to
maintain its accuracy with increased size of the networks built in the
pre-processing section.

NMF-DR also outperforms learning-based methods, including
PreDR (Wang et al., 2013), PREDICT (Gottlieb ez al., 2011) and
SKMF (Moghadam ez al., 2016). Due to the class imbalance prob-
lem, here F-measure are used instead of AUC. As mentioned earlier,
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Table 3. The Performance of different methods on different datasets

AUC

AUC

10-fold cross validation

S-fold cross validation

Method PREDICT Dataset DrugNet Dataset CDataSet TL-HGBI Dataset
HGBI (Wang et al., 2013) 0.82 — 0.85 —
TL-HGBI (Wang et al., 2014b) — — — 0.95
DrugNet (Martinez et al., 2015) 0.77 0.94 0.8 —
MBiRW (Luo et al., 2016) 0.91 0.95 0.93 —
RWHNDR(Luo et al., 2018b) 0.92 — 0.94 —
NTSIM (Zhang et al., 2017) — — — 0.96
DRRS (Luo et al., 2018a) 0.93 0.93 0.94 —_
ANME (Yang et al., 2019) 0.93 — 0.95 —
KBMEF (Génen et al., 2013) 0.91 — 0.92 —
MSBMF (Yang et al., 2021) 0.94 — 0.95 —_
SCMFDD (Zhang et al., 2018) — — — 0.97
PREDICT (Gottlieb et al., 2011) 0.89 — — —
PreDR (Wang et al., 2013) 0.86 — — —
SMKF (Moghadam et al., 2016) 0.91 — — —
NMEF-DR 0.97 0.98 0.98 0.99

The best methods and results are indicated in bold.

Table 4. Pre-processing phase: a comparative view of the composition of different similarity measures with and without SN?F in the pro-

posed NMF-DR framework on PREDICT dataset (AUC)

a. Without SN°F

Drug similarities

Phenotype similarity

Disease Similarities

Semantic phenotypic similarity

Drug chemical similarity 0.909018 0.914015

Drug side effect similarity 0.91377 0.917137

Closeness in a PPI network 0.905549 0.911368

GO similarity 0.908694 0.91467

Sequence similarity 0.879688 0.890363
b. With SNF

Drug similarities

Phenotype similarity

Disease Similarities

Semantic phenotypic similarity

Drug chemical similarity 0.914314
Drug side effect similarity 0.91585
Closeness in a PPI network 0.915723
GO similarity 0.914404
Sequence similarity 0.916013
Fusion similarities 0.918369914

0.916921
0.917676
0.912903
0.91481

0.918274

The best methods and results are indicated in bold.

the existing datasets in drug repurposing suffers from class imbalan-
ces challenge, so criteria such as the F-measure and AUPR are more
suitable and informative than other evaluation criteria, such as ac-
curacy and AUC. NMF-DR shows higher AUC and Accuracy, for
learning-based methods, we also used F-measure to evaluate our
method. Since, most repurposing studies only report AUC perform-
ances and not AUPR performances on given datasets, we have
decided to only report AUC results in this research.

3.3 Analyzing the impact of our proposed
improvements in the NMF-DR

To evaluate the performance of NMF-DR and analyze the effect of
our proposed improvements in each step of the NMF-DR system we
conducted the following experiments.

Different criteria can affect the performance of a data integra-
tion method. One of the most effective metrics in the performance
of an integration method is the measure of variability between
data. According to this assertion and the results obtained, the effi-
ciency of using different biological side information is shown in
Table 4. Accordingly, the performance of the method is improved
as different biological information is used to predict and integrate
it (Luo et al., 2018a). This section examines the diversity of
resources used in this study, namely, similarity matrices made
from the characteristics of drugs and diseases. Based on the evalu-
ation in Table 4, it is shown that the AUC value of the pre-
processing step with the SN?F normalization increases.
Accordingly, combining drug similarity based on side effects and
disease similarity based on phenotypes semantic similarity has
been the best set of side information to predict drug-disease rela-
tionships, which means that this set of similarities have more
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Table 5. Prediction phase: a comparative overview of the results of each step of NMF-DR method on PREDICT dataset

a. The impact of our proposed rank selection step: A-MDL

Method AUC

Default rank 0.9153593
Pre-Processing phase + default rank 0.91837
A-MDL selected rank 0.969322
Pre-Processing phase + A-MDL selected rank 0.9700965
b. The impact of our proposed initialization step: Multi-SVD

Method AUC

Random initialization 0.9153593
Multi-SVD initialization 0.919802
Default rank+ multi-SVD 0.9721509
Pre-Processing+ default rank +random initialization 0.914306
Pre-Processing + default rank + multi-SVD initialization 0.917966
Pre-Processing +selected r using A-MDL+ random initialization 0.9701681
Pre-Processing + selected r using A-MDL + multi-SVD initialization 0.9715765
c. The impact of using different matrix factorization method

Methods AUC

ALS 0.9153593
HALS 0.9715765
A-HALS 0.972179

The best methods and results are indicated in bold.

meaningful information than any other set of similarities.
Table 4b also shows SN?F normalization method impact the
results of NMF-DR. Based on the results obtained, it can be seen
that this method shows better results on those side information
similarity matrices that contain less useful information than those
with more useful information.

For example, the combination of sequence-based drug similarity
data and phenotype-based disease similarity data, which had the
lowest AUC in Table 4a, would make the most changes after nor-
malization, and this growth would mean that our goal to normalize
and eliminate weak information and to empower stronger informa-
tion to improve method performance works perfectly.

In this section, in addition to the results reported in Table 4, the
results of combining existing similarity criteria for the PREDICT
dataset with the single-use model of a similarity criterion are calcu-
lated. In theory, the more varied the information is, the better the
performance of the system. The observations here confirm this, but
the important point in this section is whether the difference between
the two models worth dealing with the computational cost of the
feature combination?

To answer this question, it can be said that although the differ-
ence between these two values is not significant, one should note
two points: (i) the reported value without SN*F algorithm represents
the better reports. Therefore, the selection of the best similarity cri-
teria for the proposed system is very important because, as shown in
Table 4, lower values such as 0.87 are also in this comparison, indi-
cating the importance of selecting the appropriate similarity criter-
ion. (ii) The reported value for combining similarity measures
depends entirely on the number of similarity measures used as well
as the input similarity measures itself. Therefore, although the effect
of this method on combining values does not appear to be high, one
can understand the value of using this method based on the results
in Table 4.

As for the prediction phase, the selection of a suitable rank for
MEF has paramount importance, and many methods have been pro-
posed to discover the merits and disadvantages of each method. In
this study, a method based on the minimum description length is
used, since this method will be very time consuming, we proposed
an accelerated form of MDL model called A-MDL, which calculates
only a fraction of the possible values for the MF rank. This proposed

method will not affect accuracy but can be very effective in the
reducing computational time of implementation.

As shown in Table Sa, selecting the appropriate rank will have a
significant impact on the outcome of the proposed system. In fact, it
can be said that facing the challenge of finding the best rank will
have the most impact on our system, and this will be the most im-
portant part of the proposed system (Santiso et al., 2019). As men-
tioned earlier, a small rank value can reduce the accuracy of the
method because it may lose useful information in this matrix ana-
lysis while larger rank, along with raising the computational cost
may cause overfitting.

Next, we tested our proposed initialization method. Since the
main idea of the proposed method of this research is to choose the
best value out of the four well-known methods (NNDSVD, SVD-
NMF, NNSVD-LRC and Random initialization), in each implemen-
tation, one should choose the one that has the least relative error
rate, as shown in Figure 2a. The relative error values of each
method are very close to each other. It is expected that the accuracy
values of each method will be very close to each other. For this pur-
pose, we used 10 for iteration because after 10 repetitions, the
results converge, and there is no significant change afterward.

As expected, if the initialization methods and the proposed ini-
tialization methods of this study were separately applied to the
selected dataset, the accuracy of these methods would be as follows
in Table 6. Table 6 and Figure 2a provide a demonstration of how
the initialization of the decomposition matrices affects the proposed
NMF-DR framework. The impact of Multi-SVD method for initial-
ization in our proposed framework can be seen in Table 5b. The fig-
ures in Table Sb show that using the proposed Multi-SVD method
can improve the result of the framework in comparison to random
matrix initialization. We also examined whether using a random
rank also can affect the initialization method.

And finally for our final step of prediction, we first do a com-
parison of some well-known methods in the field of matrix decom-
position. Figure ~ 2b compares the performances of three
decomposition methods, MU (Lee and Seung, 1999), PG (Lin, 2007)
and HALS (Ho, 2008) along with the accelerated versions (Gillis
and Glineur, 2012). This comparison shows that the accelerated ver-
sion of the methods not only increased the speed but also showed
better convergence. It can also be seen that the HALS method has
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Fig. 2. (a) A demonstration of the impact of SVD-based initialization methods compared with other methods on PREDICT dataset. (b) Comparisons of matrix decomposition

algorithms and their accelerated versions on PREDICT dataset

Table 6. The comparison of the proposed initialization method
(Multi-SVD) with some of the existing initialization methods based
on AUC (PREDICT dataset)

Initialization methods AUC

NNDSVD 0.9689702
SVD-NMF 0.9685116
NNSVD-LRC 0.9672019
Random 0.9671383
Multi-SVD 0.9691728

The best methods and results are indicated in bold.

Table 7. Comparison of MU, HALS and PG algorithms and their
accelerated model for final error on PREDICT dataset

Method Final error
MU 15.867820
Accelerated MU 15.520418
HALS 15.242294
Accelerated HALS 15.159298
PG 16.475821
Accelerated PG 16.069888

The best methods and results are indicated in bold.

the fastest convergence compared to the other two methods, and the
A-HALS has the least final error rate (Table 7).

In addition to Figure 2b, the final error result of each method
can be seen in Table 7. In the following, the results of applying the
A-HALS method to PREDICT data are discussed. According to
Table Sc, two other models are significantly improved compared
with the basic form that is implemented (only using the ALS integra-
tion and implementation stage for prediction). Also, as can be seen by
applying the accelerated modeling of the HALS algorithm, the system
was able to maintain its performance reliably and not only did not de-
crease performance but also increased the accuracy slightly.

3.4 Comparison of NMF-DR with other matrix

factorization-based methods

Since choosing a suitable rank of the factorization and providing a
good initialization method is a challenging task in MF-based mod-
els, previous MF-based studies (Luo et al., 2018a, Zhang et al.,
2018; Yang et al., 2021) tried to address at least one of these chal-
lenges. In this study, we address these two challenges while main-
taining the accuracy. Comparing MF-based methods (DRRS (Luo
et al., 2018a), ANMFF (Yang et al., 2019), KBMF (Génen et al.,
2013), MSBMF (Yang et al., 2021) and SCMFDD (Zhang et al.,

2018)) with NMF-DR at Table 3 shows that NMF-DR obtains AUC
value of 0.97 and 0.98, respectively, and outperforming all other
methods significantly.

3.5 Evaluation of NMF-DR with proposed practical

criteria

The proposed system is related to the network-based approach, and
the subcategory of MF. These approaches that are used in this study
are capable of dealing with heterogeneous data, and they do not fail
to address the sparsity as well as scalability. The set of experiments
in Section 3.2 confirms this claim. On the other hand, other methods
sometimes have difficulty in facing such challenges as sparsity and
do not provide acceptable results. However, high computational
complexity, failure to specify multiple parameters make it difficult
to use MF-based methods in more complex networks.

3.6 Case study: computationally identified approved

drugs for breast cancer
In addition to the cross-validation experiments, we also applied
NME-DR on all the collected data to make novel drug usage predic-
tions. In this article, we present the results of our method for breast
cancer disease, and our top 5 ranked predictions are as follows:
Leuprolide (DB00007), Estramustine (DB01196), Flutamide
(DB00499), Bicalutamide (DB01128) and Mitoxantrone (DB01204).
Breast cancer is one of the most important causes of mortality in
women. According to the World Health Organization, breast cancer
is the most common cancer among women, affecting more than 5.1
million people each year. Also, the highest number of cancer deaths
among women is related to breast cancer (Salehiniya et al., 2018;
Siegel et al., 2019). One of the most effective ways to reduce mortal-
ity and reduce costs is to predict early disease as well as initiate time-
ly treatment. DR can also be very effective in the treatment sector by
providing appropriate drugs at the fastest time and at the lowest
cost for patients who need medicines (Aggarwal ef al., 2021). The
prediction results are confirmed based on some public databases,
current clinical trials and literature (Supplementary Table S3). We
find that some top-ranked predictions have been confirmed by exist-
ing researches. It is reported that drugs known to treat prostate
cancer can also be used for breast cancer. Further research shows
that although breast and prostate cancer occur in two different
regions of the body of men and women, they are both biologically
and genetically similar because they are both hormone dependent
(Risbridger ef al., 2010). These successful prediction instances fur-
ther confirm that NMF-DR has the potential to predict novel drugs
for disease indications.

4 Discussions and conclusions

In the CDR field, although several useful studies have been intro-
duced, there are still some challenges in this area. Hence, in this
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article, to improve existing CDR methods, a novel network-based
framework called NMF-DR proposed and compared with other
methods. Theoretically and practically, we show that NMF-DR is
superior to the some well-known existing drug repurposing methods
as we adopt a MF-based method on a network to capture complex
topological patterns across different data sources.

In summary, our findings suggest that network-based recom-
mender systems can be beneficial to explore the relationships of het-
erogeneous drug—disease networks for CDR purposes. The network-
based model developed here can help discover novel and effective
treatments for multiple complex diseases if broadly implemented.
We also noticed that there is much room to improve our method. In
the following, there are other possible ways to improve the proposed
methods.

For example, it seems that besides the use of drugs and diseases
information, the target information and other relevant biomedical
information can improve the detection of new drug-disease relation-
ships by devising new network-based methods which can integrate
multiple types and multiple sources of omics data appropriately.
Also, one of the most important ideas for the future development of
the proposed system is to improve the feature extraction and predic-
tion process. Heterogeneous network embedding methods can be
used for feature extraction and link prediction purpose between
drugs and diseases. In addition, the use of the MF method applied in
this study has limitations and challenges to be addressed in the fu-
ture. These challenges can be attributed to the high cost of comput-
ing the appropriate initial parameters. NMF-DR approach can also
be used to predict other relationships between biological entities
such as drug-protein or miRNA-drug associations, for instance. The
fourth idea is to improve the run time of predicting the drug-disease
associations in the proposed system. Since the proposed systems ap-
proach is a time-consuming MF approach, reducing run time in this
section can be very useful.

There are other methods for setting the parameters of NMF-
based methods. For example, one can use the dispersion coefficient
for rank selection. As one of our future works, we can propose new
methods and also conduct an experiment for showing the import-
ance of finding the best rank and setting other parameters. Finally,
using these computational methods for new challenging diseases
such as COVID-19, can be extremely helpful to handle crisis in
shorter time.
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