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A B S T R A C T

There is an urgent need for the identification of effective therapeutics for COVID-19 and we have developed a
machine learning drug discovery pipeline to identify several drug candidates. First, we collect assay data for 65
target human proteins known to interact with the SARS-CoV-2 proteins, including the ACE2 receptor. Next, we
train machine learning models to predict inhibitory activity and use them to screen FDA registered chemicals and
approved drugs (~100,000) and ~14 million purchasable chemicals. We filter predictions according to estimated
mammalian toxicity and vapor pressure. Prospective volatile candidates are proposed as novel inhaled thera-
peutics since the nasal cavity and respiratory tracts are early bottlenecks for infection. We also identify candidates
that act across multiple targets as promising for future analyses. We anticipate that this theoretical study can
accelerate testing of two categories of therapeutics: repurposed drugs suited for short-term approval, and novel
efficacious drugs suitable for a long-term follow up.
1. Introduction

SARS-CoV-2 is a novel coronavirus that is responsible for the COVID-
19 disease which is a rapidly evolving global pandemic. Coronaviruses
primarily target the upper respiratory tract and the lungs, with varying
degrees of severity. Related coronaviruses such as the SARS-CoV
emerging in China in 2002 and the MERS-CoV in the Middle East in
2012 result in severe respiratory conditions. The SARS-CoV-2 also pro-
duces similarly severe respiratory conditions, albeit at a lower rate but
with a higher contagion factor [1]. Alarmingly, infected individuals may
be asymptomatic carriers, presumably harboring the viral infection in the
upper airway tract, increasing the likelihood of infecting populations that
are most susceptible to severe complications [2, 3].

Although the mechanisms underlying SARS-CoV-2 infection are not
completely understood, select human proteins are targets for the virus
including ACE2 [4]. The SARS-CoV-2 receptor binding domain (RBD)
interacts strongly with the human ACE2 receptor and TMPRSS2 to enter a
human cell [5]. In addition to ACE2, a recent systems-level analysis of
protein-protein interaction with peptides encoded in the SARS-CoV-2
genome identified ~300 additional human proteins, of which, 66 were
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considered suitable candidates for identification of therapeutics [6].
Gordon et. al. performed an in vitro assay with human cells expressing 26
SARS-CoV-2 proteins, which was followed by an analysis for
high-confidence interactions. Of the 100s of reported interactions 66
were prioritized, and the authors subsequently mined and tested FDA
approved drugs that were known or suspected to target these human
proteins. Most of the human target proteins are overexpressed in the
respiratory tract. Of particular note is the entry receptor ACE2 which is
expressed at high levels in a few cell types of the nasal epithelium, as well
as elsewhere [6, 7]. This could be an unusual opportunity for volatile
inhaled therapeutics and prophylactics that will have direct access to the
cells that are infected by the virus.

The Gordon et al study also identified FDA-approved drugs that have
known activity against these human protein targets or are structurally
related to chemicals with known activity on the targets. While these
drugs have not been comprehensively tested on the virus, another study
performed high-throughput testing of ~12,000 FDA-approved or clinical
stage drugs on viral replication in cell lines [8]. This study identified at
least 6 potential leads that include a kinase inhibitor, a CCR1 inhibitor
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and 4 cysteine protease inhibitors that are candidates for testing in
clinical trials.

Since the regulatory process for the approval of new drugs can take
several years, the repurposing of FDA approved drugs for COVID-19 of-
fers a potential fast-track to approval. One of the more promising can-
didates being tested is the antiviral Remdesivir, which has been effective
in vitro [9] as well as in non-human primates [10], with human trails
currently ongoing. The other drug being tested is the antimalarial,
hydroxychloroquine, which showed some promise alongside the anti-
biotic, azithromycin, in small clinical trials [11, 12]. However, hydrox-
ychloroquine has shown less promise in larger trials for treating
COVID-19 [13].

While drug repurposing is expedient, it is possible that drugs designed
for other diseases will not be as well suited to respiratory organs, where a
large percentage of putative human proteins targeted by the virus are
enriched [6], or to the nervous system, implicated by neurological
symptoms as well as prior evidence that coronaviruses can cross the
blood brain barrier [14, 15]. Drug-development strategies are also often
guided by minimizing off-target interactions. Repurposed drugs might
have to be used in combination, and the side effects and interactions that
this entails are presently not well defined. While there are recent efforts
exploring novel, directed therapies from small molecule libraries [16], it
is desirable to identify 100–1000s of putative chemicals as the majority
may be difficult to synthesize in mass, prove toxic at therapeutic con-
centrations, or yield inconsistent benefits across patients due to genetic
variability. These shortcomings have significantly increased the demand
for additional drugs or small molecules that might interfere with viral
entry and replication. Additionally, if prophylactics or non-toxic, easy--
to-use therapeutics were available even for mild cases that do not require
hospitalization and experimental drug treatments, contracting the virus
may nevertheless impact long-term health and community transmission
[17].

There are subsequently unmet needs in COVID-19 research, including
identification of compounds that target the relevant SARS-CoV-2 human
proteins from (1) approved drugs, (2) FDA registered chemicals or (3) a
large repository of ~14 million purchasable chemicals from the ZINC 15
database [18], which we computed additional properties for such as
mammalian toxicity, vapor pressure, and logP. For 65 human protein
targets that SARS-CoV-2 interacts with that had publicly available
bioassay and chemical data [6], we first generated a database of pre-
dictions based on structural similarity to chemicals that interact with the
targets and then machine learning models (34). Many chemicals we have
identified have little or no known biological activities and are predicted
to have low toxicity in addition to a wide range of vapor pressures. These
data are a resource to rapidly identify and test novel, safe treatment
strategies for COVID-19 and other diseases where the target proteins are
relevant.

2. Results

2.1. Identification of important structural features from known inhibitors
of human target proteins

In order to test whether there is a structural basis for inhibitors of the
target proteins identified previously [5, 6], we used two complementary
approaches to evaluate each target's training set of compounds with
known activity, compiled from the literature. First, we performed an
exhaustive search for maximum common substructures among active
chemicals. In some cases, enriched substructures were apparent among
known ligands, with slight variation in the substructure based on the
sensitivity to the targets, suggesting physicochemical features may be
relevant in predicting activity against these targets (Supplementary
Table 1). Next, we used a machine learning pipeline for predicting
chemicals that interfere with SARS-CoV-2 targets. It involves selection of
important physicochemical features for each target, followed by fitting
support vector machines (SVM) with these features and then evaluating
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the predictions using various computational validation methods
(Figure 1A). The chemical features that best predicted activity for the
different targets included simple 2D information, describing the type and
number of bonds, but also more abstract 3D geometries (Tables 1 and 2).
Identification of each target-specific feature set provides a foundation to
better understand the physicochemical basis of the activity. To that end,
Supplementary Tables 2-3 include more comprehensive rank ordered
lists of the physicochemical features that optimally predict activity
against the targets (details about the feature ranking algorithms in Ma-
terials and Methods).

2.2. Machine learning models can successfully predict activity from
chemical structure

We identified 24 targets with training sets large enough to model the
log IC50, Ki, or AC50 (Figure 2A). Rigorous computational validation was
performed and the results on training (Figure 2B, left) and test data that
had been set aside (Figure 2C, left) indicated good overall performance
according to the average mean absolute error (MAE) and the correlation
between predicted and observed assay measures (MAE¼ 0.48; R¼ 0.62).
Predictions of log Ki for the viral entry receptor, ACE2, were also accurate
(test set R¼ 0.92; test set mean absolute error (MAE)¼ 0.53) (Figure 2C,
left; Supplementary Information 1).

For some of the viral targets, we noticed that assay data included
additional inhibitory measurements or descriptions of general activity
against the targets. Some of the available data such as % inhibition, for
instance, are less quantitative. However, to include as much of the
available data as possible, we created models to identify physicochemical
features that might broadly contribute to inhibition or activity against the
targets. We therefore assigned binary, active and inactive, labels to the
chemicals, then trained models as outlined before (Figure 2A; Materials
and Methods). The models that were developed using this classification
approach similarly proved successful, validating over partitions of the
training data (avg. AUC ¼ 0.87, avg. Shuffle AUC ¼ 0.50, p < 10�19)
(Figure 2B, right), as well as over sets of external test chemicals (avg.
AUC ¼ 0.83, avg. Shuffle AUC ¼ 0.51, p < 10�8) (Figure 2C, right)
(Supplementary Information 1). Collectively, these results suggested the
models provided accurate predictions and could be used to screen
approved drug libraries as well as databases of commercially available
chemicals for novel therapeutics.

2.3. Predicting candidates for repurposing of FDA-approved drugs

Repurposing of existing FDA approved drugs offers a path towards
rapid deployment of therapeutics against SARS-CoV-2. Approved drugs
may have activity that extend beyond the original target protein.
Accordingly, we used the machine learning models to predict activities of
~100,000 FDA registered chemicals (UNII database) [19] as well as the
DrugBank [20] and Therapeutic Targets [21, 22] databases, which
include information on drug interactions, pathways, and approval status.
Interestingly, some of the approved drugs are predicted to have high
activity against the SARS-CoV-2 targets (Figure 3A). In order to identify
more efficacious candidates, we isolated the drugs scoring in the top 25
for multiple targets and found a few of high priority (Figure 3B). The
structural analysis suggested that hits visually display 2D similarity to
known active chemicals as well. (Supplementary Information 2).

2.4. Predicting volatile drug candidates from a large ~14M chemical space

Given that many of the human target proteins are overexpressed in
the respiratory tract, including the entry receptor ACE2 in only a few cells
types of the nasal epithelium, the upper airways and lungs [7, 23], we
reasoned that volatile chemicals may offer a unique opportunity as
inhaled therapeutics that will have direct access to the cells and tissues
that are infected by the virus. We used the machine learning models to
search a large database of ~14 million commercially available chemicals
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Figure 1. Machine learning pipeline to identify chemicals that interfere with SARS-CoV-2 targets. a) Overview of the pipeline to predict chemicals for 65 SARS-
CoV-2 human targets selected from Gordon et al., 2020 and using bioassay data from publicly available databases. b) Graphically depicts the pipeline details. Available
bioassay data on the viral targets were mined for information to use in machine learning or structural analysis. This resulted in 24 targets that could be modeled using
values for the most abundant inhibitory assay measure (e.g. Ki or IC50) and 21 targets modeled by classifying broad inhibition or actvity against the proteins (34 unique
targets in total). The remaining targets with limited data were funneled into a structural similarity analysis, which aids in developing more bioassay data and helps
clarify the chemical features contributing to bioactivity. For targets modeled with supervised machine learning, optimal chemical features were identified on subsets of
training data. The top features were sampled by support vector machines (SVM). These models were then aggregated. In certain cases, the Random Forest algorithm
was inlcuded to improve the fit. External chemicals were used to verify successful predictions. Models trained for the 34 targets predicted large chemical databases
including FDA registered chemicals and approved drugs, as well as 10þ million purchasable chemicals from the ZINC database. Top scoring predicted chemicals were
subsequently assigned theoretical toxicity, log vapor pressure, and MLOGP, which estimates membrane permeability.
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Table 1. Important chemical features for regression models. Top three physicochemical features for the viral targets with known bioassay activities.

Feature Target Description

GATS5s ABCC1 Geary autocorrelation of lag 5 weighted by I-state

RDF055m ABCC1 Radial Distribution Function - 055/weighted by mass

SpMax_B(s) ABCC1 leading eigenvalue from Burden matrix weighted by I-State

CATS2D_08_AA BRD2 CATS2D Acceptor-Acceptor at lag 08

RDF035s BRD2 Radial Distribution Function - 035/weighted by I-state

SpDiam_X BRD2 spectral diameter from chi matrix

HATS8p BRD4 leverage-weighted autocorrelation of lag 8/weighted by polarizability

R5iþ BRD4 R maximal autocorrelation of lag 5/weighted by ionization potential

RDF035m BRD4 Radial Distribution Function - 035/weighted by mass

Eig02_EA(bo) CSNK2A2 eigenvalue n. 2 from edge adjacency mat. weighted by bond order

Eig05_EA(bo) CSNK2A2 eigenvalue n. 5 from edge adjacency mat. weighted by bond order

SpMax2_Bh(m) CSNK2A2 largest eigenvalue n. 2 of Burden matrix weighted by mass

CATS2D_04_AA CSNK2B CATS2D Acceptor-Acceptor at lag 04

SHED_DN CSNK2B SHED Donor-Negative

SpMin1_Bh(m) CSNK2B smallest eigenvalue n. 1 of Burden matrix weighted by mass

DISPm DCTPP1 displacement value/weighted by mass

HATS7u DCTPP1 leverage-weighted autocorrelation of lag 7/unweighted

Mor31s DCTPP1 signal 31/weighted by I-state

MATS1e DNMT1 Moran autocorrelation of lag 1 weighted by Sanderson electronegativity

Mor23m DNMT1 signal 23/weighted by mass

TDB06u DNMT1 3D Topological distance based descriptors - lag 6 unweighted

GATS4m GFER Geary autocorrelation of lag 4 weighted by mass

Mor14m GFER signal 14/weighted by mass

R5i GFER R autocorrelation of lag 5/weighted by ionization potential

DISPp HDAC2 displacement value/weighted by polarizability

IC2 HDAC2 Information Content index (neighborhood symmetry of 2-order)

P_VSA_MR_5 HDAC2 P_VSA-like on Molar Refractivity, bin 5

F04[C–C] IMPDH2 Frequency of C - C at topological distance 4

HOMA IMPDH2 Harmonic Oscillator Model of Aromaticity index

VE1_B(s) IMPDH2 coefficient sum of the last eigenvector (absolute values) from Burden matrix weighted by I-State

Eig02_AEA(dm) ITGB1 eigenvalue n. 2 from augmented edge adjacency mat. weighted by dipole moment

SHED_AA ITGB1 SHED Acceptor-Acceptor

SpMax2_Bh(s) ITGB1 largest eigenvalue n. 2 of Burden matrix weighted by I-state

F10[C–N] MARK2 Frequency of C - N at topological distance 10

nPyrroles MARK2 number of Pyrroles

SaaNH MARK2 Sum of aaNH E-states

max_conj_path MARK3 maximum number of atoms that can be in conjugation with each other

SaaNH MARK3 Sum of aaNH E-states

VE1_H2 MARK3 coefficient sum of the last eigenvector (absolute values) from reciprocal squared distance matrix

GATS3s NSD2 Geary autocorrelation of lag 3 weighted by I-state

HOMA NSD2 Harmonic Oscillator Model of Aromaticity index

Mor16s NSD2 signal 16/weighted by I-state

H7m PABPC1 H autocorrelation of lag 7/weighted by mass

JGI7 PABPC1 mean topological charge index of order 7

P_VSA_MR_2 PABPC1 P_VSA-like on Molar Refractivity, bin 2

GATS4m PLAT Geary autocorrelation of lag 4 weighted by mass

Mor04s PLAT signal 04/weighted by I-state

R6pþ PLAT R maximal autocorrelation of lag 6/weighted by polarizability

nPyrroles PRKACA number of Pyrroles

RDF040v PRKACA Radial Distribution Function - 040/weighted by van der Waals volume

SpMin3_Bh(m) PRKACA smallest eigenvalue n. 3 of Burden matrix weighted by mass

Eig02_EA(bo) PSEN2 eigenvalue n. 2 from edge adjacency mat. weighted by bond order

nArX PSEN2 number of X on aromatic ring

VE1sign_D/Dt PSEN2 coefficient sum of the last eigenvector from distance/detour matrix

SHED_DL PTGES2 SHED Donor-Lipophilic

VE2sign_G PTGES2 average coefficient of the last eigenvector from geometrical matrix

VE3sign_G PTGES2 logarithmic coefficient sum of the last eigenvector from geometrical matrix

CATS3D_08_AL RIPK1 CATS3D Acceptor-Lipophilic BIN 08 (8.000–9.000 Å)

(continued on next page)
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Table 1 (continued )

Feature Target Description

MATS5i RIPK1 Moran autocorrelation of lag 5 weighted by ionization potential

VE3sign_RG RIPK1 logarithmic coefficient sum of the last eigenvector from reciprocal squared geometrical matrix

BLTA96 SIGMAR1 Verhaar Algae base-line toxicity from MLOGP (mmol/l)

F10[C–C] SIGMAR1 Frequency of C - C at topological distance 10

TPSA(Tot) SIGMAR1 topological polar surface area using N,O,S,P polar contributions

Eig01_AEA(dm) TBK1 eigenvalue n. 1 from augmented edge adjacency mat. weighted by dipole moment

HATS4i TBK1 leverage-weighted autocorrelation of lag 4/weighted by ionization potential

SdssC TBK1 Sum of dssC E-states

AROM VCP aromaticity index

E1m VCP 1st component accessibility directional WHIM index/weighted by mass

MATS5m VCP Moran autocorrelation of lag 5 weighted by mass

H5s ACE2 H autocorrelation of lag 5/weighted by I-state

Mor10m ACE2 signal 10/weighted by mass

Mor17m ACE2 signal 17/weighted by mass
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(ZINC) for volatile candidates. We initially isolated the top 1% of the
predicted scoring distribution (Figure 4A, left), which resulted in >1
million chemicals in total (Figure 4A, right). To prioritize the hits for
potential human use, we next developed machine learning models to
predict volatility (vapor pressure) (Supplementary Figure 1) and
mammalian toxicity (LD50) (Supplementary Figure 2). The toxicity and
vapor pressure estimates helped identify smaller priority sets (Figure 4B).
Although the vapor pressures were not especially high, we rank ordered
the top candidates according to the best values (Figure 4C; Supplemen-
tary Information 3).

Chemicals with suspected odorant properties, however, represent
only a fraction of the chemical space, and these chemicals may not have
the activity levels suited for COVID-19 cases. Volatile compounds, for
instance, may be biased towards structurally simple chemicals that do not
resemble drugs. We therefore also focused on additional chemicals with
the high predicted activities for their targets and low estimated toxicities
regardless of vapor pressure. We identified numerous candidates with
potential activity against multiple viral targets (Figure 5A) and many
other others with significant activity against a single target (Figure 6A;
Supplementary Information 4).

3. Discussion

SARS-CoV-2 is a significant world health crisis. The full scope of
COVID-19 disease and any long-term health complications following
infection remain unclear. Although vaccines are the best long-term so-
lution, treatments will be necessary to mitigate disease severity in the
short term. What is concerning is that several repurposed drugs have
already been tested in some form of clinical trial, and only one drug
Remdesivir has shown a clear benefit in randomized clinical trials.
Additionally, there is no guarantee that an effective vaccine can be found
for the SARS-CoV-2 virus, and therefore drug candidate pipelines are
extremely important to pursue for the long-term research effort against
COVID-19. A vaccine against SARS-CoV-2 would likely need to stimulate
local immunity, since the infection is limited to mucosal surfaces, and
these could be short-lived immunities.

We have therefore taken a comprehensive approach to try and pro-
vide a pipeline for short and long-term use, and for a potentially local
application route via inhalation. Existing FDA approved drugs that target
a single protein important for viral replication and host entry are
currently the highest priority for repurposing as new COVID-19 drugs.
However, we think that there are compelling reasons to create pipelines
to explore many putative targets, and chemical spaces that are far larger
and more diverse than the known approved drugs. We have therefore
screened ~10þ million potentially purchasable compounds from the
ZINC database and also predicted toxicity values for the numerous can-
didates. In addition, we have identified chemicals that are predicted to
5

affect more than one of the host proteins, suggesting these may have
more efficacy. One unusual category we have emphasized is volatiles, as
these compounds may be biologically sourced, and therefore microbes
could be genetically engineered to produce them in mass [24]. This
would subsequently reduce the strain on global supply chains for
chemicals that are necessary in synthesizing certain pharmaceuticals.
These chemicals are also intriguing options for drug cocktails. If present
in metabolic pathways, they possibly already interact in vivo. Therefore,
short-term therapeutic concentrations may be better tolerated in
humans.

It is nevertheless important to note that machine learning depends on
available data. Because the size and diversity of publicly available
bioassay data are limited, caution is required in interpreting the pre-
dictions. It is common to find past bioassays focused on similarly shaped
chemicals, limiting the scope of the machine learning approach to find
new chemistries. Importantly, apart from ACE2, the other human pro-
teins that were identified to interact with SARS-CoV-2 are yet to be tested
in vivo for efficacy. And although some of the candidate chemicals we
identified may be biologically sourced, the concentrations are not well
defined or unknown, nor is there any understanding of a therapeutic
concentration in this scenario. These data are presented as a forward-
looking resource and a pipeline to evaluate chemical data with addi-
tional research. While our motivation was the evolving COVID-19
pandemic, the 65 SARS-CoV-2 targets including ACE2 are relevant to a
range of other diseases and conditions. We therefore anticipate that the
AI-based predictions of purchasable compounds from 10þ million
chemicals will accelerate drug discovery in general and facilitate
research on these chemicals in the future for a number of diseases. In
general, the use of AI-driven tools could provide additional valuable
solutions for tackling Covid-19 [25].

4. Materials and methods

4.1. Data sources for machine learning

4.1.1. ZINC
ZINC is a free database comprised of 230 million chemicals for in

silico analyses. It was developed as a resource for non-commercial
research. Chemicals predicted here are from a purchasable subset;
however, availability is subject to change and pricing may vary widely
[18, 26].

4.1.2. Bioassay data
Bioassay data was retrieved from ChEMBL 25 using the associated

Python module, which enables access to the API services via Python [27,
28]. The various inhibitory measures/endpoints, wherever possible, are
standardized to nM units; the logarithm of the standardized values was



Table 2. Important chemical features for classification models. Top three physicochemical features for viral targets where the models classified chemicals as active
vs inactive relative to broad inhibition or activition rather than a specific assay value (e.g. Ki, IC50, and AC50).

Feature Target Description

Mor18s BRD4 signal 18/weighted by I-state

SpMAD_G/D BRD4 spectral mean absolute deviation from distance/distance matrix

SpMax3_Bh(p) BRD4 largest eigenvalue n. 3 of Burden matrix weighted by polarizability

P_VSA_LogP_3 HDAC2 P_VSA-like on LogP, bin 3

SHED_DA HDAC2 SHED Donor-Acceptor

SHED_DL HDAC2 SHED Donor-Lipophilic

G(N..N) IDE sum of geometrical distances between N..N

SM1_Dz(i) IDE spectral moment of order 1 from Barysz matrix weighted by ionization potential

Wap IDE all-path Wiener index

CATS2D_08_DA TBK1 CATS2D Donor-Acceptor at lag 08

F08[N–N] TBK1 Frequency of N - N at topological distance 8

P_VSA_e_3 TBK1 P_VSA-like on Sanderson electronegativity, bin 3

H7m PRKACA H autocorrelation of lag 7/weighted by mass

H7s PRKACA H autocorrelation of lag 7/weighted by I-state

RDF060m PRKACA Radial Distribution Function - 060/weighted by mass

GATS6e MARK3 Geary autocorrelation of lag 6 weighted by Sanderson electronegativity

GATS6m MARK3 Geary autocorrelation of lag 6 weighted by mass

Mor02m MARK3 signal 02/weighted by mass

CATS2D_02_DL IMPDH2 CATS2D Donor-Lipophilic at lag 02

CATS3D_07_DL IMPDH2 CATS3D Donor-Lipophilic BIN 07 (7.000–8.000 Å)

NaasC IMPDH2 Number of atoms of type aasC

C-039 ABCC1 Ar-C(¼X)-R

VE2sign_Dz(p) ABCC1 average coefficient of the last eigenvector from Barysz matrix weighted by polarizability

VE3sign_Dz(v) ABCC1 logarithmic coefficient sum of the last eigenvector from Barysz matrix weighted by van der Waals volume

Mor31s ABHD12 signal 31/weighted by I-state

RTiþ ABHD12 R maximal index/weighted by ionization potential

VE3sign_Dz(p) ABHD12 logarithmic coefficient sum of the last eigenvector from Barysz matrix weighted by polarizability

E2m BRD2 2nd component accessibility directional WHIM index/weighted by mass

GATS2m BRD2 Geary autocorrelation of lag 2 weighted by mass

TDB03i BRD2 3D Topological distance based descriptors - lag 3 weighted by ionization potential

MAXDP COMT maximal electrotopological positive variation

nDB COMT number of double bonds

P_VSA_MR_2 COMT P_VSA-like on Molar Refractivity, bin 2

CATS2D_02_AL DNMT1 CATS2D Acceptor-Lipophilic at lag 02

Mor04s DNMT1 signal 04/weighted by I-state

VE3sign_Dt DNMT1 logarithmic coefficient sum of the last eigenvector from detour matrix

ChiA_B(i) EIF4H average Randic-like index from Burden matrix weighted by ionization potential

F05[C–O] EIF4H Frequency of C - O at topological distance 5

NaasC EIF4H Number of atoms of type aasC

CENT LOX centralization

EE_G LOX Estrada-like index (log function) from geometrical matrix

VE2_D/Dt LOX average coefficient of the last eigenvector (absolute values) from distance/detour matrix

Eta_D_beta MARK2 eta measure of electronic features

Mor29v MARK2 signal 29/weighted by van der Waals volume

SpPosA_B(i) MARK2 normalized spectral positive sum from Burden matrix weighted by ionization potential

CATS2D_07_AL NEK9 CATS2D Acceptor-Lipophilic at lag 07

CATS2D_08_AL NEK9 CATS2D Acceptor-Lipophilic at lag 08

TDB05p NEK9 3D Topological distance based descriptors - lag 5 weighted by polarizability

CATS2D_06_DL NEU1 CATS2D Donor-Lipophilic at lag 06

TDB04i NEU1 3D Topological distance based descriptors - lag 4 weighted by ionization potential

X3A NEU1 average connectivity index of order 3

nR06 RHOA number of 6-membered rings

R8sþ RHOA R maximal autocorrelation of lag 8/weighted by I-state

SpMin1_Bh(m) RHOA smallest eigenvalue n. 1 of Burden matrix weighted by mass

CATS3D_08_NL SIRT5 CATS3D Negative-Lipophilic BIN 08 (8.000–9.000 Å)

O-057 SIRT5 phenol, enol, carboxyl OH

SpMax2_Bh(s) SIRT5 largest eigenvalue n. 2 of Burden matrix weighted by I-state

CATS2D_04_AL TK2 CATS2D Acceptor-Lipophilic at lag 04

(continued on next page)
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Table 2 (continued )

Feature Target Description

JGI3 TK2 mean topological charge index of order 3

MATS1i TK2 Moran autocorrelation of lag 1 weighted by ionization potential

P_VSA_e_3 VCP P_VSA-like on Sanderson electronegativity, bin 3

RDF020p VCP Radial Distribution Function - 020/weighted by polarizability

SpMaxA_AEA(dm) VCP normalized leading eigenvalue from augmented edge adjacency mat. weighted by dipole moment

a

b

c

Figure 2. Models of chemical features accurately predict inhibitors of SARS-CoV-2 targets. a) Pipeline for fitting and validating models that predict IC50, Ki, or
AC50 or a classification score, which reflects broad inhibitory activity against the listed viral targets. b) Left, mean absolute error (MAE) in predicting the log
transformed endpoints (IC50, Ki, AC50). Right, classification of chemicals for broad inhibition or activity against targets, validating using the area under the receiver
operating characteristic (ROC) curve (AUC). Plots are for 10-fold cross validation, repeated 5 times. The model predictions are from an ensemble of three support
vector machines (SVM), trained on different chemical feature sets or in some cases SVM and Random Forest. c) Left, external test set performance for regression
models, where possible. Right, external test set performance for classification models, where possible. More comprehensive performance data in Supplementary
Information 1.
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Figure 3. Approved drugs with putative activity against SARS-CoV-2 targets. a) The best predicted activity against SARS-CoV-2 targets among databases of
approved drugs. Viral targets with few promising candidates are omitted. Comprehensive table in Supplementary Information 2. b) Network showing drugs that are
among the top 25 for multiple viral targets (drugs: black nodes; viral targets: red nodes).

J. Kowalewski, A. Ray Heliyon 6 (2020) e04639
used for machine learning. Regression models were fit for a single
endpoint. For classification machine learning models, however, ‘active’
class chemicals were defined using the deposited activity comments such
as for assays of general activity against proteins, and added active labels
8

for endpoints with values up to 10,000 nM (Ki and IC50) and for the
semi-quantitative % inhibition, greater than 10%. The majority class was
downsampled during the training and model tuning phases to adjust for
possible class imbalances. Because the class labels were assigned using



a

b

c

Figure 4. Predicting activity against SARS-CoV-2 targets among theoretical volatile chemicals. a) Left, count of chemicals per target after initially filtering
based on predicted scores. Right, chemical counts across all viral targets for the models predicting general inhibitory or activity against (Classification) and those for
specific inhibitory endpoints (Regression) (e.g. IC50). b) Pipeline for further prioritizing chemical sets according to estimated log vapor pressure and low mammalian
toxicity (LD50). c) Top ranking predictions of general inhibition or activity against targets (Score) and/or specific inhibitory endpoints (Predicted Assay Value)
against SARS-CoV-2 targets from the ZINC database, filtered to the highest estimated log vapor pressures.
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arbitrary cutoffs and the predicted activities for classification models
from various assay endpoints are not clearly defined, we also compared
each model fit to shuffled labels. Training for the regression and classi-
fication approaches was done on 85% of the total data. Notably, in a
small number of cases the remaining 15% was insufficient to effectively
9

estimate performance using an external test set. To reduce bias, feature
selection (recursive feature elimination (RFE) algorithm) was always run
on 85% of the data over 250–300 different partitions (iteratively running
the 10-fold cross validation 25–30 times). However, for these cases, the
held-out portion (15%) was then incorporated back into the dataset to



Figure 5. Predicted chemicals rank highly for multiple SARS-CoV-2 targets. a) Network of chemicals predicted to have low toxicity that are ranked highly for >1
viral targets. Chemicals were considered if for multiple viral targets they had >0.75 activity/class scores or predictions of specific assay measures (Ki, IC50, and AC50)
< 100 nM.
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better estimate performance of the trained model by 10-fold
cross-validation (repeated 5 times) and obtain a better fit. We also fit 3
different radial basis function (RBF) support vector machine (SVM)
models, wherein the chemical features (predictors) were randomly
sampled (50%) from the top 70. This makes the performance estimates
more conservative (see Key Resources Table for machine algorithm
source files). However, the structural diversity and size of the datasets
imply some bias in the performance estimates.

4.1.3. Toxicity data
Training and testing data are curated by various government agencies

and provided freely to the general public as databases (see Key Resources
Table) [29, 30, 31].

4.1.4. Vapor pressure data
Training and testing data are from EPI Suite [32], which is developed

and maintained by the Environmental Protection Agency (EPA) (see Key
Resources Table). Methods for fitting these models are as outlined in the
Figure 1 pipeline. To compare the vapor pressure model predictions with
respect to different machine learning methods as well as EPI suite, data
were split into train/test partitions as defined in a previous study [33].
4.2. Selecting optimally predictive chemical features

4.2.1. Optimizing chemical structures
Chemical features were computed with ~5300 AlvaDesc descriptors,

from the developers of DRAGON software, and 3D coordinates and
optimization performed using RDKit in Python [34].

4.2.2. Chemical feature ranking and importance

4.2.2.1. Cross-validated recursive feature elimination (CV-RFE). Recursive
feature elimination iteratively selects subsets of features to identify
optimal sets. The algorithm is a “wrapper” and therefore relies on an
10
additional algorithm to supply predictions and quantify importance. We
used two different algorithms, depending on the size and composition of
data: (1) Random Forest and (2) Support Vector Machine (SVM). Random
forest determines the importance in relation to the % increase in error
when permuting a feature or predictor. There is no equivalent method for
computing importance with the SVM. Accordingly, the importance is
based on fitting a model between the response and each predictor or
feature as compared to null. If the response is numeric, importance is
derived from the pseudo R2 (non-linear regression). If, however, the
response is binary, the AUC is instead computed for each predictor or
feature (see Key Resources Table for algorithm source files).

Including cross-validation with the recursive feature elimination
(RFE) partitions the training data into multiple folds. This step avoids
biasing performance estimates but results in lists of top predictors over
the cross-validation folds such that importance of a predictor is based on
a selection rate.

4.2.2.2. Selection bias. Selecting features or predictors on the same
dataset used for cross validation results in models that have already
“seen” possible partitions of the data and therefore performance metrics
will be biased. Selection bias [35] was addressed by bootstrapping and
cross validation, which ensure some separation between pre-
dictor/feature selection and model-fitting/validation. In addition to
these methods, we used hidden test sets or more generally performed the
feature selection on a portion of the data.
4.3. Selecting optimal machine learning algorithms

The support vector machine (SVM) with the radial basis function
kernel (RBF) outperformed regularized Random Forest (regRF) or per-
formed comparably. Rather than utilize many different approaches, we
aggregated multiple SVM models to improve generalizability. However,
in the case of the classification model for EIF4H, we included the regu-
larized random forest algorithm, as the aggregated prediction (SVM and



Figure 6. Predictions of SARS-CoV-2 targets among chemicals lacking odorant properties. a) Sample of ZINC chemicals scoring highly for activity against the
viral targets (classification or regression models, Score). Comprehensive tables in Supplementary Information 4, detailing the model type and predicted
assay endpoint.
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regRF) was clearly optimal on the test data. Algorithm selection and
training was done using the classification and regression training pack-
age in R [36], caret [37], and the implementation of the Support Vector
Machine (SVM) algorithm in Kernlab [38].

4.4. Enriched substructures/cores

Enriched cores were analyzed using RDKit through Python [34]. The
algorithm performs an exhaustive search for maximum a common sub-
structure among a set of chemicals. In practice, larger sets often yield
fewer substantive cores. To remedy this, the algorithm includes a
threshold parameter that relaxes the proportion of chemicals containing
the core. We used a threshold of 0.55, which ensures that the majority of
the chemicals contained the core.

4.5. Chemical fingerprinting

Extended Connectivity Fingerprints (ECFP) are a class of chem-
informatic algorithms that iteratively combine chemical features that are
present within a predefined radius/diameter, representing them by a set
of integer values. Typically, the fingerprint is converted into a binary
string of fixed length using a hash function. Here, the bit length was set at
1024 and a radius of 2 (diameter ¼ 4 or ECFP4). This structural repre-
sentation was preferred as it is strongly associated with activity [39].
Accordingly, it is a suitable alternative to identify drug candidates in the
absence of machine learning models. We used the ECFP algorithm in
RDKit (Morgan or circular fingerprint) [34]. The similarity between the
fingerprints of chemicals with known activity against the SARS-CoV-2
targets and prospective chemicals was computed using the Tanimoto
index. This index is a similarity coefficient (0–1; 1¼max similarity). It is
the overlap of the “on-bits” divided by the sum of the unique “on-bits”.
Notably, coefficients of 1 need not imply identical chemicals.

simðABÞ¼ c
aþ b� c

where c ¼ overlapping “on-bits”; a ¼ “on bits” in A; b ¼ “on-bits” in B.

4.6. Support vector machine (SVM)

Training the support vector machine (SVM) involves identifying a set
of parameters that optimize a cost function, where cost 1 and cost
0 correspond to training chemicals labeled as “Active” and “Inactive,”
respectively. θT is the scoring function or output of the support vector
machine. If the output is�0, the prediction is “Active.” The function (ƒ) is
a kernel function.

SVMCost¼minC
θ

Xm
i¼1

yðiÞcost1
�
θT f ðiÞ

�þð1� yðiÞÞcost0
�
θT f ðiÞ

�þ 1
2

Xn
j¼1

θ2j

The kernel determines the shape of the decision boundary between
KEY RESOURCES TABLE

Reagent or Resource Source

Deposited Data

ZINC 15 Sterling and I

chEMBL 25 EMBL-EBI, 20

EPI Suite Data EPA, 2015

DrugBank Wishart et al.

Therapeutic Targets Database (TTD) Chen, 2002; Z

FDA: Substance Registration Database (FDA UNII) FDA, 2020

Hazardous Substances Data Bank (HSDB) Fonger et al.,

Viral Targets Gordon et al.

Acutoxbase Kinsner-Ovask

12
the active and inactive chemicals from the training set. The radial basis
function (RBF) or Gaussian kernel enables the learning of more complex,
non-linear boundaries. It is therefore well suited for problems in which
the biologically active chemicals cannot be properly classified as a linear
function of physicochemical properties. This kernel computes the simi-
larity for each chemical (x) and a set of landmarks (l), where σ2 is a
tunable parameter determined by the problem and data. The similarity
with respect to these landmarks is used to predict new chemicals
(“Active” vs. “Inactive”).

Gaussian Kernel¼ exp

 
��x� lð1Þ

�2
2σ2

!

4.6.1. Model performance metrics
The Area under the ROC Curve (AUC) assesses the true positive rate

(TPR or sensitivity) as a function of the false positive rate (FPR or 1-spec-
ificity) while varying the probability threshold (T) for a label (Active/
Inactive). If the computed probability score (x) is greater than the
threshold (T), the observation is assigned to the active class. Integrating
the curve provides an estimate of classifier performance, with the top left
corner giving an AUC of 1.0 denoting maximum sensitivity to detect all
targets or actives in the data without any false positives. The theoretical
random classifier is reported at AUC ¼ 0.5.

TPRðTÞ ¼
Z ∞

T
f1ðxÞdx

FPRðTÞ ¼
Z ∞

T
f0ðxÞdx

where T is a variable threshold and x is a probability score.
However, we generated classifiers that are more authentic than

theoretical random classification, shuffling the chemical feature values in
the models and statistically comparing the mean AUCs across multiple
partitions of the data. This controls against optimally tuned algorithms
predicting well simply because of specific predictor attributes (e.g. range,
mean, median, and variance) or models that are of a specific size (number
of predictors) performing well even with shuffled values. Additionally,
biological data sets are often small, with stimuli or chemicals
that—rather than random selection—reflect research biases, possibly
leading to optimistic validation estimates without the proper controls.

We used the AUC for evaluating classification models. For the
classification-based training, we initially converted the inhibitory data
into a binary label (Active/Inactive). For predictions of quantitative
bioassay measures (e.g. Ki, IC50, AC50, Log LD50), we computed the mean
absolute error (MAE), the correlation coefficient (R) and the squared
correlation coefficient (R2).MAE:Mean absolute error is the mean of the
absolute difference between predicted and observed (% usage). It
therefore assigns equal weight to all prediction errors, whether large or
small.
Identifier

rwin, 2015 https://zinc.docking.org/substances/home/

11; Mendez et al., 2019 https://www.ebi.ac.uk/chembl/

http://esc.syrres.com/interkow/EPiSuiteData.htm

, 2018 https://www.drugbank.ca/

hu et al., 2009 http://db.idrblab.net/ttd/

https://fdasis.nlm.nih.gov/srs/

2014 https://www.nlm.nih.gov/databases/download/hsdb.html

2020 https://www.nature.com/articles/s41586-020-2286-9

ainen et al., 2009 https://www.acutetox.eu/

(continued on next page)

https://zinc.docking.org/substances/home/
https://www.ebi.ac.uk/chembl/
http://esc.syrres.com/interkow/EPiSuiteData.htm
https://www.drugbank.ca/
http://db.idrblab.net/ttd/
https://fdasis.nlm.nih.gov/srs/
https://www.nlm.nih.gov/databases/download/hsdb.html
https://www.nature.com/articles/s41586-020-2286-9
https://www.acutetox.eu/


(continued )

Reagent or Resource Source Identifier

DSSTox Richard and Williams, 2002 https://www.epa.gov/chemical-research/distributed-
structure-searchable-toxicity-dsstox-database

Top 50 physicochemical features to predict inhibitory assay activity
for each SARS-CoV-2 target

This paper Supplementary Table 2

Top 50 physicochemical features to predict broadly inhibiting activity
for each SARS-CoV-2 target

This paper Supplementary Table 3

Top predicted drug and FDA registered chemicals.
Structural similarity between drugs and chemicals with bioassay activities
for SARS-CoV-2 targets

This paper Supplementary Information 2

Top predicted chemicals from ZINC, rank ordered by estimated
vapor pressure

This paper Supplementary Information 3

Top predicted chemicals from ZINC, filtered for toxicity This paper Supplementary Information 4

Software and Algorithms

Classification and regression training (caret) Kuhn, 2008 https://github.com/topepo/caret

Kernlab Karatzoglou et al., 2004 https://github.com/cran/kernlab

Regularized Random Forest (RRF) Deng and Runger, 2013 https://github.com/softwaredeng/RRF

RDKit Landrum, 2006
Python wrapper

https://github.com/rdkit/rdkit

ggplot2 Wickham, 2016 https://github.com/tidyverse/ggplot2
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MAE¼ 1
n

Xn

i¼1
ðy� yÞ
where, y ¼ predicted and y ¼ observed

Sensitivity¼ TP
TPþ FN

where, TP ¼ True Positive and FN ¼ False Negative

Specificity¼ TN
TN þ FP

where, TN ¼ True Negative and FP ¼ False Positive.
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