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Diabetic peripheral neuropathy (DPN) is characterized by spontaneous pain in the extremities. 
Incidence of DPN continues to rise with the global diabetes epidemic. However, there remains a lack 
of safe, effective analgesics to control this chronic painful condition. Dorsal root ganglia (DRG) contain 
soma of sensory neurons and modulate sensory signal transduction into the central nervous system. 
In this study, we aimed to gain a deeper understanding of changes in molecular pathways in the DRG 
of DPN patients with chronic pain. We recently reported transcriptomic changes in the DRG with 
DPN. Here, we expand upon those results with integrated metabolomic, proteomic, and phospho‑
proteomic analyses to compare the molecular profiles of DRG from DPN donors and DRG from control 
donors without diabetes or chronic pain. Our analyses identified decreases of select amino acids and 
phospholipid metabolites in the DRG from DPN donors, which are important for cellular maintenance. 
Additionally, our analyses revealed changes suggestive of extracellular matrix (ECM) remodeling and 
altered mRNA processing. These results reveal new insights into changes in the molecular profiles 
associated with DPN.

Chronic pain is a growing health burden, impacting an estimated 20% of adults in the United  States1. Among 
chronic pain cases, an estimated 25% can be attributed to neuropathic  pain2. A common painful neuropathic 
condition is Diabetic Peripheral Neuropathy (DPN), which is caused by Diabetes Mellitus (DM). Type II Diabetes 
Mellitus (T2D) is an epidemic that affects 462 million people globally, a number expected to grow markedly, with 
50% of patients developing  DPN3–5. DPN is defined as a length-dependent sensorimotor polyneuropathy. DPN 
is associated with hyperglycemic pathology as well as hyperlipidemia; however, a mechanism of DPN develop-
ment remains  unclear5–7. DPN typically manifests in a ‘stocking and glove’ pattern in which patients’ lower limbs 
are most affected, consistent with disease of long sensory neurons. Additionally, DPN is associated with axonal 
demyelination and degeneration leading to nerve dysfunction and possible cell  death8. Exponential growth in 
the diabetes epidemic and a lack of an effective curative treatment for DPN make it increasingly imperative to 
gain insights into the mechanisms of disease  progression2,9,10.

Dorsal root ganglia (DRG) contain the cell bodies of peripheral sensory neurons that relay pain from the 
periphery to the central nervous  system11. It is well established that transcriptomic changes occur in DRG in 
response to injury and in association with neuropathic pain  development11. Our previously published mRNA 
sequencing (RNA-seq) study suggested an association between DPN, increased expression of immune-related 
genes, and decreased expression of neuronal genes in the human  DRG12. However, due to translational and 
post-translational regulation, expression of a specific mRNA is not a perfect indicator of the abundance of the 
corresponding protein, especially in the context of neurological  dysfunction13–18. Despite this, to the best of our 
knowledge, no study to date has explored translational and post-translational regulation in human DRG. Protein 
abundance and post-translational modifications (PTM) are central to cellular function, but easily deregulated in 
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response to physiological  changes19. Phosphorylation is an important PTM upon which many cellular processes 
are reliant. Additionally, metabolites can be influenced directly by endogenous and exogenous factors and are 
direct players in biochemical processes, thus offering a strong descriptor of molecular phenotype. A few studies 
have identified metabolomic and proteomic trends suggestive of disrupted energy metabolism and mitochondrial 
function in DRG of diabetic  rodents20–23. Better understanding of molecular regulation with painful conditions 
in human systems is vital for development of novel  therapeutics24.

Therefore, we aimed to integrate previous transcriptomic  findings12 with metabolomic, proteomic, and phos-
pho-proteomic data to offer a comprehensive understanding of the biochemical changes associated with DPN 
in human DRG. Presently, we profiled small molecular weight metabolites and lipids, as well as proteins and 
phospho-peptides in human DRG samples from DPN donors and non-diabetic controls. We identified decreased 
amino acids and phospholipid metabolites, as well as alterations in abundance of extracellular matrix (ECM) 
proteins and phosphorylation of RNA binding proteins. From this, we suggest a role of disrupted amino acid 
and protein metabolism in the development of DPN.

Results
Tissue donor cohort characteristics. For metabolomic analysis, DRG were obtained from 7 DPN donors 
and 10 non-diabetic control donors. For proteomic and phospho-proteomic analyses, DRG were obtained from 
5 DPN donors and 5 non-diabetic control donors. Within both cohorts of donors, no significant differences were 
observed between donor groups in age, sex, or BMI (Table 1). A significant difference was observed in donors on 
ACE inhibitors in the metabolomic cohort, but no ACE inhibitor metabolites were detected in our  analysis25. A 

Table 1.  Donor characteristics for DRG tissues used in metabolomic and proteomic analyses. Results given as 
N (%) or mean (standard deviation). a Fisher’s Exact Test. b T-test. * indicates variables which are significantly 
different between control and DPN donor groups (p-value < 0.05).

Metabolomic cohort Proteomic cohort

Control, N = 10 DPN, N = 7 p value Control, N = 4 DPN, N = 5 p value

DRG storage 0.9a

Snap frozen 5 (50%) 4 (57%) 4 (100%) 4 (100%)

RNAlater 5 (50%) 3 (43%)

Sex 0.9a 0.5a

Female 5 (50%) 3 (43%) 3 (75%) 2 (40%)

Male 5 (50%) 4 (57%) 1 (25%) 3 (60%)

Age 46.8 (7.6) 53.4 (9.8) 0.1b 51.8 (2.5) 53.4 (9.8) 0.7b

BMI 27.4 (6.1) 30.6 (8.6) 0.7b 35.0 (11.4) 30.6 (8.6) 0.5b

Race/ethnicity 0.5a 0.5a

African American 2 (20%) 3 (43%) 1 (25%) 2 (40%)

Hispanic/Latino 2 (20%) 3 (43%) 0 (0%) 1 (20%)

White 6 (60%) 2 (29%) 3 (75%) 2 (40%)

Cause of death 0.6a 0.6a

Anoxia/cardiovascular 2 (20%) 3 (43%) 1 (25%) 2 (40%)

CVA/ICH/stroke 4 (40%) 4 (43%) 1 (25%) 2 (40%)

MVA/head trauma/blunt injury 4 (40%) 1 (14%) 2 (50%) 2 (40%)

Medications

Vasodilators 3 (30%) 1 (14%) 0.6a 3 (60%) 2 (40%) 0.9a

Opioids 1 (10%) 3 (43%) 0.2a 0 (0%) 2 (40%) 0.4a

Gabapentin 0 (0%) 2 (29%) 0.2a 0 (0%) 2 (40%) 0.4a

Insulin 0 (0%) 2 (29%) 0.2a 0 (0%) 3 (60%) 0.2a

Metformin 0 (0%) 2 (29%) 0.2a 0 (0%) 2 (40%) 0.2a

Ca2+ channel blockers 1 (10%) 4 (57%) 0.1a 0 (0%) 2 (40%) 0.4a

β Blockers 1 (10%) 4 (57%) 0.1a 0 (0%) 3 (60%) 0.2a

ACE Inhibitors 1 (10%) 5 (71%) 0.035a,* 0 (0%) 3 (60%) 0.2a

Statins 1 (10%) 4 (57%) 0.1a 1 (20%) 2 (40%) 0.9a

Comorbidities

Cardiac disease 1 (10%) 4 (57%) 0.1a 1 (20%) 2 (40%) 0.9a

Hypertension 4 (40%) 6 (86%) 0.13a 3 (60%) 4 (80%) 0.9a

Neurological disease 2 (20%) 1 (14%) 0.058a 1 (20%) 3 (60%) 0.5a

Cancer 0 (0%) 1 (14%) 0.4a 0 (0%) 0 (0%)

Diabetes 0 (0%) 7 (100%) 5e−05a,* 0 (0%) 5 (100%) 0.008a,*
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non-significant trend was observed in differences in age in our metabolomic cohort, this was addressed in our 
statistical analysis of metabolite data.

Post-mortem tissue donation networks offer the best opportunity for analyses of human DRGs. L4, L5, and S1 
DRGs were obtained as these ganglia contain the primary afferent neurons that innervate the distal extremities 
of the foot where patients with DPN often experience pain (Fig. 1a). Donor medical history confirms neuropathy 
for 10 years or more in the DPN cohort as observed from the available timeline. However, with current limita-
tions in obtaining human  DRG26, we were unable to obtain detailed clinical measures of pain hypersensitivity in 
DRG donors. We have earlier reported pathological evaluation of DRG tissues from the DPN and control donors 
showing variation in pathology in both donor  groups12. As reported  earlier12, within the non-diabetic control 
group, pathology ranges from apparently normal tissue to moderate ganglionic cell loss, whereas within the DPN 
group, pathology ranges from apparently normal tissue to moderate to severe ganglionic cell loss.

For our present study, profiles of protein, DNA, and RNA degradation products as well as indicators of cellular 
damage were evaluated to characterize tissue quality (Fig. 1b). Abundance of these degradation products would 
be abnormally high if tissues were poorly handled or stored. We do note that one sample has exceptionally high 
levels of hypoxanthine, inosine, and certain amino acids (Fig. 1b). A second sample is noted to have high levels 
of certain amino acids as well (Fig. 1b). However, for both samples, these increases were not consistent across 
all amino acids. Additionally, diphosphates ADP and GDP were particularly low in these two samples. As such, 
we determined no DRG samples with abnormal degradation were included in our analysis.

Metabolomic profiling suggests disrupted amino acid and phospholipid metabolism. Metabo-
lomic profiling was performed with 7 DRG from donors with DPN and 10 DRG from non-diabetic controls 
(Table 1). Capillary electrophoresis mass spectrometry (CE-MS) and liquid chromatography mass spectrometry 
(LC–MS) collectively identified 327 metabolites in donor DRG tissues. 165 metabolites were detected in more 
than 80% of samples and included in further analysis (Fig. 2a).

Dimensionality reduction with principal component analysis (PCA) suggested the influence of donor pain 
condition on metabolite profiles to be confounded by variables such as sample storage condition (Supplementary 
Fig. S1). Linear regression models were applied to candidate metabolites to account for variation due to sample 

Figure 1.  Study design and evaluation of DRG quality (a) Schematic representation of study design. 
Innervation pattern for L4, L5, and S1 DRG used in analyses overlap with painful region in DPN. Created 
with BioRender. (b) Heat map showing scaled and centered relative abundance data for select metabolites. 
Abnormally high profiles of all metabolites here would be indicative of tissue degradation. Two samples show 
higher abundance of some metabolites. However, these levels are reasonable for normal biological variation, 
and profiles of all noted metabolites are not observed to be consistently high. As such, DRG samples were 
determined to be of quality allowable for analysis. Row-wise annotations indicate degradative process which 
might produce indicated metabolites. CON control samples, DPN diabetic peripheral neuropathy.
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Figure 2.  Decreased amino acids and phospholipid metabolites with DPN (a) Volcano plot showing metabolite 
abundance according to ratio of DPN/control and p-values before covariate control. Significantly regulated 
metabolites are considered to be those with p-value < 0.05. Metabolites with trends in regulation were identified 
with p-value < 0.1. Dashed lines represent p-values 0.1 and 0.05 before covariate control. (b) Heat map 
showing scaled and centered relative abundance of differentially regulated metabolites (p-value after covariate 
control < 0.05). Asterisks (*) indicates metabolites which were validated with quantitative panels. Row-wise 
annotations indicate metabolite class, metabolite classes represented by only one metabolite are grouped 
together as other. CON indicates control samples, DPN indicates diabetic peripheral neuropathy. (c) Metabolite 
enrichment analysis with SMPDB library shows enrichment in phospholipid biosynthesis and amino acid 
metabolism. Annotations shown are significant with p-value < 0.05. Enrichment ratio is observed number of 
metabolites divided by expected number metabolites in metabolite set. (d) Schematic representation of PC and 
PE biosynthetic? pathways as well as derivation of N-acylethanolamines, created with BioRender. (e) Box plot 
showing trends in decreased PE derived lipids, SEA and OEA. Indicated p-value was calculated after covariate 
control.
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storage condition, donor age, and donor sex. 21 metabolites were identified as significantly altered as a result of 
neuropathic pain (p-value adjusted for covariates < 0.05) after this covariate adjustment (Fig. 2b; Supplementary 
Table S1). All differentially regulated metabolites were decreased in the DRG from donors with DPN.

Of the 21 identified metabolites, 8 are classified as carboxylic acids and derivatives (N-acetylaspartic acid 
(NAA), creatine (Cr), glycine (Gly), aspartic acid (Asp), glutamine (Gln), glutamate (Glu), guanidoacetic acid, 
and cysteine glutathione disulfide) (Fig. 2b). We noted additional non-significant decreases in carboxylic acids 
and derivatives including asparagine (ratio (DPN/control) = 0.46, p-value adjusted for covariates = 0.057) and 
ornithine (ratio (DPN/control) = 0.38, p-value adjusted for covariates = 0.058) (Supplementary Table S1). Simi-
larly, our enrichment analysis revealed significantly enriched metabolite sets related to arginine and proline 
metabolism, aspartate metabolism, glycine and serine metabolism, and glutamate metabolism (Fig. 2c). Because 
these observations suggest alterations in amino acids, the concentrations of proteinogenic amino acids were then 
examined with quantitative panels (Supplementary Fig. S2). Three differentially regulated amino acids (Gln, 
Gly, and Glu) were observed to be among the highest abundance proteinogenic amino acids in the DRG (Sup-
plementary Fig. S2). Of note, non-proteogenic amino acid NAA, was the most significantly decreased metabolite 
(ratio (DPN/control) = 0.37, p-value adjusted for covariates = 0.00995). Given that NAA is highly abundant in 
the nervous system and neuronally  important27, regulation of NAA was confirmed with a quantitative panel 
(Supplementary Table S1).

Among our significantly enriched metabolite sets, we also observed an enrichment for biosynthetic pathways 
of two phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (Fig. 2c). Organonitro-
gen compounds choline (Cho, ratio (DPN/control) = 0.71, p-value adjusted for covariates = 0.049, Fig. 2b) and 
ethanolamine (Etn, ratio (DPN/control) = 0.48, p-value adjusted for covariates = 0.0068, Fig. 2b) are involved 
in both pathways (Fig. 2d). Ethanolamine phosphate (Etn-P, ratio (DPN/control) = 0.56, p-value adjusted for 
covariates = 0.027, Fig. 2b) is also involved in both pathways (Fig. 2d), whereas S-adenoylmethionine (SAM) 
(ratio (DPN/control) = 0.52, p-value adjusted for covariates = 0.0164, Fig. 2b) is involved in PC synthesis (Fig. 2d). 
To further support altered phospholipid dynamics, we observed trending losses in two N-acylethanolamines, 
oleoyl-ethanolamide (OEA, ratio (DPN/control) = 0.69, p-value adjusted for covariates = 0.082, Fig. 2e) and 
stearoyl-ethanolamide (SEA, ratio (DPN/control) = 0.66, p-value adjusted for covariates = 0.052, Fig. 2e). Given 
that PE is the sole endogenous source of OEA and SEA, these metabolites were selected for validation. Quantita-
tive panels confirmed the identity and trend in differential abundance of OEA and SEA (Fig. 2e; Supplementary 
Table S1), as well as differential regulation of Cho and SAM (Supplementary Table S1).

Proteomic profile shows extracellular matrix remodeling. Proteomic profiling was performed with 
5 DRG derived from donors with DPN and 5 DRG derived from control donors without diabetes or chronic pain 
(Table 1). After sample prep, total peptide abundance in 1 non-diabetic control sample was abnormally low, this 
sample was excluded from further analysis. 6186 proteins were identified in human DRG samples. 247 proteins 
were identified as significantly differentially regulated (Benjamini–Hochberg adjusted p-value < 0.05, Fig. 3a). 
Dimensionality reduction analyses with PCA and t-distributed Stochastic Neighbor Embedding (t-SNE) did not 
show clear sample grouping by neuropathic pain (Supplementary Fig. S3). We believe this was due to some influ-
ence of covariate variables and as such used linear modeling to adjust for age and sex. 41 proteins were identified 
as significantly altered after covariate control (p-value adjusted for covariates < 0.05, Supplementary Table S2), of 
these 5 are regulated by fold change greater than 1.5 (|log2(DPN/control)|> 0.58, Fig. 3b).

From statistical overrepresentation test using Panther, differentially regulated proteins (p-value adjusted for 
covariates < 0.05) showed enrichment in gene ontology annotations including ECM and biological adhesion 
(Fig. 3c). Changes to the ECM and cellular adhesion is highlighted by upregulation of the neural ECM pro-
tein, tenascin R (TNR, ratio (DPN/control) = 1.59, p-value adjusted for covariates = 0.048). Using an alternative 
method, we sought to further explore regulation of ECM proteins as identified by mass spec. TNR is 150 kDa 
protein and subject to PTMs such as glycosylation which increase its molecular weight. Western blot analysis of 
TNR revealed truncated TNR protein products (< 150 kDa) in all DRG samples (Fig. 3d). These truncated TNR 
products (< 150 kDa) were excluded from our analysis. Clear evidence of full-length TNR (150 kDa) and heavy 
TNR protein products (> 150 kDa) was exclusive to a subset of DPN samples (Fig. 3d). However, upon quan-
tification of TNR (150 kDa) and heavy TNR protein products (> 150 kDa), this difference was not statistically 
significant (ratio (DPN/control) = 2.40, p-value = 0.1, Fig. 3d). Regardless, this reveals a TNR regulation pattern 
unique to samples within the DPN group.

Considering TNR is an ECM protein, we aimed to further explore regulation of this protein with visualiza-
tion of its localization in the DRG. To do so, we performed immunohistochemistry with DRG tissue sections. 
NeuN was used to label neurons in the DRG. TNR fluorescence was observed surrounding select neurons in the 
DRG (Fig. 3e). We quantified the proportion of neurons in the DRG that are surround by TNR. In control DRG 
sections, of 453 neurons evaluated, 53 were surrounded by TNR. In DPN DRG sections, of 433 neurons evalu-
ated, 128 neurons were surrounded by TNR. In total, 11.7% of neurons in DRG derived from control donors 
were surrounded by TNR, whereas 29.6% of neurons in DRG derived from the DPN donors were surrounded 
by TNR (p-value = 7.6e−11, Fig. 3e).

Phospho‑proteomic results show changes to mRNA processing. Using the same samples as in pro-
teomic profiling, samples were enriched for phospho-peptides and subjected to profiling by mass spectrometry. 
7842 phosphorylated peptides mapping to 2533 master proteins were identified. Of these, 153 phospho-peptides 
were identified as differentially regulated between DPN and non-diabetic control groups (Benjamini–Hochberg 
adjusted p-value < 0.05, Fig. 4a). Dimensionality reduction analyses with PCA and t-SNE again did not show 
clear separation of samples by neuropathic pain (Supplementary Fig. S4). We again assumed an influence of 
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Figure 3.  Extracellular matrix remodeling with DPN (a) Volcano plot showing protein abundance according 
to ratio of DPN/control and adjusted p-values calculated with ProteomeDiscoverer. Vertical lines at 0.58 
and − 0.58 represent an abundance ratio of 1.5 and 0.67 respectively. Proteins are considered up-regulated or 
down-regulated with adjusted p-value < 0.05 and fold change > 1.5. Proteins are considered trending up or 
down with 0.05 < p-value < 0.1 or p-value < 0.05 and fold change < 1.5. (b) Heat map showing relative abundance 
of differentially regulated proteins, identified after covariate control (p-value after covariate control < 0.05, 
abundance ratio > 1.5 or < 0.67). CON indicates control samples, DPN indicates diabetic peripheral neuropathy. 
(c) Results of enrichment analysis with differentially regulated proteins (p-value after covariate control < 0.05). 
Top gene ontology annotations include biological adhesion and extracellular matrix. (d) Western blot shows full 
length TNR (150 kDa) and heavy TNR products (> 150 kDa) only for DPN samples. Displayed image is from 
one single membrane, with dividing line added to separate sample groups. (e) IHC results showing TNR (red) 
localization surrounding neurons (NeuN, green) in DRG sections. Identified neurons surrounded by TNR are 
indicated with a white arrow. Red staining inside the neuronal cell body is likely lipofuscin, indicated with grey 
arrowheads. DAPI is labeled in blue. A z-test compared proportion of neurons surrounded by TNR in control 
and DPN derived DRG sections (p-value = 7.6e−11).
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covariates and we used linear regression to adjust for age and sex. 27 phospho-peptides were identified after 
covariate control (p-value adjusted for covariates < 0.05, Supplementary Table S3), 20 of these were regulated by 
a fold change greater than 1.5 (|log2(DPN/control)|> 0.58, Fig. 4b).

Differential regulation of phospho-peptides could be explained by either differential phosphorylation or 
differential regulation of master proteins abundance. To explore this, we looked for overlap in proteomic and 
phospho-proteomic data. We found that not only are SPP1 phospho-peptides increased, but SPP1 protein is also 
slightly increased (ratio (DPN/control) = 1.32, p-value after covariate control = 0.012, Supplementary Table S3). 
However, abundance ratios of SPP1 phospho-peptides show larger fold changes, demonstrating phosphoryla-
tion differences. All other identified phospho-proteins were either not detected, or not significantly regulated 
in background proteome data (Supplementary Table S3). This confirms that identified differentially regulated 
phospho-proteins are in fact differentially phosphorylated.

3 phospho-peptides derived from SPP1 were upregulated by abundance ratio greater than 1.5 (pS219, ratio 
(DPN/control) = 1.6, p-value after covariate control = 0.017; pS263 and pS270, ratio (DPN/control) = 2.0, p-value 
after covariate control = 0.012; pS254 and pS263 and pS270, ratio (DPN/control) = 1.7, p-value after covariate 
control = 0.036, Fig. 4b). Additional phospho-peptides derived from SPP1 were also increased, however with a 
smaller fold change (pS375 and pS280, ratio (DPN/control) = 1.5, p-value after covariate control = 0.012; pS303, 
ratio (DPN/control) = 1.4, p-value after covariate control = 0.0218; pS254, ratio (DPN/control) = 1.478, p-value 
after covariate control = 0.02, Supplementary Table S3). Due to phosphorylation changes at multiple sites, we 
hypothesized that overall phosphorylation state and therefore isoelectric point of SPP1 is altered with DPN. As 
expected, 2D gel electrophoresis confirmed differential migration patterns of SPP1 in DPN and control groups, 
with more acidic migration of SPP1 in DPN samples (Fig. 4c). As phosphorylation is an acidic PTM, this sup-
ports increased phosphorylation of SPP1 in the DRG with DPN.

Using a statistical overrepresentation test in Panther, enrichment analysis of differentially regulated phos-
pho-peptides revealed enrichment in annotations involving post-transcriptional regulation of gene expression 
and regulation of mRNA stability (Fig. 4d). Central to this is eukaryotic translation elongation factor (eEF2), 
which shows increased phosphorylation at the T57 residue (ratio (DPN/control) = 1.77, p-value adjusted for 
covariates = 0.046, Fig. 4b). Because this phospho-site is well studied and known to inhibit translation activity of 
 eEF228,29, we selected this phospho-protein for further study. We used western blot to validate mass spectrometry 
findings. Western blot analysis confirmed increased phosphorylation of eEF2 at the T57 residue in DRGs from 
DPN donors (ratio (DPN/control) = 1.78, p-value = 0.0016, Fig. 4e).

Multi‑omics integration suggests contribution of disrupted amino acid and protein metabo‑
lism in neuronal dysfunction. Using an IPA, we looked for commonalities in disease and function anno-
tations among our omics datasets. Synthesis of protein, metabolism of protein, and synthesis of amino acids 
were suggested to be decreased, while uptake of amino acids was possibly identified as increased (Table 2). As 
expected, these annotations are drawn from decreases in amino acids (Table 2). Phospho-proteins eEF2 and 
SPP1 are also related to decreased synthesis and metabolism of protein (Table  2). Additionally, SPP1, eEF2, 
TNR, certain amino acids (NAA, Glu), and certain phospholipid metabolites (SAM, Cho) are annotated as con-
tributing to increased progressive neurological disorder (Table 2). Altogether, this links amino acid and protein 
metabolism with neurological dysfunction in DPN (Fig. 5a, b). This also links changes to ECM proteins and 
phospholipid metabolism to neurological dysfunction in DPN (Fig. 5b).

Discussion
DPN is a common form of chronic pain for which there is no effective curative treatment. Demyelination, axonal 
degeneration, and neuronal dysfunction and death are linked to progression of pain in  DPN8. Here, we used 
a multi-omics approach to gain a comprehensive understanding of molecular alterations associated with this 
pathology. Given the difficulties in obtaining human DRG samples, this descriptive omics-based study reveals 
unique information necessary for further elucidating the etiology and progression of DPN. Our metabolomic 
study revealed depletion of select amino acids in the DRG in our DPN cohort (Fig. 2b, c) as well as decreased 
phospholipid-related metabolites (Fig. 2c, d). In proteomic and phospho-proteomic data we find changes to 
structural ECM proteins (Fig. 3b, c) and differential phosphorylation of RNA binding proteins (Fig. 4b, d) in the 
DRG with DPN. A TNR regulation pattern unique to DPN samples was also observed in western blot analysis 
(Fig. 3d) and IHC (Fig. 3e). Hyperphosphorylation of eEF2 (Fig. 4e) and SPP1 (Fig. 4c) in DPN were confirmed 
using western blot. Integration of this data using IPA suggests decreased amino acids and altered phosphoryla-
tion of RNA binding proteins contribute to altered protein synthesis and neurological disorder in the DRG in 
DPN (Table 2; Fig. 5a, b).

In our metabolomics analysis, we record decreases in 8 carboxylic acid and derivatives, including proteogenic 
amino acids Glu, Gln, Gly, and Asp (Fig. 2b). Of note, IPA reveals a link between amino acids Glu and NAA, and 
progressive neurological disorders (Table 2; Fig. 5a, b). Although homeostasis for most amino acids is maintained 
by transport processes, intracellular Glu and Asp levels are influenced most by energy  metabolism30 (Fig. 5b). 
Observations of decreased Gly and Gln are consistent with alterations in plasma levels of diabetic  patients31,32. 
Such states of amino acid depletion have been linked to cell death and  neurodegeneration33–35. However, whether 
amino acid depletion in the DRG is sufficient to produce degeneration observed in DPN is unclear. Additionally, 
Gly can function as an inhibitory neurotransmitter; however, a causal relation between decreased Gly in diabetes 
and neuronal hyperexcitability in DPN has not been  studied31.

Moreover, the non-proteinogenic amino acid NAA is decreased in our data (Fig. 2b). NAA is synthesized in 
neuronal mitochondria by the enzyme  NAT8L36 (Fig. 5a). Interestingly, the gene transcript for the enzyme was 
decreased in RNA-seq  data12; however, this same change was not detected in our proteomic data. This discrepancy 
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could be related to post-transcriptional regulation or sampling effects. Nonetheless, decreased NAA is important 
in the peripheral nervous system as it is utilized by Schwann cells to synthesize  myelin37 (Fig. 5a). Neuronal 
injury and degeneration decrease NAA, suggesting the differential regulation of NAA in DRG is specific to the 
neuropathic phenotype in  DPN27,38. NAA’s role in myelin synthesis also provides a possible mechanism for 
demyelination in DPN (Fig. 5a, b).

We also report decreases in metabolites linked to phospholipid biosynthesis (Fig. 2c–e). Specifically, dif-
ferentially regulated metabolites are metabolically related to PC and PE (Fig. 2c). We also see a trend with DPN 
towards decreased SEA, a PE derived compound that has been reported to have an analgesic  effect39. Phospholip-
ids are also important in mitochondrial function and myelin  maintenance40,41 (Fig. 5b). PC is a high abundance 
phospholipid in peripheral  myelin41. The short half-life of this  molecule41 suggests a link between PC biosynthesis 
and demyelination in DPN (Fig. 5b).

Among significantly altered proteins, we observe enrichment of proteins in the ECM (Fig. 3c). The ECM 
has been implicated in painful conditions by regulating the neuronal microenvironment, influencing synaptic 
plasticity, and modulating cell  signaling42–44. We observe a unique TNR regulation pattern with DPN, especially 
a greater proportion of DRG neurons surrounded by TNR with DPN (Fig. 3d, e). Western blot results show heavy 
TNR products (> 150 kDa) in the DRG with DPN, suggestive of glycosylation (Fig. 3d). Glycosylation of TNR is 
reported to vary with development, possibly impacting TNR’s adhesive properties and interactions in the  ECM45. 
TNR is also noted to be related to amino acid uptake and progressive neurological disorder in IPA (Table 2; 
Fig. 5b). Specifically, TNR has been reported to indirectly regulate Glu  uptake46. A direct relation between 
amino acid depletion and TNR upregulation in the DRG is not clear. However, increased TNR does inhibit 
axonal  regeneration47, thus, implicating this protein in neuronal degeneration observed in the DRG with DPN.

Among differentially regulated phospho-proteins, we report enrichment in annotations relating to RNA 
binding and translation (Fig. 4c). Changes in phosphorylation of RNA binding proteins is highlighted by hyper-
phosphorylation of eEF2 at the T57 residue (Fig. 4b, e; Supplementary Table S3). Phosphorylation at this site 
is well known to inhibit protein  translation29 (Fig. 5b). Interestingly, eEF2 hyperphosphorylation can occur in 
response to ER  stress48, a phenomenon suggested by our previous transcriptomic  analysis12. Further evidence 
of ER stress can be noted by the ER’s role in phospholipid  biosynthesis49 and the evidence of decreased phos-
pholipid biosynthesis in our data (Figs. 2c, d; 5b). ER stress is well known to contribute to chronic pain and 
 neurodegeneration50–52. With the ER being a single continuous organelle, spanning the entity of the axon, long 
sensory neurons are particularly vulnerable to ER  stress53. However, the myelinating activities of glial cells also 
make them susceptible to ER  stress54. Further work is needed to explore cell-type specific ER-stress in DPN.

We also report hyperphosphorylation of SPP1 (Fig. 4b, c). We note a slight increase in total SPP1; however, 
this result was not validated, and the fold change was minimal (ratio (DPN/control) = 1.32); Supplementary 
Table S2). SPP1 is marker for proprioceptors in the DRG and is linked to nerve injury and mechanical  pain55,56. 
SPP1 has also been reported to be linked to ER  stress57,58, inflammation in diabetes and  neurodegeneration59,60, 
and adhesion in the extracellular  matrix61 (Fig. 5b). However, these reports looked at total SPP1, less is known 
about the function of phosphorylated SPP1.

We previously reported a pro-inflammatory signature in the DRG with  DPN12. TNR, of which we observe 
a unique regulation pattern with DPN (Fig. 3b, d, e), is tightly linked to  neuroinflammation62. SPP1 is involved 
in inflammatory processes as  well59–61,63 although the role of SPP1 phosphorylation in these mechanisms is 
not known. We also find minor changes in interferon induced protein with tetratricopeptide repeats 3 (IFIT3, 
ratio = 1.25, p-value after covariate control = 0.024; Supplementary Table S2) and interferon stimulated gene 15 
(ISG15, ratio = 1.44, p-value after covariate control = 0.017; Supplementary Table S2), both of which play a role 
in immune signaling. Inflammation is known to contribute to progression of both T2D and  DPN64,65. Lack of 
an identification of a stronger inflammatory signature in proteomic data is likely a result of detection limits of 
our methods.

Figure 4.  Disrupted protein translation in DPN (a) Volcano plot showing phospho-peptide abundance 
according to ratio of DPN/control and adjusted p-values calculated in ProteomeDiscoverer. Vertical lines at 
0.58 and − 0.58 represent 1.5-fold change. Vertical lines at 1 and − 1 represent an abundance ratio of 2 or 0.5 
respectively. Phospho-peptides are considered up-regulated or down-regulated with adjusted p-value < 0.05 
and fold change > 1.5. Phospho-peptides are considered trending up or down with 0.05 < p-value < 0.1 or 
p-value < 0.05 and fold change < 1.5. (b) Heat map showing relative abundance of differentially regulated 
phospho-peptides (p-value after covariate control < 0.05, abundance ratio > 1.5 or < 0.67). CON indicates 
control samples, DPN indicates diabetic peripheral neuropathy. (c) 2D gel showing different migration patterns 
of SPP1 in DPN and control samples, isoelectric point (pI) is noted at the top. Due to the nature of 2D gels, 
each sample was run on a separate gel. Samples were run with loading controls, the positions of which were 
visualized with a Coomassie stain. Overlay of Coomassie stained membrane and SPP1 labeled membrane were 
used for pI estimation and alignment of separate membranes. Contrast was adjusted to improve visualization. 
See Supplementary Fig. S7 for images of full membranes. Within DPN samples, SPP1 is observed to have acidic, 
phosphorylated residues, whereas SPP1 in control samples has a more basic migration pattern. (d) Results of 
enrichment analysis with differentially regulated phospho-proteins (p-value after covariate control < 0.05). Top 
gene ontology annotations include regulation of mRNA stability and regulation of translation. (e) Western blot 
results confirmed increased phosphorylation of eEF2 with DPN. Displayed image is from one single membrane, 
with dividing line added to separate sample groups. p-eEF2 and eEF2 were visualized on the same membrane, 
with a stripping step in between.
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This study is limited by a small sample size brought on by the lack of available human DRG tissue in both 
disease and healthy conditions. Additionally, a lack of available clinical pain assessment of DRG donors limits 
the power of this study. A study with the resources to overcome these limitations has yet to be powered and 
would allow valuable information to build off these preliminary  results26. Out of an abundance of caution, we 
used strict covariate controls, however this may have added to limitations in our statistical power. Although 
determined to be minimal, postmortem changes likely limited the power of this study, as did detection limits 
of mass spectrometry. Despite this, our study offers an important preliminary look into metabolite and protein 
dynamics in a disease state in the human DRG. Further work is needed to explore this regulation in larger cohort 
of donors. Additionally, future studies are needed to explore mechanistic contributions of identified molecules 
in the development of pain in DPN.

In this pilot study, we explored for the first time, metabolite, protein, and phospho-protein regulation in the 
human DRG. Furthermore, comparison of non-diabetic and DPN derived DRG suggests a role of disrupted 
amino acid and protein metabolism in neuronal dysfunction in DPN. We propose use of findings here to advise 
further studies with DPN. In depth understanding of molecular regulation identified here could offer novel 
insights into the etiology and development of DPN.

Methods
Sample acquisition. DRG used in this study were acquired from the cadaveric donors with informed con-
sent of the next of kin (Anabios, San Diego, CA). We obtained approval for carrying out these studies from 
the National Institutes of Health (NIH) Office of Human Subjects Research Protection (OHSRP) and Biosafety 
Committee, Bethesda, MD, USA. All methods were performed in accordance with the guidelines and regula-
tions approved by NIH Biosafety Committee, Bethesda, MD, USA. L4, L5 and S1 DRGs were collected under 
cold ischemic conditions, within 3 h of aorta cross-clamp. Donor medical history was obtained by trained inter-
viewers from donor family members to the best of their knowledge. Despite lack of clinical data, organ donation 
offers unique and valuable insight molecular regulation in the soma of sensory neurons impacted in DPN.

Metabolomic analysis. Data acquisition. S1 DRG samples (30–50 mg) were used for metabolite analysis 
(Human Metabolome Technologies-America, Boston, MA). For polar metabolites, frozen tissues were homog-
enized in acetonitrile in water (50%) with internal standards (20 μM). The supernatant was filtered through a 
5 kDa filter, centrifugally concentrated, and resuspended in ultrapure water (50 μl). CE-TOFMS was carried out 
using Agilent CE-TOFMS system (Agilent Technologies Inc, Waldbronn, Germany) and fused silica capillary 
(50 μm × 80 cm) with HMT electrophoresis buffer and HMT sheath liquid. Capillary electrophoresis was run at 
30 kV. The spectrometer scanned from mass/charge (m/z) 50–1000.

For non-polar metabolites, frozen tissue was homogenized by vortexing with zirconium beads in 1% formic 
acid in acetonitrile containing internal standards (10 μM) and centrifuged (2300×g, 4 °C, 5 min). The supernatant 
was collected. The pellet was homogenized in 1% formic acid in acetonitrile and MilliQ-water (167 ul) followed 

Table 2.  Top results of integrative enrichment analysis with IPA. *Indicates molecules with |log2(ratio)|> 1.5.

Diseases or functions annotation p-value Activation z-score Metabolites Proteins Phospho-proteins

Abnormality of cerebral cortex 8.3E−5  − 1.951 Glutamate* CD81, CELSR3, CYGB, F12, TNR* VIM*

Apoptosis 6.1E−5  − 1.458

O-acetyl carnitine*, alpha-tocoph-
erol*, choline, ethanolamine*, 
glycine*, glutamate*, glutamine*, 
ethanolamine phosphate*, S-adeno-
sylmethionine*

B2M, CYGB, GHRH, HAPLN1*, 
IFIT3, ISG15, MTSS1*, PCP4*, 
SERPINB9, SPP1, STAR, VCAN

ADAM10*, EIF4B*, HNRNPC*, 
MAP2K4, PPP1R2*, SPP1*, 
UBE2V2*, VIM*, ZFP36L1

Synthesis of protein 1.9E−7  − 1.315 Creatine*, glycine*, aspartate*, 
glutamate* IGFBP2, ISG15, SPP1 EEF2*, EIF4B*, LARP1, MAP2K4, 

PPP1R2*, SPP1*, VIM*, ZFP36L1

Metabolism of protein 7.9E−08  − 0.781 Creatine*, glycine*, aspartate*, 
glutamate*

B2M, CD81, F12, F9, IGFBP2, 
ISG15, SPP1, VCAN

ADAM10*, EEF2*, EIF4B*, LARP1, 
LONP1*, MAP2K4, PPP1R2*, 
SPP1*, VIM*, ZFP36L1

Synthesis of amino acids 4.4E−5  − 0.555 Creatine*, glycine*, aspartate*, 
glutamate* VCAN

Transmembrane potential of 
mitochondria 7.4E−5 0.958 Glutamate*, S-adenosylmethio-

nine* B2M, STAR LONP1*, MAP2K4, VIM*

Conversion of lipid 2.0E−7 1.476
O-acetyl carnitine*, alpha-
tocopherol*, creatine*, glycine*, 
guanidoacetic acid*, glutamate*, 
glutamine*, S-adenosylmethionine*

CYGB, STAR 

Peroxidation of lipid 2.6E−08 1.82
O-acetyl carnitine*, alpha-
tocopherol*, creatine*, glycine*, 
guanidoacetic acid*, glutamate*, 
glutamine*, S-adenosylmethionine*

CYGB

Uptake of amino acids 6.5E−6 2.173 Choline, glycine*, guanidoacetic 
acid*, aspartate*, glutamate* TNR*

Progressive neurological disorder 6.0E−6 2.186
O-acetyl carnitine*, choline, cre-
atine*, glutamate*, N-acetylaspartic 
acid*, S-adenosylmethionine*, 
glycerophosphocholine*

CHCHD2, F12, IGFBP2, ISG15, 
SPP1, STAR, TNR*

ADAM10*, EEF2*, SPP1*, VIM*, 
ZFP36L1
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by centrifugation (2300×g, 4 °C, 5 min). Supernatants were combined and filtered through a 3 kDa filter and a 
far filtered through phospholipid affinity column (Hybrid SPE phospholipid 55261-U, Supelco, Bellefonte, PA, 
USA). Filtrate was desiccated and resuspended in isopropanol (50%) in Mili-Q water. LC-TOFMS was carried 
out with Agilent 1200 series RRLC system SL (Agilent Technologies Inc, Wadbronn, Germany) with ODS column 
(2 × 50 mm, 2 μm) coupled to Agilent LC/MSD TOF MS system (Agilent Technologies Inc, Wadbronn, Germany). 
For chromatographic separation, mobile phase A was 0.1% HCOOH In  H2O. Mobile Phase B was 0.1% HCOOH 

Figure 5.  Suggested association between amino acids and DPN development. (a) Schematic showing direct 
relation between decreased metabolite NAA and decreased gene transcript NAT8L, created with BioRender. 
NAA is synthesized in the mitochondria from Asp by NAT8L. NAA is then transported to Schwann cells, where 
it is a precursor for myelin lipids. (b) Schematic showing suggested interplay between identified molecular 
changes, created with BioRender. Briefly, amino acid starvation can impair mitochondrial function as well 
as inhibit protein translation, resulting in ER stress. Impaired function of the mitochondria and ER can also 
lead to disrupted crosstalk between these organelles and thus disrupted phospholipid synthesis. Disrupted 
mitochondrial function can also impair NAA synthesis, impacting glial-neuronal structures. Changes to the 
extracellular matrix can be related to ER stress and amino acid uptake. Finally, both ER stress and amino acid 
depletion can induce hyperphosphorylation of eEF2, thus inhibiting protein translation. Known molecular 
relationships are marked with solid lines, while relationships which are suggested by literature, but not well 
studied are indicated with dashed arrows.
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and 2 mM  HCOONH4 in 65:30:5 isopropanol: acetonitrile:  H2O. The gradient condition was 1% mobile phase 
B for 0.5 min, followed by a 13-min ramp from 1% mobile phase B to 100% mobile phase B, followed by 100% 
mobile phase B for 6.5 min. Flow rate was 0.3 mL/min, column temperature was 40 °C, injection volume was 
1 μL, MS capillary voltage was 4 kV and 3.5 kV in ESI positive and ESI negative mode respectively, nebulizer 
pressure was 40 psi, gas flow was 10 L/min, and gas temperature was 350 °C. The spectrometer scanned from 
mass/charge (m/z) 100 to 1700.

CE-TOFMS and LC-TOFMS data was processed with MasterHands (v2.17.1.11) for identification of peaks 
and quantification based on internal standards. Metabolites detected in fewer than 80% of samples were excluded 
from downstream analysis. Remaining missing values were imputed using half minimum  method66. Identity 
and concentration of select metabolites was validated using external unlabeled standards. Human Metabolome 
Database was used to identify metabolite class and directly related enzymes.

Proteomics. Sample prep. Tissues were prepared for proteomic analysis using EasyPep Mini MS Sample 
Prep Kit according to manufacturer’s instructions (Thermo Fisher Scientific). Protein concentration was meas-
ured using Pierce BCA Protein Assay (Thermo Fisher Scientific). 100 μg aliquots of protein from each sample 
were reduced, alkylated, and digested. Remaining protein extracts were saved for electrophoresis and western 
blot. Samples were labeled with TMTpro 16-plex (Thermo Fisher Scientific) according to the manufacturer’s 
instructions. 10 μg of each sample was combined, fractionated using high pH fractionation kit (Thermo Fisher 
Scientific), and used for full proteome analysis. The remaining 90 μg of each sample was pooled for phospho-
peptide enrichment with PTMScan Phospho-Enrichment IMAC FE-NTA Magnetic Beads (Cell Signaling Tech-
nology) according to the manufacturer’s instructions. The flow through was then enriched according to the 
High-Select SMOAC protocol (Thermo Scientific Scientific). In the SMOAC protocol, samples were sequentially 
enriched with High-Select  TiO2 Phosphopeptide Enrichment Kit (Thermo Fisher Scientific) and High-Select 
Fe-NTA Phosphopeptide Enrichment Kit (Thermo Fisher Scientific).

Data acquisition. All fractions were analyzed with nano LC–MS/MS with Thermo Scientific Fusion Lumos 
Tribrid mass spectrometer interfaced to a UltiMate3000 RSLCnano HPLC system (Thermo Fisher Scientific, San 
Jose, CA). For each analysis, 1 micro of corresponding fraction was loaded and desalted in an Acclaim PepMap 
100 trap column (75 µm × 2 cm) at 4 μl/min for 5 min. Peptides were then eluted into a 75 μm × 250 mm Accalaim 
PepMap 100 column (3 μm, 100 Å) and chromatographically separated using a binary solvent system consisting 
of A: 0.1% formic acid and B: 0.1% formic acid and 80% acetonitrile, at a flow rate of 300 nl/min. A gradient was 
run from 1% B to 42% B over 150 min, followed by a 5-min wash step with 80% B and a 10-min equilibration at 
1% B before the next sample was injected. Precursor masses were detected in the Orbitrap at R = 120,000 (m/z 
200). HCD fragment masses were detected in the orbitrap at R = 50,000 (m/z 200). Data-dependent MS/MS was 
carried out with top of speed setting, cycle time 2 s with dynamic exclusion of 20 s.

Proteome Discoverer Software (v2.5, Thermo Fisher Scientific, San Jose, CA) processed mass spectrometry 
data. MS spectra were searched against Homo sapiens and contaminant databases using the SEQUEST HT with 
PhosphoRS node for verification of phosphorylation sites. The following search parameters were used: enzyme: 
trypsin; maximum missed cleavage sites: 2; precursor mass tolerance: 10 ppm; fragment mass tolerance: 0.02 Da; 
dynamic modifications: oxidation (M), phosphorylation (S, T, Y), acetylation (protein N-terminus); static modi-
fications: TMTpro (peptide N-terminus), carbamidomethyl (C), TMTpro (K); percolator strict FDR: < 0.01, per-
colator relaxed FDR < 0.05.

For quantification, samples were normalized by total peptide abundance. Spectra with > 50% isolation inter-
ference were excluded. Protein quantification was performed using unique and razor peptides, protein ratio 
calculation was protein abundance based, missing data was imputed using low abundance resampling. Proteome 
Discoverer reported background-based t-tests, with the Benjamini Hochberg correction.

2‑D gel electrophoresis. Two-dimensional electrophoresis was performed with 500 ug of protein by Ken-
drick Labs, Inc. (Madison, WI) according to the carrier ampholine method of isoelectric  focusing67. Isoelectric 
focusing was carried out in a glass tube of inner diameter 3.3 mm using 2.0% pH 3–10 isodalt Servalytes (Serva, 
Heidelberg, Germany) for 20,000 V-h. Tube gels were then sealed to the top of a stacking gel that overlaid a 10% 
acrylamide slab gel (1.0 mm) and SDS slab gel electrophoresis was carried out. The gel was then transblotted 
onto PVDF membrane.

Western blotting. Proteins were separated with 4 to 12% bis–tris gels for eEF2 or 7% tris–acetate gel for 
TNR and transferred to a PVDF membrane. Membranes were blocked and incubated overnight with primary 
antibodies against pT57-eEF2 (1/1000, 2331, Cell Signaling Technologies), eEF2 (1/1000, 2332, Cell Signal-
ing Technologies), TNR (1/2000, AF3865, R&D systems), alpha-tubulin (1/10,000, ab7291, Abcam), or SPP1 
(1/1000, ab8448, Abcam). Membranes were washed and incubated with HRP conjugated secondary antibodies 
against rabbit IgG (1/10,000, 711-035-152, Jackson Immunoresearch), goat IgG (1/10,000, 705-035-003, Jackson 
Immunoresearch), or mouse IgG (1/10,000, ab6789, Abcam). Chemiluminescence was detected using ECL sub-
strate and imaged with FlourChem M (Biotechne) or Amersham Imager 600 (GE Healthcare Life Sciences) for 
membranes from 2D gel. For detection of total eEF2 after detection of p-eEF2, the membrane was stripped with 
Restore PLUS Western Blot Stripping Buffer (Thermo Fisher Scientific). Quantification was performed using 
ImageJ software. Contrast was adjusted using adobe illustrator to improve visualization.

Immunohistochemistry. Formalin fixed paraffin embedded DRG tissue sections were deparaffinized and 
subject to citrate buffered antigen retrieval. Sections were stained using a primary antibody raised against TNR 
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(1/50, AF3865, R&D systems) and secondary antibody conjugated to Rhodamine Red-X raised against goat IgG 
(1/100, 705-296-147, Jackson Immunoresearch). Sections were also stained with antibody raised against NeuN 
and conjugated to Alexa Flour488 (1/100, MAB377X, Sigma Aldrich). Sections were mounted using DAPI fluo-
romount-G (17984-24, Electron Microscopy Sciences). Fluorescence was imaged using a Nikon A1R HD25 
Spectral microscope. Representative images at 10× magnification were used for analysis, images for figures were 
acquired at 20× magnification. The proportion of NeuN expressing cells which are also surrounded by TNR was 
compared between groups.

Statistical analysis. Statistical analyses were performed in R, unless otherwise specified. A T-test was used 
to assess statistical differences in metabolomic and western blot data, a z-test was used to assess statistical differ-
ences in immunohistochemistry data. For omics datasets, the R package stats (v3.6.2) was used to apply linear 
regression models to candidate molecules for covariate control. Enrichment analyses were performed with mol-
ecules with p-value after covariate control < 0.05. Metabolite enrichment was performed using metaboanalyst 
with Small Molecule Pathway Database (SMPDB). Proteome and phospho-proteome enrichment analysis was 
performed separately with Panther with p-values resulting from fisher’s exact test. Ingenuity Pathway Analy-
sis (IPA) software (Ingenuity Systems, Mountain View, CA) was used for integrated enrichment of candidate 
metabolites proteins, and phospho-proteins.

Data availability
Data is available upon reasonable request to the communicating author: Dr. Ashok Kulkarni at ashok.kulkarni@
nih.gov.
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