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Background: Persistent negative symptoms (PNS) include both primary and

secondary negative symptoms that persist after adequate treatment, and

represent an unmet therapeutic need. Published magnetic resonance imaging

(MRI) evidence of structural and resting-state functional brain abnormalities in

schizophrenia with PNS has been inconsistent. Thus, the purpose of this meta-

analysis is to identify abnormalities in structural and functional brain regions

in patients with PNS compared to healthy controls.

Methods: We systematically searched PubMed, Web of Science, and Embase

for structural and functional imaging studies based on five research methods,

including voxel-based morphometry (VBM), diffusion tensor imaging (DTI),

functional connectivity (FC), the amplitude of low-frequency fluctuation or

fractional amplitude of low-frequency fluctuation (ALFF/fALFF), and regional

homogeneity (ReHo). Afterward, we conducted a coordinate-based meta-

analysis by using the activation likelihood estimation algorithm.

Results: Twenty-five structural MRI studies and thirty-two functional MRI

studies were included in the meta-analyses. Our analysis revealed the

presence of structural alterations in patients with PNS in some brain regions

including the bilateral insula, medial frontal gyrus, anterior cingulate gyrus,

left amygdala, superior temporal gyrus, inferior frontal gyrus, cingulate

gyrus and middle temporal gyrus, as well as functional differences

in some brain regions including the bilateral precuneus, thalamus, left

lentiform nucleus, posterior cingulate gyrus, medial frontal gyrus, and

superior frontal gyrus.

Conclusion: Our study suggests that structural brain abnormalities are

consistently located in the prefrontal, temporal, limbic and subcortical

regions, and functional alterations are concentrated in the thalamo-cortical
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circuits and the default mode network (DMN). This study provides new

insights for targeted treatment and intervention to delay further progression

of negative symptoms.

Systematic review registration: [https://www.crd.york.ac.uk/prospero/],

identifier [CRD42022338669].

KEYWORDS

persistent negative symptoms, schizophrenia, structural MRI, functional MRI, meta-
analysis

Introduction

Schizophrenia is a severe mental illness characterized by
positive and negative symptoms. Negative symptoms, including
blunted affect, alogia, asociality, anhedonia, and avolition (1),
have often been found to contribute to poor community
and social functioning and negatively influence recovery and
general health outcomes (2). Due to the significance of
negative symptoms in schizophrenia, Buchanan (3) coined the
term persistent negative symptoms (PNS) to describe negative
symptoms that are enduring, trait-like and resistant to currently
available treatments. Previous studies have indicated that the
estimated prevalence of PNS is above 20% amongst patients
with schizophrenia, and 23–40% in first episode psychosis
(4, 5). Therefore, it is crucial to develop effective diagnosis
and appropriate interventions for schizophrenia patients with
PNS, which could remediate the substantial functional disability
exhibited by these patients.

PNS represents a broader concept that requires at
least moderate negative symptoms, a defined threshold of
positive symptoms, none or low depressive and extrapyramidal
symptoms (all defined on validated scales), with demonstrated
clinical stability (3). The National Institute of Mental Health
consensus statement recommends the use of PNS criteria in
clinical research designs, especially those targeting therapeutic
interventions (1). However, there is currently no assessment
instrument specifically designed for PNS. Commonly accepted
and validated rating scales, such as the Scale for the Assessment
of Negative Symptoms (SANS) (6), Positive and Negative
Syndrome Scale (PANSS) (7), Negative Symptoms Assessment
(8) or newer scales like the Brief Negative Symptom Scale (9)
and Clinical Assessment Interview for Negative Symptoms (10)
are often used instead. Different researchers have employed
distinct scales with diverse criteria to identify PNS, leading to
heterogeneous results.

Magnetic resonance imaging (MRI) research has offered a
significantly advanced understanding of brain structural and
functional changes associated with schizophrenia (11). In recent
years, advances in clinical brain imaging research have been
made possible by improvements in the measurement of the
distinct aspects of brain anatomy and function. However,
the generalization of Task-based findings is limited since

different groups utilized various tasks to capture a wide
range of emotional states and behaviors. Therefore, for this
present review, we chose to focus on task-free studies—namely
structure (volume and morphometry), structural connectivity,
and resting-state functional MRI findings, which are stable
across mental states and hence allow better comparability across
independent study settings and populations.

Structural MRI analytic approaches which are used to
quantify brain abnormalities include voxel-based morphometry
(VBM) for gray matter volume (GMV) and diffusion tensor
imaging (DTI) for white matter. The VBM technique involves
spatial normalization of the MRI structural images, extraction
of gray matter from the normalized images, smoothing, and
finally, statistical analyses comparing healthy controls (HCs)
and patients (12). Numerous studies have indicated structural
alterations in the prefrontal lobes, temporal lobes and limbic
regions in schizophrenia (13, 14) which were associated
with the severity of negative symptoms (15–17). DTI is also
a non-invasive brain imaging method that allows indirect
measurements of white matter microstructure by recording
the diffusion of water molecules (18). Fractional anisotropy
(FA) is the most commonly used index that quantifies the
directionality of water diffusion in fiber bundles (19). A recent
study reported that the FA value between the right caudate
nucleus and putamen was inversely correlated with negative
symptoms in schizophrenia (20), while a prior experiment found
that the FA value of the anterior part of the corpus callosum was
negatively correlated with the avolition score in schizophrenia
(21). The inconsistency of these results demonstrates the need to
evaluate structural changes in schizophrenia patients with PNS.

Resting-state functional MRI analytical methods that
define the local features of the spontaneous blood oxygen
level-dependent signal include the amplitude of low-frequency
fluctuation (ALFF)/fractional amplitude of low-frequency
fluctuation (fALFF) and regional homogeneity (ReHo).
ALFF quantifies the intensity of low-frequency oscillations in
spontaneous neural activity, which pinpoints the spontaneous
neural activity of specific regions and physiological states of
the brain (22). fALFF is defined as the total power in the low-
frequency range (0.01–0.1 Hz) relative to the total power across
all measurable frequencies. As such, fALFF is a normalized
version of ALFF and is less susceptible to artifactual signals in
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regions located within the vicinity of vessels and/or significant
pulsatile motion (23). Although many previous studies have
found ALFF alternations in schizophrenia, including increased
or decreased ALFF in the cingulate gyrus, temporal gyrus,
lentiform nuclei, inferior parietal lobes and frontal gyrus (24–
27), few studies have been carried out in schizophrenia patients
with PNS. ReHo assumes that a given voxel is temporally similar
to those of its neighbors, and can be used to detect the localized
functional connectivity or synchronization of information
processing with little interference from external stimuli (28).
Moreover, increasing evidence shows that local functional
homogeneity has neurobiological relevance to anatomical,
developmental and neurocognitive factors, which could serve
as a neuroimaging marker to investigate the human brain
function, behaviors and neuropsychiatric disorder (29, 30). In
fact, ReHo analysis has been successfully used to detect the
abnormalities of regional functional synchronization in subjects
with different psychiatric disorders (31–33). A recent ReHo
study demonstrated that hyperactivation in the right inferior
frontal gyrus/insula was positively associated with negative
symptom scores (34). Resting-state functional connectivity
(FC) is a powerful and reliable analysis method in which
synchronous activity of brain regions can be examined in
task-free conditions (35). FC is particularly useful in elucidating
patterns of functional integration throughout the brain (i.e.,
how different brain regions function together) (36). Resting-
state studies in schizophrenia have reported increased FC
in the left orbital medial frontal cortex and right putamen
regions, and reduced FC between the striatum and the right
medial orbitofrontal cortex, which were significantly associated
with negative symptom severity (37, 38). These findings from
functional MRI studies using ALFF, ReHo, or FC support the
statement that negative symptoms are associated with aberrant
activation or dysconnectivity in extensive brain regions.

Published meta-analyses of VBM studies have focused more
on alternations of GMV in schizophrenia patients (39, 40) or
the relationship between GMV changes and positive symptoms,
such as hallucinations (41, 42). Similarly, numerous meta-
analyses have shown an activation or inactivation of functional
connectivity in different brain regions in schizophrenia (43–
47). However, the meta-analysis of structural and functional
MRI studies in patients with PNS is limited. Only one meta-
analysis of VMB studies focused on schizophrenia with PNS,
and it reveals reduced GMV in the brain regions of the reward
network, especially the left caudate nucleus (48). While a
large number of existing negative symptom imaging studies
have analyzed the relationship between structural or functional
brain abnormalities and negative symptoms in schizophrenia
patients from a symptomatological perspective, there is a
paucity of studies pertaining to the differences in structural
and functional brain alterations between the PNS subgroup
and HCs. Therefore, this review aims to examine brain
regions that show alterations in either structure or function in

schizophrenia with PNS via a meta-analysis of structural MRI
and functional MRI studies.

Materials and methods

Data sources and searches

The current meta-analysis was performed according to the
Preferred Reporting Items for Systematic reviews and Meta-
Analyses guidelines (PRISMA) (49). A systematic selection of
appropriate peer-reviewed studies was undertaken by searching
the databases of PubMed, Web of Science, and Embase databases
for structural and functional imaging studies. Search keywords
were as follows: (1) [(gray matter) OR (cerebellar gray matter)]
AND [(schizophrenia) AND (voxel-based morphometry)]; (2)
[(white matter) AND (schizophrenia)] AND (diffusion tensor
imaging); (3) [(functional magnetic resonance imaging) OR
(RESTING STATE)] AND [(schizophrenia) AND (functional
connectivity)]; (4) [(functional magnetic resonance imaging)
OR (RESTING STATE)] AND [(schizophrenia) AND (regional
homogeneity)]; (5) [(functional magnetic resonance imaging)
OR (RESTING STATE)] AND [(schizophrenia) AND
((fractional amplitude of low frequency fluctuation) OR
(amplitude of low frequency fluctuation))]. We included studies
published in these databases up to September 2021. Figure 1
shows the flowchart of the literature search and eligibility
assessment.

Eligible criteria and quality assessment

Inclusion and exclusion criteria were adopted to screen
literature. The following inclusion criteria were used to select
eligible studies: (1) original articles written in English; (2)
the schizophrenia diagnosis for patients was based on DSM
criteria (negative symptoms must be measured by validated
rating scales such as the PANSS and SANS, and must reach
at least mild or moderate severity); (3) the duration of illness
must be longer than or equal to 6 months; (4) used whole-
brain structural imaging (VBM and DTI) or functional imaging
(ALFF/fALFF, ReHo, FC) in schizophrenia patients; (5) reported
whole-brain results in stereotactic (x, y, z) coordinates; (6)
compared schizophrenia subjects with HCs; and (7) aged
19 years and above.

Before Buchanan developed the criteria of PNS, many
researchers used different terms and criteria to identify
patients with PNS, which complicated the search. To
address this problem, we adopted the following exclusion
criteria formulated by Li et al. (48) to identify the relevant
studies: (1) mean PANSS negative score of <19, or mean
SANS total score of <20; (2) mean PANSS positive
subscale score of >21, or the mean Assessment of Positive
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FIGURE 1

Flow diagram showing the process of identifying relevant studies. GMV, gray matter volume; FA, fractional anisotropy; ALFF, amplitude of
low-frequency fluctuation; fALFF, fractional amplitude of low-frequency fluctuation; ReHo, regional homogeneity; FC, functional connectivity;
HCs, healthy controls; NS, negative symptoms; PS, positive symptoms; PANSS, Positive and Negative Syndrome Scale; SANS, Scale for the
Assessment of Negative Symptoms; SAPS, Scale for the Assessment of Positive Symptoms; DOI, duration of illness.

Symptoms (SAPS) total score of >20; (3) studies in which
the mean positive symptom scores exceeded the mean
negative symptom scores.

Two authors (Tingting Zhu and Zixu Wang)
independently selected eligible studies according to the
abovementioned criteria and assessed the quality of
the included studies. A 12-point checklist was used to
estimate the quality of each included study, based on
the reported demographic and clinical characteristics
of the participants and the imaging methodology (50).
Each point was scored as 0, 0.5, or 1 if the criteria were
unfulfilled, partially met or fully met, respectively, and any
study scoring >6.0 was included in the meta-analysis (see
Supplementary material).

Data extraction

The research results were screened independently by two
authors (Tingting Zhu and Zixu Wang) according to the
inclusion and exclusion criteria. In case of disagreement, the
reviewers (Xiangrong Zhang and Jiu Chen) evaluated and
made the final decision. Preliminary screening of the titles
and abstracts was conducted so as to evaluate whether they
conform to the research content being explored. For articles
that conformed to the research content or with content that
could not be determined according to the title and abstract, the
full text was reviewed for a more extensive assessment. Articles
obtained after the preliminary screening were re-examined to
assess whether they meet the inclusion criteria. Finally, we
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TABLE 1 Demographic and clinical information for the structural MRI studies included in the meta-analysis.

Study Subjects (n) Gender
(F/M)

Age
(mean ± SD)

NS scale PS/NS Duration Scanner Thickness Coordinates Foci.no

GMV

Paillère-
Martinot et al.
(117)

SZ (20)
HC (20)

SZ (0/20)
HC (0/20)

SZ (29 ± 7.2)
HC (26 ± 6)

PANSS PS (17.3)
NS (27.6)

10 years 1.5 1.5 Talairach 9

Sigmundsson
et al. (118)

SZ (27)
HC (27)

SZ (1/26)
HC (2/25)

SZ (34.9 ± 7.6)
HC (32.2 ± 6.7)

PANSS PS (14.7)
NS (25)

13.9 years 1.5 3.0 Talairach 4

Kawasaki et al.
(119)

SZ (25)
HC (50)

SZ (11/14)
HC (22/28)

SZ (25.8 ± 4.5)
HC (24 ± 5.7)

SANS SAPS (5.6)
SANS (10.3)

3.1 years 1.5 1.0 Talairach 19

Jayakumar et al.
(120)

SZ (18)
HC (18)

SZ (9/9)
HC (9/9)

SZ (24.9 ± 6.3)
HC (25.7 ± 7.5)

PANSS PS (19)
NS (23)

10.3 months 1.5 1.0 Talairach 10

Bassitt et al.
(121)

SZ (50)
HC (30)

SZ (12/38)
HC (9/21)

SZ (31.7 ± 7.1)
HC (31.2 ± 7.6)

PANSS PS (12.9)
NS (19.8)

11.4 years 1.5 NA Talairach 4

Koutsouleris
et al. (15)

SZ (59)
HC (177)

SZ (9/50)
HC (54/123)

SZ (32.8 ± 10.3)
HC (31.5 ± 9.2)

PANSS PS (13.0)
NS (26.6)

1.9 years 1.5 1.5 MNI 26

Meisenzahl et al.
(122)

SZ (72)
HC (177)

SZ (16/56)
HC (54/123)

SZ (35.6 ± 10.3)
HC (31.5 ± 9.2)

PANSS PS (17.9)
NS (25.1)

114.4 months 1.5 1.5 MNI 67

Herold et al.
(123)

SZ (18)
HC (21)

SZ (7/11)
HC (10/11)

SZ (28.7 ± 10.3)
HC (27.4 ± 6.5)

PANSS PS (14.2)
NS (19.6)

3.4 years 1.0 2.0 MNI 38

Whitford et al.
(124)

SZ (31)
HC (21)

SZ (11/20)
HC (9/12)

SZ (19.3 ± 3.5)
HC (19.6 ± 4.3)

PANSS PS (18)
NS (20)

6.4 months 1.5 NA Talairach 1

Cascella et al.
(125)

SZ (19)
HC (90)

SZ (3/16)
HC (47/43)

SZ (35.1 ± 11.9)
HC (46.3 ± 12.7)

SANS SAPS (3.4)
SANS (17.0)

11.8 years 1.5 1.5 Talairach 14

Anderson et al.
(126)

SZ (15)
HC (20)

SZ (2/13)
HC (3/17)

SZ (34.3 ± 7.1)
HC (33.3 ± 8.4)

PANSS PS (13.0)
NS (20.0)

11.4 years 3.0 NA MNI 7

Huang et al.
(127)

SZ (18)
HC (18)

SZ (9/9)
HC (9/9)

SZ (22.67 ± 3.85)
HC (25.06 ± 2.44)

PANSS PS (18.61)
NS (22.06)

12.44 months 3.0 1.0 MNI 5

Poletti et al.
(128)

SZ (96)
HC (136)

SZ (29/67)
HC (68/68)

SZ (37.2 ± 9.33)
HC (33.3 ± 12.97)

PANSS PS (17.62)
NS (20.41)

12.61 years 3.0 0.8 MNI 8

Huang et al.
(129)

SZ (24)
HC (26)

SZ (10/14)
HC (9/17)

SZ (24.25 ± 6.64)
HC (23.15 ± 5.36)

SANS SAPS (19.38)
SANS (26.79)

9.28 months 3.0 1.0 MNI 3

Kim et al. (56) SZ (22)
HC (22)

SZ (10/12)
HC (10/12)

SZ (31.7 ± 10.1)
HC (31.6 ± 9.5)

PANSS PS (18.4)
NS (21.1)

9.2 years 3.0 NA MNI 4

Kuroki et al.
(130)

SZ (15)
HC (23)

SZ (0/15)
HC (0/23)

SZ (44.1 ± 9.2)
HC (37.9 ± 9.1)

PANSS PS (14.3)
NS (19.7)

18.0 years 3.0 0.6 MNI 9

Szendi et al. (66) SZ (8)
HC (13)

SZ (2/6)
HC (7/6)

SZ (34)
HC (34)

PANSS PS (17.5)
NS (27.5)

13 years 1.5 1.0 MNI 9

Spalthoff et al.
(131)

SZ (51)
HC (102)

SZ (17/34)
HC (33/69)

SZ (35.2 ± 10.9)
HC (33.2 ± 9.6)

SANS SAPS (19.38)
SANS (42.45)

8.8 years 3.0 NA MNI 6
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crosschecked the references of all the retrieved results to find
any missing studies.

Data analysis

Ginger ALE version 2.3.61 was used for the coordinate-
based meta-analyses of the neuroimaging data. The algorithm
estimated the convergence of activation based on significant
foci extracted from selected studies. Localization probability
distributions for all foci were modeled as the center of 3D
Gaussian functions. The width of the Gaussian probability
distribution was determined individually for each experiment
based on empirical estimates of between-subject variability
taking into account the number of subjects in each experiment
(51). Gaussian distributions were pooled voxel-wise within
experimental contrasts and across contrasts within a group to
create a whole-brain ALE map. Within this whole-brain ALE
map, each voxel was assigned a unique ALE value that represents
the likelihood of experimental effects in that voxel (52). For
ALE Map creation, coordinates and cluster sizes associated with
significant activation or deactivation were first converted to
Talairach space using the MNI to Talairach conversion tool
provided by the Ginger ALE toolbox. The false discovery rate
method was employed to correct for multiple comparisons at
a significance threshold (p < 0.01, 1000 permutations). ALE
results were overlaid into the MNI 152 template and viewed
using the Mango2 and DPABI software3.

To test the replicability of the results, we performed a
systematic whole-brain jackknife sensitivity analysis in the
meta-analysis by repeating the main analysis n times (n = the
number of datasets included), dropping one study at a time to
determine whether the results remained detectable. However,
due to the limitations in the number of included studies
involving different metrics, sensitivity analyses were performed
only for the group with GMV and FC in the PNS patients.

Results

Search results

The search results and inclusion procedures are shown in
Figure 1. The study characteristics and results are summarized
in Tables 1, 2. A total of 57 studies were eventually eligible
for inclusion and quality assessment. Among these studies, 21
used VBM to analyze gray matter abnormalities and four studies
employed DTI to examine white matter abnormalities and the

1 http://brainmap.org/ale/

2 http://ric.uthscsa.edu/mango

3 http://rfmri.org/dpabi
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TABLE 2 Demographic and clinical information for the functional MRI studies included in the meta-analysis.

Study Subjects (n) Gender
(F/M)

Age
(mean ± SD)

NS scale PS/NS Duration Scanner Thickness Coordinates Foci.no

ALFF/fALFF

Hoptman et al.
(138)

SZ (29)
HC (26)

SZ (3/26)
HC (7/19)

SZ (36.5 ± 11)
HC (41.9 ± 10.9)

PANSS PS (18.4)
NS (20.2)

13.0 years 1.5 1.0 Talairach SZ < HC:15
SZ > HC:8

Cui et al. (139) SZ (15)
HC (19)

SZ (7/8)
HC (7/10)

SZ (22.53 ± 4.07)
HC (23.79 ± 3.75)

PANSS PS (17.93)
NS (22.73)

10.2 months 3.0 4.0 MNI SZ < HC:1
SZ > HC:2

Alonso-Solís
et al. (140)

SZ (19)
HC (20)

SZ (6/13)
HC (7/13)

SZ (40.5 ± 8.9)
HC (37.75 ± 7.4)

PANSS PS (17.89)
NS (21.47)

16.11 years 3.0 1.0 MNI SZ < HC:2
SZ > HC:2

Salvador et al.
(141)

SZ (116)
HC (122)

SZ (35/81)
HC (40/82)

SZ (36.76 ± 11.1)
HC (36.51 ± 10.7)

PANSS PS (16.57)
NS (19.57)

14.88 years 1.5 7.0 MNI SZ < HC:4
SZ > HC:6

Lian et al. (142) SZ (18)
HC (30)

SZ (10/8)
HC (14/16)

SZ (20.44 ± 2.99)
HC (20.53 ± 2.10)

PANSS PS (19.13)
NS (21.50)

7.89 months 3.0 1.0 MNI SZ < HC:2
SZ > HC:4

Wu et al. (143) SZ (32)
HC (32)

SZ (16/16)
HC (11/21)

SZ (30.94 ± 8.25)
HC (31.37 ± 7.84)

PANSS PS (20.0)
NS (20.59)

8.91 months 3.0 4.0 MNI SZ < HC:2
SZ > HC:6

ReHo

Gao et al. (144) SZ (14)
HC (14)

SZ (5/9)
HC (5/9)

SZ (33.2 ± 10.7)
HC (34.9 ± 13.6)

PANSS PS (16.4)
NS (22.6)

9.2 years 1.5 5.0 MNI SZ < HC:1
SZ > HC:1

Cui et al. (139) SZ (15)
HC (19)

SZ (7/8)
HC (9/10)

SZ (22.53 ± 4.07)
HC (23.79 ± 3.75)

PANSS PS (17.93)
NS (22.73)

10.2 months 3.0 4.0 MNI SZ < HC:0
SZ > HC:2

Gou et al. (145) SZ (28)
HC (21)

SZ (12/16)
HC (7/14)

SZ (23.9 ± 5.4)
HC (28.8 ± 6.1)

PANSS PS (17.8)
NS (21.0)

15.1 months 1.5 5.0 MNI SZ < HC:2
SZ > HC:0

Zhao et al. (28) SZ (44)
HC (26)

SZ (13/31)
HC (9/17)

SZ (23.7 ± 5.3)
HC (22.6 ± 3.7)

PANSS PS (15.3)
NS (24.7)

12.0 months 3.0 1.0 MNI SZ < HC:5
SZ > HC:5

Yang et al. (146) SZ (37)
HC (39)

SZ (28/9)
HC (30/9)

SZ (39.7 ± 10.84)
HC (40.94 ± 6.27)

PANSS PS (13.6)
NS (23.9)

17.0 years 3.0 4.0 MNI SZ < HC:5
SZ > HC:5

FC

Bluhm et al.
(147)

SZ (17)
HC (17)

SZ (3/14)
HC (3/14)

SZ (33.54 ± 13.7)
HC (30.94 ± 12.6)

SANS SAPS (9.06)
SANS (23.9)

117.37 months 4.0 4.0 MNI SZ < HC:8
SZ > HC:0

Fan et al. (148) SZ (27)
HC (15)

SZ (11/16)
HC (8/7)

SZ (39.7 ± 7.2)
HC (41.4 ± 6.3)

PANSS PS (11.8)
NS (19.9)

16.5 years 3.0 1.4 MNI SZ < HC:3
SZ > HC:2

Chang et al.
(149)

SZ (25)
HC (25)

SZ (12/13)
HC (10/15)

SZ (25.36 ± 6.32)
HC (25.56 ± 6.78)

PANSS PS (18.73)
NS (21.39)

18.32 months NA NA MNI SZ < HC:5
SZ > HC:5

Manoliu et al.
(150)

SZ (18)
HC (20)

SZ (11/9)
HC (9/9)

SZ (35.3 ± 12.5)
HC (34 ± 13.35)

PANSS PS (18.06)
NS (19.94)

7.0 years 3.0 4.0 MNI SZ < HC:14
SZ > HC:7

Zhuo et al. (151) SZ (95)
HC (93)

SZ (41/54)
HC (48/45)

SZ (33.6 ± 7.8)
HC (33 ± 10.2)

PANSS PS (17.1)
NS (20.3)

121.4 months 3.0 1.0 MNI SZ < HC:4
SZ > HC:5

Alonso-Solís
et al. (152)

SZ (19)
HC (20)

SZ (6/13)
HC (7/13)

SZ (40.05 ± 8.9)
HC (37.75 ± 7.4)

PANSS PS (17.89)
NS (21.47)

16.11 years 3.0 1.0 MNI SZ < HC:8
SZ > HC:14

(Continued)
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TABLE 2 (Continued)

Study Subjects (n) Gender
(F/M)

Age
(mean ± SD)

NS scale PS/NS Duration Scanner Thickness Coordinates Foci.no

Chang et al.
(153)

SZ (18)
HC (20)

SZ (9/9)
HC (9/11)

SZ (22.67 ± 3.85)
HC (23.43 ± 6.48)

PANSS PS (18.61)
NS (22.06)

12.44 months 3.0 1.0 MNI SZ < HC:2
SZ > HC:0

Duan et al. (154) SZ (28)
HC (31)

SZ (10/18)
HC (14/17)

SZ (36.5 ± 11.5)
HC (35.2 ± 12.7)

PANSS PS (16.54)
NS (19.61)

12 years 3.0 4.0 MNI SZ < HC:3
SZ > HC:2

Wang et al. (155) SZ (94)
HC (102)

SZ (42/52)
HC (57/45)

SZ (33.6 ± 7.7)
HC (33.4 ± 10.6)

PANSS PS (16.6)
NS (20.2)

120.1 months 3.0 1.0 MNI SZ < HC:52
SZ > HC:7

Xu et al. (156) SZ (66)
HC (76)

SZ (28/38)
HC (38/38)

SZ (33 ± 7.6)
HC (33 ± 10.4)

PANSS PS (17.0)
NS (21.1)

114.0 months 3.0 1.0 MNI SZ < HC:3
SZ > HC:0

Zhou et al. (157) SZ (91)
HC (100)

SZ (40/51)
HC (55/45)

SZ (33.8 ± 7.7)
HC (33.3 ± 10.5)

PANSS PS (16.6)
NS (20.0)

120.1 months 3.0 1.0 MNI SZ < HC:10
SZ > HC:0

Chen et al. (158) SZ (46)
HC (46)

SZ (14/32)
HC (22/24)

SZ (41.54 ± 8.86)
HC (39.05 ± 6.99)

PANSS PS (12.52)
NS (20.61)

16.27 months 3.0 NA MNI SZ < HC:11
SZ > HC:4

Liu et al. (159) SZ (95)
HC (104)

SZ (42/53)
HC (58/46)

SZ (34.1 ± 9.2)
HC (33.8 ± 10.9)

PANSS PS (16.83)
NS (20.20)

123.0 months 3.0 1.0 MNI SZ < HC:0
SZ > HC:6

Penner et al.
(160)

SZ (24)
HC (24)

SZ (3/21)
HC (16/8)

SZ (23.2 ± 4.2)
HC (23.8 ± 4.3)

SANS SAPS (10.3)
SANS (22.5)

13.7 months 3.0 NA MNI SZ < HC:28
SZ > HC:0

Peters et al.
(161)

SZ (21)
HC (21)

SZ (11/10)
HC (11/10)

SZ (34.1 ± 12.3)
HC (33.5 ± 12.9)

PANSS PS (19.4)
NS (21.14)

7.15 years 3.0 4.0 MNI SZ < HC:7
SZ > HC:0

Zhuo et al. (162) SZ (95)
HC (93)

SZ (41/54)
HC (48/45)

SZ (33.6 ± 7.8)
HC (33.0 ± 10.2)

PANSS PS (17.1)
NS (20.3)

121.4 months 3.0 1.0 MNI SZ < HC:5
SZ > HC:8

Ferri et al. (163) SZ (183)
HC (178)

SZ (46/137)
HC (52/126)

SZ (38.7 ± 11.5)
HC (37.7 ± 11.2)

SANS SAPS (14.0)
SANS (20.0)

17.23 years 3.0 NA MNI SZ < HC:9
SZ > HC:21

Penner et al.
(164)

SZ (24)
HC (24)

SZ (3/21)
HC (12/12)

SZ (23.2 ± 4.2)
HC (23.8 ± 4.3)

SANS SAPS (10.3)
SANS (22.5)

13.7 months 3.0 NA MNI SZ < HC:6
SZ > HC:1

Penner et al.
(165)

SZ (24)
HC (24)

SZ (3/21)
HC (12/12)

SZ (23.2 ± 4.2)
HC (23.8 ± 4.3)

SANS SAPS (10.3)
SANS (22.5)

13.7 months 3.0 NA MNI SZ < HC:27
SZ > HC:0

Sharma et al.
(166)

SZ (34)
HC (19)

SZ (12/22)
HC (7/12)

SZ (29.3 ± 7.1)
HC (31.5 ± 7.0)

SANS SAPS (15.0)
SANS (31.7)

194.71 weeks 3.0 1.0 MNI SZ < HC:12
SZ > HC:0

Dong et al. (167) SZ (96)
HC (122)

SZ (30/66)
HC (41/81)

SZ (39.8 ± 11.5)
HC (38.0 ± 14.7)

PANSS PS (13.44)
NS (20.73)

15.1 years 3.0 4.0 MNI SZ < HC:0
SZ > HC:19

Yasuda et al.
(168)

SZ (111)
HC (633)

SZ (50/61)
HC (318/315)

SZ (34.3 ± 10.3)
HC (34.1 ± 12.9)

PANSS PS (19.6)
NS (21.4)

11.0 years 1.5 1.4 MNI SZ < HC:44
SZ > HC:42

SZ, schizophrenia; HC, healthy control; ALFF, amplitude of low-frequency fluctuation; fALFF, fractional amplitude of low-frequency fluctuation; ReHo, regional homogeneity; FC, functional connectivity; M/F, male/female; PANSS, Positive and Negative
Syndrome Scale; SANS, Scale for the Assessment of Negative Symptom; NS, negative symptoms; PS, positive symptoms; MNI, Montreal Neurologic Institute.
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remaining 32 articles comprised resting-state functional MRI
studies (6 used the ALFF method, 5 employed the ReHo method,
and 22 utilized whole-brain FC method). The results of the
quality assessment and jackknife sensitivity analysis are available
in the Supplementary material.

Meta-analysis results

Activation likelihood estimation (ALE) analysis indicated
that schizophrenia with PNS, compared with HCs, showed
significant GMV reductions in the bilateral insula, bilateral
medial frontal gyrus (MFG), bilateral anterior cingulate gyrus
(ACG), left amygdala, left superior temporal gyrus (STG),
and left inferior frontal gyrus compared with HCs (Table 3
and Figure 2A). Analysis of the DTI studies revealed that
schizophrenia patients with PNS showed reduced fractional
anisotropy values in the left cingulate gyrus and middle
temporal gyrus (Table 3 and Figure 2B).

Schizophrenia patients with PNS exhibited decreased
ALFF/fALFF in the left posterior cingulate gyrus (PCG).
Additionally, these patients also showed increased ReHo in the
left lentiform nucleus and decreased FC in the bilateral cingulate
gyrus, left MFG and left superior frontal gyrus. Compared
to HCs, PNS patients presented increased FC in the bilateral
precuneus, bilateral thalamus, right cuneus and right PCG
(Table 3 and Figure 3).

Discussion

To the best of our knowledge, this is the first meta-
analysis of whole-brain structural and functional MRI findings
for schizophrenia with PNS. Specifically, the main findings of
the present article comprise: (1) decreased GMV in bilateral
insula, bilateral MFG, bilateral ACG, left amygdala, left STG,
and left inferior frontal gyrus in the PNS group; (2) reduced
FA values in the left cingulate gyrus and middle temporal gyrus;
(3) increased ReHo in the left lentiform nucleus and enhanced
FC in the bilateral precuneus, bilateral thalamus, right cuneus,
right PCG; and (4) decreased ALFF/fALFF in the left PCG and
reduced FC in the bilateral cingulate gyrus, left MFG and left
superior frontal gyrus.

Structural magnetic resonance
imaging results

In the present study, the VBM meta-analysis results revealed
reduced GMV in the prefrontal gyrus and ACG in schizophrenia
with PNS compared to HCs. Several neuroimaging studies
have reported that decreased GMV in the prefrontal gyrus
was negatively correlated with negative symptom severity

(53, 54), which might be related to impaired self-reference
processing and social cognition (55). Our findings are in line
with a previous study that reported a negative correlation
between reduced GMV in the ACG and negative symptoms
in schizophrenia patients (56) as well as a study that showed
right hemispheric ACG volume reduction in schizophrenia with
PNS compared to HCs (57). It was previously demonstrated
that the medial frontal lobe wall, composed of the ACG and
medial prefrontal gyrus (58), plays a key role in social cognitive
processing, particularly in mentalizing others’ intentions (59),
thereby suggesting that abnormalities in this region could lead
to difficulties in interacting with others. Consequently, we
speculate that the reduced GMV in the medial frontal lobe
wall might underlie the increasing social withdrawal that is
characteristic of negative symptoms. However, these findings
were not replicated in other studies (60, 61). These inconsistent
results might be attributed to variable criteria in defining PNS
as well as the heterogeneity of schizophrenia, including disease
courses, and the use of antipsychotics.

In our meta-analysis, apart from the frontal gyrus,
subcortical regions such as the insula and amygdala have
also shown reduced GMV in schizophrenia with PNS. The
insula plays a key role in monitoring internal emotional states
(62) and regulating the influences of emotion on cognitive
processes (63, 64). Many studies have reported abnormalities
in the insula which were related to negative symptoms in
schizophrenia (17, 65). These are in accordance with findings
that a volumetric decrease of the insula relative to controls
could be detected in schizophrenia with PNS (66, 67). Similarly,
structural abnormalities in the left amygdala were found to
be significantly associated with PANSS negative symptoms
(68), which is consistent with studies that found a negative
correlation between the volume of the hippocampus-amygdala
complex and clinical ratings of negative symptoms and thought
disturbances (69, 70). Nevertheless, the increased GMV in
the amygdala and its negative correlation with PANSS scores
have also been reported (71). Considering the function of the
amygdala in regulating emotional and motivational behavior
(72), it is reasonable that there is an association between
the amygdala and negative symptoms of reduced expression
in schizophrenia. Together, these findings might explain the
various symptom profiles of patients and psychopathology,
such as the loss of boundaries, lack of emotional reactivity,
and poor empathy.

Alterations of the temporal lobe in schizophrenia have been
investigated by a considerable number of neuroimaging studies.
We also observed a significant decrease in the GMV of the
STG in patients with PNS. The STG is involved in emotion
processing, particularly negative emotions as shown in studies
of facial emotion perception (73, 74). Previous articles reported
that schizophrenia patients had significantly smaller bilateral
STG volumes than HCs (75), which was negatively correlated
with the severity of auditory hallucinations and thought disorder
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TABLE 3 Brain structural and functional abnormalities in schizophrenia with PNS.

Cluster Volume
(mm3)

MNI Peak ALE
value

Brain regions Side BA

x y z

GMV

PNS < HC

1 12816 −36 22 0 0.025703 Insula Left 13

1 12816 −20 −4 −20 0.02384 Amygdala Left *

1 12816 −40 −4 −10 0.0213 Insula Left 13

1 12816 −52 8 −8 0.019044 Superior temporal gyrus Left 22

1 12816 −44 −2 2 0.017317 Insula Left 13

1 12816 −40 2 10 0.015336 Insula Left 13

1 12816 −44 14 −6 0.014652 Insula Left 13

1 12816 −42 −22 12 0.01359 Insula Left 13

1 12816 −48 −12 8 0.011806 Insula Left 13

1 12816 −42 26 −10 0.009091 Inferior frontal gyrus Left 47

1 12816 −34 −6 −22 0.008715 Amygdala Left *

2 3296 −4 56 4 0.024632 Medial frontal gyrus Left 10

2 3296 10 46 6 0.015118 Anterior cingulate gyrus Right 32

3 3256 −4 36 −26 0.020289 Medial frontal gyrus Left 11

3 3256 6 36 −26 0.017226 Medial frontal gyrus Right 11

3 3256 4 34 −16 0.01442 Anterior cingulate gyrus Right 32

3 3256 −6 44 −8 0.012126 Anterior cingulate gyrus Left 32

4 2960 36 22 0 0.032923 Insula Right 13

4 2960 44 18 −6 0.017102 Insula Right 13

FA

PNS < HC

1 3928 −18 −54 28 0.009544 Cingulate gyrus Left 31

1 3928 −27 −52 29 0.008892 Middle temporal gyrus Left 39

ALFF/fALFF

PNS < HC

1 2536 −6 −70 18 0.01177 Posterior cingulate gyrus Left 31

ReHo

PNS > HC

1 4832 −18 8 −4 0.010073 Lentiform nucleus Left *

1 4832 −18 8 −12 0.009689 Lentiform nucleus Left *

1 4832 −26 0 0 0.007537 Lentiform nucleus Left *

FC

PNS < HC

1 4744 −2 4 46 0.016104 Cingulate gyrus Left 24

1 4744 −4 4 42 0.015914 Cingulate gyrus Left 24

1 4744 0 0 50 0.015846 Medial frontal gyrus Left 6

1 4744 4 18 42 0.012946 Cingulate gyrus Right 32

1 4744 6 12 34 0.012707 Cingulate gyrus Right 24

1 4744 10 12 40 0.012509 Cingulate gyrus Right 32

1 4744 2 14 50 0.012247 Superior frontal gyrus Left 6

1 4744 −6 0 62 0.011075 Medial frontal gyrus Left 6

1 4744 0 18 30 0.010968 Cingulate gyrus Left 24

(Continued)
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TABLE 3 (Continued)

Cluster Volume
(mm3)

MNI Peak ALE
value

Brain regions Side BA

x y z

1 4744 −2 12 34 0.010758 Cingulate gyrus Left 24

1 4744 8 6 40 0.010547 Cingulate gyrus Right 24

PNS > HC

1 2344 6 −66 38 0.012566 Cuneus Right 7

1 2344 6 −66 28 0.012217 Precuneus Right 31

1 2344 −2 −70 40 0.011512 Precuneus Left 7

1 2344 12 −66 36 0.010896 Cuneus Right 7

1 2344 6 −66 18 0.010553 Posterior cingulate gyrus Right 31

1 2344 6 −66 22 0.010255 Precuneus Right 31

1 2344 12 −72 28 0.01018 Precuneus Right 31

1 2344 6 −62 18 0.010163 Posterior cingulate gyrus Right 23

2 2144 8 −26 −2 0.017002 Thalamus Right *

2 2144 8 −24 8 0.013201 Thalamus Right *

2 2144 −6 −28 0 0.010496 Thalamus Left *

BA, Brodmann Area; ALE, anatomical/activation likelihood estimation; MNI, Montreal Neurologic Institute; PNS, persistent negative symptoms; HC, healthy control; GMV, gray
matter volume; FA, fractional anisotropy; ALFF, amplitude of low-frequency fluctuation; fALFF, fractional amplitude of low-frequency fluctuation; ReHo, regional homogeneity; FC,
functional connectivity. *The peak coordinate is not at the Brodmann Area.

FIGURE 2

Results from the activation likelihood estimation (ALE) meta-analysis of structural abnormalities in schizophrenia with PNS. Brain regions
showing (A) decreased GMV and (B) decreased FA in PNS patients compared with HCs. Significance threshold with a false discovery rate at
p < 0.01. PNS, persistent negative symptoms; HCs, healthy controls; GMV, gray matter volume; FA, fractional anisotropy; VBM, voxel-based
morphometry; DTI, diffusion tensor imaging; MFG, medial frontal gyrus; AMYG, amygdala; IFG, inferior frontal gyrus; STG, superior temporal
gyrus; INS, insula; ACG, anterior cingulate gyrus; CG, cingulate gyrus; MTG, middle temporal gyrus; R, right; L, left.

(76, 77). Consistent with our results, one study of schizophrenia
with PNS found a reduction of gray matter in the left STG (78).
Several VBM analyses found that the PNS patients showed more
prominent and extended alterations affecting the prefrontal,
temporal, limbic and subcortical regions compared to the non-
PNS patients (15, 79). Altogether, these findings suggest that
smaller GMV in these regions appear to be a substrate for
schizophrenia with PNS. It remains to be seen whether these

regions contribute directly to the pathophysiological process of
patients with PNS.

White matter abnormalities have long been reported in
schizophrenia patients with inconsistent results (80, 81), and
the correlation between the negative symptoms and white
matter defects has also been confirmed (82–84). The present
meta-analysis additionally observed decreased FA in the left
cingulate gyrus and middle temporal gyrus in schizophrenia
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FIGURE 3

Results from the activation likelihood estimation (ALE) meta-analysis of functional abnormalities in schizophrenia with PNS. Brain regions
showing (A) decreased ALFF/fALFF; (B) increased ReHo; (C) decreased FC; (D) increased FC, in schizophrenia with PNS compared with HCs.
Significance threshold with a false discovery rate at p < 0.01. PNS, persistent negative symptoms; HCs, healthy controls; ALFF, amplitude of
low-frequency fluctuation; fALFF, fractional amplitude of low-frequency fluctuation; ReHo, regional homogeneity; FC, functional connectivity;
PCG, posterior cingulate gyrus; MFG, medial frontal gyrus; SFG, superior frontal gyrus; CG, cingulate gyrus; PCUN, precuneus; THA, thalamus;
CUN, cuneus; R, right; L, left.

with PNS. The cingulate cortex is a critical region in the saliency
and cognitive motor circuit, with the ACG involved in the
decision-making circuit and emotional processing (85). It has
been previously reported that there is a significant association
between reduced FA in the ACG and avolition-apathy and
anhedonia in schizophrenia (86, 87). The middle temporal
gyrus is a critical component of the neural network involved
in pleasure and reward (88). Our results align with previous
reports of FA deficits in the deep temporal lobe in patients
with PNS (89, 90). Hence, the decreased white matter FA in
the middle temporal lobe might reflect impairments in reward-
related processing in schizophrenia with PNS.

Functional magnetic resonance
imaging results

The finding of decreased ALFF/fALFF in the left PCG
in schizophrenia with PNS is consistent with previous data
demonstrating a negative correlation of ALFF in the left PCG
with negative symptoms and withdrawal on the PANSS (91).
These observations are in accordance with the notion that
a dysregulation between the striatum and PCG is associated
with cognitive-affective control (92), which might provide
a neurophysiological basis for negative symptoms. ReHo
abnormalities were also detected in the lentiform nucleus that
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is involved in the basal ganglia-thalamocortical circuitry (93).
Nevertheless, an increased ReHo in the lentiform nucleus in
patients with PNS is seldom reported and might represent a
protective or compensatory phenomenon. One study indicated
that increased ReHo in the lentiform nucleus was not related
to negative symptoms (28), while other studies found that
increased ReHo values in the right inferior frontal gyrus/insula
may reflect the severity of negative symptoms and verbal
learning abilities (34). However, in our study, we did not observe
consistent results from the ALE analysis. This could be explained
by the fact that there exist limited functional MRI studies
investigating ReHo changes in PNS patients.

In this study, a decreased FC was detected in the MFG
and superior frontal gyrus whilst an increased FC was found
in the right PCG and bilateral precuneus. Interestingly, these
areas overlap with the DMN, which is involved in the processing
of task-independent thoughts, attention to internal emotional
states, self-inspection, and future planning (36, 94). Decreased
connectivity in the DMN was observed in previous studies (95,
96), and related to clinical symptoms and cognitive performance
(97, 98). Although several studies have reported that the DMN
connectivity in the prefrontal cortices correlated negatively with
the severity of positive and mood symptoms in patients with
schizophrenia (99), the connectivity between the prefrontal
cortices and PCG was differentially related to social attainment
and social competence (100). The results of the present meta-
analysis showed hyperconnectivity (right PCG and bilateral
precuneus) as well as hypoconnectivity (MFG and superior
frontal gyrus) in the DMN. These findings are in line with
other recent studies which indicated associations between high
DMN resting-state connectivity and negative symptoms in
schizophrenia patients (101, 102). Previous evidence has also
suggested that the transition probability from a state with
weak precuneus/PCG connectivity to stronger connectivity
increased with symptom severity (103), thereby demonstrating
the functional significance of the relationship between negative
symptoms and increased DMN connectivity in schizophrenia.
These results suggest that the DMN is often hyperconnected
in schizophrenia with PNS, which and might be related to the
overly intense self-reference and impairments in attention and
working memory observed in these patients (104, 105).

In our study, increased FC was mainly observed in the
thalamo-cortical network, including the bilateral thalamus,
bilateral precuneus, and right PCG. The thalamus, which
is involved in a great variety of cognitive functions and
mental activities including memory, language, perception and
emotion, represents a key node in distributed neuronal circuits
involving various regions of the cerebral cortex, striatum and
cerebellum (106–109). Individuals at high clinical risk for
psychosis have enhanced connectivity in cerebellar-thalamo-
cortical circuits which was significantly associated with positive
symptoms (110). Similar findings were also found in patients
with schizophrenia through a study of an independent clinical

sample (111). Consistent with our findings, Anticevic et al.
reported a positive correlation between schizophrenia total
symptom severity and all regions displaying hyperconnectivity
with the thalamus (112). In a recent study, higher cerebello-
thalamo-cortical connectivity at baseline significantly predicted
poorer long-term reduction in negative symptoms (113).
Numerous functional MRI studies have also reported reduced
thalamic-prefrontal connectivity and increased coupling with
somatomotor and temporal regions in schizophrenia (114–
116). These findings support the theory that thalamo-cortical
interactions are critical for optimal brain functioning and
provide further evidence for the role of thalamo-cortical
interactions in the pathophysiology of schizophrenia.

Clinical implications

The present findings have a few implications for our
understanding of both the neural mechanisms of PNS patients
and the development of the intervention. Firstly, altered GMV
in the prefrontal, temporal, limbic, and subcortical regions
might be the key anatomical basis for PNS since these
regions were consistently identified in different meta-analyses.
Moreover, patients with PNS can benefit from more thorough
assessment with multiple imaging techniques, as these data
can help researchers to design individualized interventions
to achieve better treatment outcomes. Taken together, our
findings reveal provide evidence of the specificity of the affected
brain regions and provide new insights for targeted treatment
and follow-up care.

Limitations

The present study has several limitations. Firstly, due to
different terms and definitions of PNS, the included studies did
not fully conform to the PNS criteria proposed by Buchanan (3).
The assessment of negative symptoms of patients with PNS by
different scales may lead to heterogeneity of results. Secondly,
the ALE methodology we used had certain limitations. For
example, the ALE software could not analyze the correlation
between the severity of negative symptoms and these brain
regions, and it failed to provide any solving approach to
analyze the confidence interval to increase the robustness of our
findings. Thirdly, the literature on whole-brain ALFF, ReHo, and
DTI data in schizophrenia patients with PNS is very limited, and
the small sample size of available articles weakens the validity
of our meta-analysis. Next, there was substantial heterogeneity
among patients with PNS, including time to the first episode,
antipsychotic medication, and duration of negative symptoms.
Another inherent limitation of this meta-analysis approach
is the heterogeneity of the results, which might arise from
differences in methodology across studies, including imaging
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acquisition and analysis pipelines, clinical assessments, and
small sample sizes.

Conclusion

By performing ALE meta-analysis in PNS patients to
identify structural and functional alterations, we found that
structural brain abnormalities were consistently located in the
insula, medial and inferior frontal gyrus, anterior cingulate
gyrus, amygdala, superior temporal gyrus and middle temporal
gyrus, and functional alterations were concentrated in the
thalamo-cortical circuits and the DMN. In addition, we
observed that enhanced functional alterations were detected
in thalamo-cortical circuits in patients with PNS, thereby
demonstrating that it plays an important role in the diagnosis
and prediction of negative symptoms in schizophrenia. These
findings help to elucidate the brain abnormalities specific to
schizophrenia patients with PNS, which are important for
understanding their underlying the pathophysiology and may
ultimately contribute to the development of future behavioral,
pharmacological, or neurotherapeutic treatments.
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