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A B S T R A C T

Salmonella is a significant avian pathogen causing infectious diseases in poultry, with hatching playing a crucial 
role in its transmission. Despite its importance, systematic research on Salmonella transmission in hatcheries 
remains limited. This study evaluates the prevalence and antimicrobial resistance of Salmonella throughout all 
production stages in yellow-feathered broiler hatcheries: laying, egg storage, incubating, hatching, and post- 
hatch. We found an overall Salmonella prevalence of 11.3 %, with the pathogen detected in both chickens and 
environmental samples. The hatching stage was identified as the most critical for Salmonella spread. Moreover, 
Salmonella Pullorum is the predominant serotype (93.97 %). Notably, all Salmonella isolates exhibited multidrug 
resistance, with some resistant to polymyxin B (22.41 %) and tigecycline (12.93 %). Resistance rates were 
highest for nalidixic acid (100.00 %), sulfamethoxazole (100.00 %), ciprofloxacin (95.69 %), and ampicillin 
(94.83 %). Additionally, antimicrobial resistance plasmid replicons and virulence genes were identified in these 
isolates. Whole genome sequencing was performed on 43 S. Pullorum isolates, revealing that the majority were 
ST92 (90.70 %). Phylogenetic analysis classified the isolates into three lineages, with Lineage III being the most 
predominant (83.72 %). It was found that Salmonella isolates from chicks and eggs across various production 
stages were closely related, and those from the environment also showed significant similarity. This suggests that 
Salmonella in the environment may originate from chicks/eggs and spread to other stages. More attention should 
be paid to Salmonella contamination in yellow-feathered broiler hatcheries, and stringent measures should be 
taken to control the horizontal spread of Salmonella, in addition to blocking the pathway of vertical transmission.

1. Introduction

Salmonella is a significant avian pathogen that can cause a reduction 
in production performance and death in poultry, resulting in substantial 
economic losses to the global poultry industry (Caffrey et al., 2021; 
Wang et al., 2020a). In China, the annual production (head units) of live 
yellow-feathered broilers is approximately 4.0 billion, comparable to 
that of white-feathered broilers (Bai et al., 2021). Compared with 
white-feathered broilers, yellow-feathered broilers exhibit a longer 
growth cycle and a greater variety of strains and farming methods. 

Furthermore, each strain varies in body size, growth rate, and disease 
resistance (Qi et al., 2017), making Salmonella prevention and control 
more challenging. However, there is a notable lack of systematic 
research on Salmonella in yellow-feathered broilers, highlighting the 
urgent need to enhance such research for improved monitoring within 
this sector.

Hatcheries, as the upstream stage of the broiler industry chain, serve 
as a crucial intervention point for controlling Salmonella in yellow- 
feathered broiler production. Vertical transmission is a key route for 
the spread of Salmonella, such as Salmonella Pullorum and Salmonella 
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Enteritidis, in poultry and can lead to their introduction into poultry 
flocks from infected hatcheries (Shang et al., 2021; Volkova et al., 2011). 
However, researchers often focus on breeding farms, with a scarcity of 
systematic studies on hatcheries. Moreover, previous research on 
hatcheries has predominantly targeted specific aspects, such as chicks or 
eggs. Actually, hatchery production encompasses various stages, the use 
of production equipment, and the worker flow, all of which may facil-
itate Salmonella spread. Therefore, comprehensive monitoring of the 
source and transmission pathways of Salmonella contamination in the 
hatchery is essential.

In China, antibiotic use remains the primary method for preventing 
and treating Salmonellosis in yellow-feathered broilers. However, the 
abuse of antimicrobials in the broiler industry has resulted in the 
emergence of antimicrobial resistance (AMR) bacteria, significantly 
diminishing the effectiveness of some drugs used in clinical treatments 
(Talukder et al., 2021). Furthermore, it has been reported that AMR 
Salmonella strains found in human cases are closely linked to the 
extensive use of antimicrobial agents in livestock and poultry farming 
(Belachew et al., 2021). Previous studies have described the spread of 
AMR Salmonella in the broiler farm, slaughterhouse, and its downstream 
retail markets (Samia et al., 2021; Shang et al., 2021; Wang et al., 
2020a). However, research on AMR Salmonella isolated from 
yellow-feathered broiler hatcheries is limited. As the upstream stage of 
the broiler industry chain, hatcheries may serve as a key entry point for 
studying the spread of AMR Salmonella throughout the chain. Therefore, 
investigating the prevalence and AMR of Salmonella in yellow-feathered 
broiler hatcheries is crucial for identifying specific distribution patterns 
and developing effective strategies to control and prevent Salmonella 
infections in both humans and animals.

In this study, we conducted longitudinal sampling across all pro-
duction stages of the yellow-feathered broiler hatchery to identify the 

main entry points and transmission routes of Salmonella. We further 
assessed the AMR characteristics of the isolates. Additionally, we 
employed whole genome sequencing (WGS) technology to investigate 
the relationship between strains at different production stages. Our aim 
was to reveal the prevalence, AMR, and phylogenetic relationship of 
Salmonella in the yellow-feathered broiler hatchery, providing a reliable 
reference for precise Salmonella control within broiler industry chains 
and for the purification of yellow-feathered broiler provenance.

2. Materials and methods

2.1. Sample collection

From July 2020 to July 2021, a total of 1023 samples were collected 
from five production stages in the large-scale commercial yellow- 
feathered broiler hatchery (accommodating >50,000 yellow-feathered 
broiler embryos) in Guangdong Province, China. The stages include 
the laying stage, egg storage stage, incubating stage (the stage of incu-
bation of eggs in the incubator from day 1 to day 17), hatching stage (the 
stage of hatching of eggs in the hatchery from day 17 to day 21), and 
post-hatch stage (the stage of eliminating weak chicks, vaccinating, and 
packing). The main sources of samples were dead embryos, sick chicks, 
environment, meconium, workers’ hands/shoes, etc. (Fig. 1). The 
collected samples were kept in the foam box with ice packs, and it was 
ensured that the samples arrived at the laboratory within 2 h.

2.2. Salmonella isolation and identification

Upon arrival at the laboratory, the swabs were transferred to 10 mL 
of BPW (Buffered Peptone Water) and incubated at 37 ◦C for 8–12 h for 
pre-culture of bacteria. And then 1 mL of BPW was transferred to 9 mL of 

Fig. 1. The main production stages of the large-scale hatchery and sample sources in our study. The figure is by Figdraw. Figure ID: OWSIO2b456.
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SC (Selenite Cystine Broth) and incubated at 37 ◦C for 14–16 h for se-
lective culture of bacteria. At last, the bacterial fluid was inoculated in 
XLT-4 (Xylose Lysine Tergitol-4 Agar) and incubated at 37 ◦C for 24 h. 
During the process, we operated in strict accordance with aseptic re-
quirements, strictly sterilized, and changed the tools for each sample. 
Genomic DNA was isolated with a Bacterial Genomic DNA kit (Omega, 
USA) according to the manufacturer’s instructions. The obtained su-
pernatant (template DNA) was stored at -20 ◦C until use. After DNA was 
extracted by the above method, we detected it by PCR through the 
Salmonella-specific gene invA (Lu et al., 2011). The sample separation 
method was optimized mainly based on the Standard ISO-6579 (Inter-
national Organization for Standardization, 2002) method (Chen et al., 
2020; Ren et al., 2016).

All Salmonella isolates were serotyped by slide agglutination with O 
and H antigen-specific sera according to the Kauffmann-White scheme 
or by National Food Safety Standard food microbiological examination 
(Chen et al., 2020).

2.3. Antimicrobial susceptibility test

Minimum inhibitory concentrations (MICs) were determined by the 
agar dilution method using Mueller-Hinton agar according to the stan-
dards of the Clinical and Laboratory Standards Institute (Wang et al., 
2020b). A total of 13 antimicrobial agents were tested: ampicillin 
(AMP), cefotaxime (CTX), imipenem (IPM), streptomycin (STR), 
gentamicin (GEN), nalidixic acid (NAL), ciprofloxacin (CIP), florfenicol 
(FFC), chloramphenicol (CHL), sulfamethoxazole (SMZ), polymyxin B 
(PB), tetracycline (TET), and tigecycline (TGC). Escherichia coli ATCC 
25922 and ATCC 35218 were used as quality control organisms for this 
MIC determinations. And the breakpoints for antimicrobials followed 
interpretive standards provided by CLSI (2022). In addition, an isolate 
was defined as‘multidrug-resistant (MDR)’ if it displayed resistance to ≥
3 different classes of antimicrobials (Tenover, 2006).

2.4. Whole genome sequencing

Representative S. Pullorum strains from different times, stages, and 
sources were selected and underwent WGS and bioinformatics analyses. 
The selection method is as follows: Firstly, the sampling sources were 
retained, which exhibited a limited number of isolates (meconium and 
workers’ hands/soles). Secondly, for those sampling sources with a 
higher number of isolates (dead embryos, sick chicks, and environment), 
we eliminated the highly similar clonal strains by comparing the sam-
pling time, production stage and the resistance profiles of the subdivided 
sampling source strains, and highly similar clonal strains were elimi-
nated to ensure the scientific validity of the WGS strains. The strains’ 
raw sequencing data were assembled and evaluated using Trimmomatic 
v0.36, SPAdes v3.12.0, and QUAST tool 5.0.2. (Bolger et al., 2014, 
Bankevich et al., 2012, Gurevich et al., 2013). Plasmid typing, antibiotic 
resistance genes, and virulence genes were screened using RGI (Resis-
tance Gene Identifier) (Alcock et al., 2020), Abricate 1.0.1, and Plas-
midfinder databases (Carattoli et al., 2014). Furthermore, MLST v2.11 
was used for sequence typing (ST) (Larsen et al., 2012). Based on the 
core SNP loci of the strains, Gubbins (Croucher et al., 2015) and FastTree 
(Price et al., 2009) were used to generate the maximum-likelihood 
phylogenetic tree. Finally, the phylogenetic tree (Price et al., 2009) 
was visualized and embellished using the iTOL (Letunic & Bork, 2021) 
online tool. The reference strain LHTF01.1 was downloaded from NCBI 
(https://www.ncbi.nlm.nih.gov/).

2.5. Statistical analysis

SPSS 26.0 statistical software (v.16.0, SPSS, Chicago, IL, USA) 
Fisher’s exact test was used to analyze the significant differences in 
Salmonella sample isolation. p< 0.05 indicated a significant difference.

3. Results

3.1. Prevalence of Salmonella

The overall prevalence of Salmonella in the yellow-feathered broiler 
hatchery was 11.3 % (116/1023), and different prevalences of Salmo-
nella among the various production stages could be seen. Specifically, 
the prevalence during the laying, egg storage, incubating, hatching, and 
post-hatch stages was 2.1 % (6/288), 0.0 % (0/38), 2.0 % (1/49), 17.2 % 
(62/361), and 16.4 % (47/287), respectively (Fig. 2). We can note that, 
during the hatching stage, the prevalence of Salmonella increased 
significantly to 17.2 %, in contrast to the first three production stages. 
And the prevalence of Salmonella remained high in the post-hatch stage 
(16.4 %). Meanwhile, the Salmonella prevalence of chickens/eggs in the 
laying, egg storage, and incubating stages was 0.0 %, whereas those in 
the hatching and post-hatch stages were 23.0 % and 19.3 %, respectively 
(Fig. 2).

In order to identify additional Salmonella transmission paths, we also 
collected environmental source samples. During the laying stage, the 
most significant source of Salmonella contamination was the troughs 
(33.3 %), followed by the chicken feed (21.4 %) and ditch sewage (13.3 
%). During the incubating stage, Salmonella was only isolated from the 
incubation trays (20.0 %). During the hatching stage, the fluff in the air 
(33.3 %) was the most contaminated with Salmonella, followed by the 
floor (20.0 %) and pad paper (16.7 %). During the post-hatch stage, pad 
paper (28.1 %) had the highest incidence of contamination, followed by 
chicks’ baskets (11.1 %), tables for screening chicks (11.1 %), workers’ 
soles (11.1 %), and workers’ hands (10.0 %) (Fig. 2).

3.2. Serotypes analysis of Salmonella

Six different serotypes were identified among isolates in our study: S. 
Pullorum (109/116, 93.97 %) was the predominant serotype, while a 
small number of other serotypes were present: S. Enteritidis (2/116, 
1.72 %), S. Typhimurium (2/116, 1.72 %), S. Tennessee (2/116, 1.72 
%), and S. Braenderup (1/116, 0.86 %). S. Pullorum exists in various 
production stages and various source samples, while S. Enteritidis, S. 
Tennessee, and S. Braenderup were only found in environmental source 
samples during the laying and post-hatch stages. It is worth noting that 
the Salmonella isolated from sick chicks and dead embryos were all S. 
Pullorum (Table 1).

3.3. Antimicrobial resistance analysis of Salmonella

The AMR of 116 Salmonella isolates is as follows (Table 2): The 
highest resistance was observed against NAL (100.00 %), SMZ (100.00 
%), CIP (95.69 %), and AMP (94.83 %), followed by FFC (34.48 %), PB 
(22.41 %), TET (22.41 %), TGC (12.93 %), STR (11.21 %), CTX (1.72 %), 
and CHL (1.72 %). IPM (0.0 %) and GEN (0.0 %) had 100 % suscepti-
bility to the Salmonella isolates in this study. Furthermore, we also 
compared the resistance rates of different source isolates. Salmonella 
from different sources exhibit different resistance characterizations. 
Compared with other sources of samples, the isolates from the envi-
ronment were resistant to more drugs (11/13, 84.61 %), such as CTX 
and CHL. And more resistant strains of PB and TET in the cloacal swabs 
of sick chicks and meconium were identified (Fig. 3).

The MDR rate of Salmonella isolates in this study was 100 % 
(Table 3). Isolates multi-resistant to AMP, NAL, CIP, and SMZ took up 
35.34 %, this is the predominant resistance pattern. A total of five iso-
lates showed resistance to six classes of antibiotics. Interestingly, four of 
these five Salmonella isolates showed resistance to PB, and two isolates 
showed resistance to TGC. However, TGC and PB are both types of line 
of defense drugs used in human clinical settings.
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3.4. Whole genome sequencing and bioinformatics analyses

Phylogenetic tree analysis was performed based on SNPs of S. Pul-
lorum isolated at various sampling dates, production stages, and sam-
pling sources (Fig. 4). The S. Pullorum isolates were distributed in 3 
different lineages, named Lineage I, Lineage II, and Lineage III here. 
There were 4 (9.30 %) and 3 (6.98 %) isolates in Lineage I and Lineage 
II, respectively. The dominant cluster in this study was Lineage III, 
which had a total of 36 (83.72 %) isolates. Among them, Lineage I was 
ST2151, Lineage II and Lineage III were ST92, and isolate FHC-103 was 
an unknown ST type. It is noteworthy that the dominant Lineage III was 
isolated from five time periods, three production stages, and five sam-
pling sources (Fig. 4).

We further compared the SNPs of S. Pullorum isolated from different 
sources of samples. Significant cross-contamination was found to exist at 
the hatching and post-hatch stages, with isolated samples originating 

from dead embryos, sick chicks, meconium, workers’ hands/soles, and 
other environmental source samples (Fig. 4, branches marked in red). 
Specifically, many isolates from animal sources such as sick chicks, 
meconium, and dead embryos of different stages were closely related 
(SNP ≤5). At the same time, the isolates from environments such as 
chicken feed and workers’ hands/soles were closely related.

All the isolates were identified with various AMR genes, which were 
consistent with the resistance phenotype. Six plasmid replicons were 
detected among the isolates in this study, including ColRNAI, ColpVC, 
Col440I, IncFII(S), IncN, and IncX1. And all isolates were carried with 
the Col and IncFII(S), whereas 41 (95.3 %) isolates were carried with the 
IncX1 and 2 (4.6 %) were carried with the IncN.

4. Discussion

Salmonella contamination has historically posed a significant 

Fig. 2. The prevalences of Salmonella at different production stages and different sample sources. The difference in the prevalences of Salmonella in each production 
stage was statistically significant. (p < 0.001). The difference in the positive rates of Salmonella in each source was statistically significant. (Laying: p < 0.001. 
Hatching: p = 0.019. Post-hatch: p < 0.001.).

Table 1 
Serotype distribution of Salmonella isolates (n= 116).

Serovar (Serogroup) Laying Egg storage Incubating Hatching Post-hatch Total, na (%)
Sample source (n) Sample source (n) Sample source (n) Sample source (n) Sample source (n)

S. Pullorum chicken feed (2) – Incubation trays (1) Floor (1) 
Dead embryos (56) pad paper (2) 
Fluff in the air (3)

Sick chicks (26) 
Chick baskets (3) 
meconium (4) 
Pad paper (8) 
Workers’ hands (2) 
Workers’ soles (1)

109 (93.97)

S. Typhimurium – – – – Meconium (1) 
Chick baskets (1)

2 (17.21)

S. Enteritidis ditch sewage (2) – – – – 2 (17.21)
S. Tennessee Troughs (1) 

floor (1)
– – – – 2 (17.21)

S. Braenderup – – – – Table for screening chicks (1) 1 (0.86)
Total      116

a n number of isolates.
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challenge in the Chinese broiler industry, particularly in the production 
of yellow-feathered broilers. The hatchery, as a vital component of the 
broiler production chain, plays a crucial role in preventing Salmonella 
contamination in this sector. In this study, we found the total prevalence 
of Salmonella in hatcheries was 11.3 %, which is higher than the prev-
alence reported in previous studies on broiler farms (Zhao et al., 2020) 
and breeder farms (Barua et al., 2013). In addition, the Salmonella 
prevalences in dead embryos and sick chicks were recorded at 23.0 % 
and 19.3 %, respectively, surpassing figures reported for hatcheries 
raising white-feathered broilers (Ha et al., 2018; Oloso et al., 2019; 
Shang et al., 2021). These results indicate a severe level of Salmonella 
contamination in yellow-feathered broiler hatcheries, highlighting the 
urgent need for more in-depth and comprehensive research on the 
epidemiology of Salmonella in this context.

In the present study, we found that Salmonella contamination 
occurred at multiple stages of the hatchery. Firstly, during the laying 
stage, there were high isolation rates of Salmonella in chicken feed and 
troughs, indicating that these may have been the initial source of 
contamination. Salmonella infects hens first, subsequently spreading 
vertically to chicks or eggs. The risk of further spread to downstream 
industries cannot be ignored. At the same time, Salmonella has been 
detected in various environmental source samples, including workers’ 
hands and soles, at different stages of production. To prevent the spread 
of Salmonella, it is crucial to strengthen daily management practices 
related to these sources.

Previous studies have shown a higher prevalence of Salmonella 
during the laying stage compared to the hatching stage (Fei et al., 2017). 
However, our findings indicate that Salmonella prevalence was relatively 
low during the laying, egg storage, and incubation stages, while a 
significantly higher level was observed during the hatching stage. 
Notably, despite the elimination of sick chicks after hatching, Salmonella 
was still detected in the healthy chicks at the post-hatch stage (Fig. 2, 
Meconium). Additionally, while fumigation was proceeding daily, Sal-
monella was still detected in the environment (such as hatching trays, 
fluff in the air, and the floor) of the hatching stage. These results suggest 
that Salmonella may spread to the environment upon chicks hatching 
and then horizontal transmission to other chicks via fluff in the air or 
other obscure environmental media.

Further investigation into the serotypes of the isolates revealed that 
S. Pullorum was present at all stages of hatchery production and was the 
sole serotype associated with the mortality of chicken embryos and the 
illness of chicks. This finding indicates that S. Pullorum is the predom-
inant Salmonella serotype in yellow-feathered broiler hatcheries. Similar 
conclusions have been reported in previous studies (Wang et al., 2020a; 
Xu et al., 2020). Conversely, S. Enteritidis was predominant in the 
white-feathered broiler hatcheries (Shang et al., 2021; Zamil et al., 
2021). To effectively prevent Salmonella in the yellow-feathered broiler 
hatcheries, greater attention should be given to the predominant sero-
type, S. Pullorum, and its prevalence in this sector deserves our more 
in-depth study.

AMR in Salmonella of poultry origin has emerged largely due to the 
widespread use of antimicrobials (McDermott et al., 2018). In this study, 
all isolates were MDR strains, exhibiting high resistance rates to AMP, 
NAL, CIP, and SMZ. Notably, the AMR rates for these four drugs were 
higher than those reported between 1962 and 2019 (Sun et al., 2021). In 
most hatcheries across China, day-old chickens receive a single dose of 
ampicillin to mitigate the risk of Salmonellosis before transfer to farms. 
Additionally, the frequent use of antimicrobials in upstream egg-laying 
farms exacerbates AMR acquisition in Salmonella during the hatching 
stage. The study investigated the AMR of isolates from different sources. 
The strains isolated from the environment showed resistance to most of 
the antimicrobials tested, which could be attributed to the adaptive 
evolution of Salmonella under environmental pressure (Müller et al., 
2022). Furthermore, the presence of isolates with identical MDR profiles 
across various production stages and sources suggests potential hori-
zontal spread during the production process of yellow-feathered broiler Ta
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hatcheries. Therefore, monitoring the transmission pathways of AMR 
Salmonella throughout production is essential to prevent further spread 
to downstream industries.

In consideration of public health, it is also urgent to monitor the 
resistance profile of Salmonella in the hatchery. In the present study, we 
identified certain isolates resistant to TGC and PB, which are considered 
"last defense" drugs (PB, TGC, and IPM) for human clinical treatment. It 

should be noted that these antimicrobials are banned in poultry and 
livestock production (Yang et al., 2022). However, other colistin and 
tetracyclines antimicrobials are still commonly used in clinical practice 
to prevent and treat bacterial infections in poultry and livestock pro-
duction. The emergence of "last defense" resistant isolates may result 
from either gene horizontal transfers from other strains or synergistic 
resistance to similar antimicrobials. Therefore, enhancing surveillance 

Fig. 3. Resistance rate among Salmonella from different sample sources. AMP (ampicillin), CTX (cefotaxime), IPM (imipenem), STR (streptomycin), GEN (genta-
micin), NAL (nalidixic acid), CIP (ciprofloxacin), FFC (florfenicol), CHL (chloramphenicol), SMZ (sulfamethoxazole), PB (polymyxin B), TET (tetracycline), and TGC 
(tigecycline).

Table 3 
Resistance profiles of Salmonella at different production stages. (n= 116).

Serial 
number

Number of drug-resistant 
types

Resistance mode Production stages Number of isolates (n ¼
116)

Percentage 
(%)

1 3 AMP + NAL + CIP + SMZ Hatching, Post-hatch 41 35.34
2 4 AMP + NAL + CIP + FFC + SMZ Laying, Hatching, Post- 

hatch
19 16.38

3 4 AMP + NAL + CIP + SMZ + PB Hatching, Post-hatch 8 6.90
4 4 AMP + NAL + CIP + SMZ + TET + TGC Hatching, Post-hatch 6 5.17
5 5 AMP + NAL + CIP + FFC + SMZ + PB Hatching, Post-hatch 5 4.31
6 4 AMP + NAL + CIP + SMZ + TET Hatching, Post-hatch 5 4.31
7 5 AMP + STR + NAL + CIP + SMZ + PB Hatching, Post-hatch 5 4.31
8 5 AMP + NAL + CIP + FFC + SMZ + TET + TGC Hatching, Post-hatch 4 3.45
9 4 AMP + STR + NAL + CIP + SMZ Hatching 3 2.59
10 5 AMP + NAL + CIP + FFC + SMZ + TET Hatching, Post-hatch 3 2.59
11 6 AMP + STR + NAL + CIP + FFC + SMZ + PB Hatching, Post-hatch 2 1.72
12 6 AMP + NAL + CIP + FFC + SMZ + PB + TET +

TGC
Hatching, Post-hatch 2 1.72

13 3 NAL + STR + SMZ Laying, Post-hatch 2 1.72
14 5 AMP + CTX + NAL + CIP + FFC + CHL + SMZ +

TET
Post-hatch 1 0.86

15 5 AMP + NAL + CIP + SMZ + PB + TET Hatching 1 0.86
16 5 AMP + NAL + CIP + SMZ + PB + TET + TGC Hatching 1 0.86
17 5 AMP + NAL + CIP + SMZ + PB + TGC Hatching 1 0.86
18 4 AMP + NAL + FFC + SMZ Laying 1 0.86
19 3 AMP + NAL + SMZ Laying 1 0.86
20 6 AMP + STR + NAL + CIP + FFC + CHL + SMZ +

TET
Post-hatch 1 0.86

21 5 NAL + CIP + FFC + SMZ + PB Post-hatch 1 0.86
22 4 NAL + CIP + SMZ + TET Post-hatch 1 0.86
23 4 STR + NAL + CIP + SMZ + TET Incubating 1 0.86
24 5 CTX + STR + FFC + NAL + SMZ Laying 1 0.86
MDR  116 100.0
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of Salmonella resistance in yellow-feathered broiler hatcheries is essen-
tial, alongside raising public health awareness to mitigate potential 
threats from cross-contamination and antibiotic misuse.

To further explore the characteristics of Salmonella in the hatchery, 
we conducted WGS to analyze its evolutionary relationship during 
production. Our findings indicate that Salmonella isolates from chicks 
and eggs at different stages were closely related, and those from the 
environment also showed significant similarity. This demonstrates that 
cross-contamination occurs among chicks and eggs in the hatchery, as 
well as between these and environmental factors. The hatching stage 
appears critical for cross-contamination. Environmental isolates, such as 
fluff in the air, troughs, and pad paper during the laying, hatching, and 
post-hatch stages, exhibited close genetic relationships (SNP ≤10) and 
carried similar resistance genes and plasmid replicons. Salmonella in the 
environment may come from dead embryos and sick chicks, and spreads 
into the environment during the hatching stage and subsequently 
through the worker’s hands/soles to the post-hatch stage. Therefore, 
implementing robust monitoring and control measures is essential to 
mitigate the horizontal transmission of Salmonella. In addition, the iso-
lates carried some AMR plasmid replicons: IncN and lncX1. These iso-
lates could horizontally transfer AMR plasmid replicons to other 
recipient bacteria through conjugation, making Salmonella with T4SS a 
potential AMR gene reservoir. At the same time, all serotypes contained 
virulence genes encoding for nonfimbrial adherence, survival in mac-
rophages, enterotoxin, invasion, magnesium uptake, and secretion sys-
tems (Zuo et al., 2020). The presence of these genes heightens the risk of 
Salmonella spread and infection in the yellow-feathered broiler indus-
try’s downstream processes.

5. Conclusions

Our findings suggest that in addition to vertical transmission, hori-
zontal transmission is also an important route of Salmonella transmission 
in hatcheries, as demonstrated by phenotype comparisons and WGS 
analyses. Salmonella transmission occurred through various media dur-
ing daily production, leading to potential cross-contamination. Addi-
tionally, we systematically reveal the distribution of resistance genes 
and plasmid replicons in MDR Salmonella in yellow-feathered broiler 
hatcheries. These findings provide comprehensive insights to under-
stand Salmonella in yellow-feathered broiler hatcheries.
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