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Abstract
Mean-field approximations are a powerful tool for studying large neural networks. However,

they do not describe well the behavior of networks composed of a small number of neurons.

In this case, major differences between the mean-field approximation and the real behavior

of the network can arise. Yet, many interesting problems in neuroscience involve the study

of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical

methods that correctly describe networks of small size are still rare, and this prevents us to

make progress in understanding neural dynamics at these intermediate scales. Here we

develop a novel systematic analysis of the dynamics of arbitrarily small networks composed

of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the

local bifurcations of their neural activity with an approach that is largely analytically tracta-

ble, and we numerically determine the global bifurcations. We find that for strong inhibition

these networks give rise to very complex dynamics, caused by the formation of multiple

branching solutions of the neural dynamics equations that emerge through spontaneous

symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of

the network, that reveals qualitative and previously unexplored differences between meso-

scopic cortical circuits and their mean-field approximation. The most important conse-

quence of spontaneous symmetry-breaking is the ability of mesoscopic networks to

regulate their degree of functional heterogeneity, which is thought to help reducing the detri-

mental effect of noise correlations on cortical information processing.

Author Summary

The mesoscopic level of brain organization, describing the organization and dynamics of
small circuits of neurons including from few tens to few thousands, has recently received
considerable experimental attention. It is useful for describing small neural systems of
invertebrates, and in mammalian neural systems it is often seen as a middle ground that is
fundamental to link single neuron activity to complex functions and behavior. However,
and somewhat counter-intuitively, the behavior of neural networks of small and interme-
diate size can be much more difficult to study mathematically than that of large networks,
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and appropriate mathematical methods to study the dynamics of such networks have not
been developed yet. Here we consider a model of a network of firing-rate neurons with
arbitrary finite size, and we study its local bifurcations using an analytical approach. This
analysis, complemented by numerical studies for both the local and global bifurcations,
shows the emergence of strong and previously unexplored finite-size effects that are partic-
ularly hard to detect in large networks. This study advances the tools available for the com-
prehension of finite-size neural circuits, going beyond the insights provided by the mean-
field approximation and the current techniques for the quantification of finite-size effects.

Introduction
The brain is a complex system organized at multiple spatial scales, and the concerted interac-
tions between these multiple scales of organization are probably crucial for the emergence of its
computational power [24]. At the coarsest level, the brain can be divided into macroscopic cir-
cuits spanning several areas and containing millions of neurons. These macroscopic circuits
are believed to accomplish very complex functions, ranging from motor control to cognition.
At the finest level of organization, basic computations are performed at the single cell level by
neurons, which can be seen as elementary computational units [20]. However, there is an inter-
mediate, mesoscopic level of organization between the macroscopic and microscopic one: neu-
rons are organized in microcircuits, whose size can vary from several thousands of cells as in
cortical columns, to a few tens of cells as in micro-columns [45–47]. This mesoscopic level of
investigation has received considerable attention in recent years both from the theoretical [25–
29] and experimental [21, 22] point of view, and it is often seen as a middle ground that is fun-
damental to link single neuron activity to behavior [23]. For this reason, finding an appropriate
mathematical description of the brain at the mesoscopic scale is of fundamental importance for
unveiling its emergent properties.

At the mesoscopic scale, the brain is often described as a collection of neural masses, i.e.
homogeneous neuronal populations within a cortical column [30]. Usually, these groups of
neurons are described by the so-called neural-mass models [31]. A typical example is the well-
known Jansen-Rit model [32–34], which describes local cortical circuits as a population of
excitatory pyramidal cells, which receive inhibitory and excitatory feedback from local inter-
neurons, and excitatory input from other regions such as the thalamus. This class of models
may be studied using mean-field theory [35]. Mean-field theory is a mathematical tool that
approximates the behavior of large networks [36–38], and it is useful to study the mass activity
of few thousands of neurons, which constitutes the upper limit of mesoscopic descriptions of
neural circuits and can adapt well to describe for example measures based on LFP/MEG/EEG
recordings. This approximation becomes exact in the limit of networks with an infinite number
of neurons, the so-called thermodynamic limit. For finite-size networks, however, the mean-
field theory provides only an approximation of the real behavior of the system, and therefore
may neglect important phenomena, such as qualitative differences in the transitions between
static regimes and chaos [39], or in the degree or nature of correlations among neurons [40].
Clearly, these macroscopic differences in the dynamical and statistical behavior of finite and
infinite-size networks may have important consequences on the information processing capa-
bility of the system, as potential oversimplifications in the mean-field approximation may hide
important neural processes that are fundamental for the comprehension of neural circuits of
finite size.
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To go beyond the mean field limit, several mathematical techniques have been developed to
quantify finite-size effects. These finite-size methods (such as the linear noise approximation
[41], the density functional approach [42], large-deviations theory [43] and path-integral
methods [44]) typically can only be applied to mesoscopic circuits composed of a finite but
large number of neurons.

On the other side, most of the literature about small neural circuits deals with networks
composed of 2–4 neurons (e.g. [1–3]), while methods for the analysis of networks made of a
few tens of neurons, which represent the lower bound of the mesoscopic scale, are still limited.
The purpose of our work is to make progress in the mathematical methodology to study the
dynamics of such networks. The analysis of the dynamics of small neural networks was pio-
neered by Beer, who studied the bifurcations of networks of arbitrary size with highly symmet-
ric assumptions on the strength of the synaptic weights [48], and through asymptotic
approximations of the bifurcation manifolds [4]. In our article we extend his analysis to a more
biologically plausible network of arbitrary size by deriving exact expressions of the bifurcation
manifolds, and with less rigid constraints on the synaptic weights. In more detail, we consider a
deterministic finite-size firing-rate network model with excitatory and inhibitory populations
composed of an arbitrary number of homogeneous neurons in each population. Moreover, the
model is characterized by homogeneous and arbitrarily strong weights between the popula-
tions. Then, we perform a numerical analysis of the global bifurcations that emerge by varying
the external input currents (i.e. the stimuli) to the network and the strength of inhibition, and
we introduce a mathematical theory that describes local bifurcations analytically. We find qual-
itative differences with the mean-field approximation when the system has strong inhibitory
synaptic weights. In this case, through a phenomenon of spontaneous symmetry-breaking, the
neural network undergoes a special bifurcation known as pitchfork or branching point [49],
from which multiple solutions of the neural equations emerge. On the new branches, new
bifurcations can occur, enriching considerably the complexity of the bifurcation diagram of the
neural network. This dynamics is not revealed by the mean-field approximation.

This article is organized as follows. In Materials and Methods we describe the neural model
we use. We then explain intuitively in Results the formation of new branches of solutions
through spontaneous symmetry-breaking, depending on the strength of inhibition. This is fol-
lowed by a numerical and analytical study of the bifurcations of the network in weak and
strong-inhibition regimes for different sizes of the inhibitory population. In Discussion we con-
clude by examining the biological implications of our results and by comparing our approach
with previous work on homogeneous networks.

Materials and Methods
Here we describe the assumptions we made about the model of finite-size neural circuits,
whose structure is schematized in Fig 1, and whose dynamics we would like to investigate
mathematically. These assumptions represent the best compromise we could find between bio-
logical detail, biological plausibility and mathematical tractability. We perform a numerical
and analytical study considering the case of two neural populations of excitatory and inhibitory
neurons respectively. The populations contain an arbitrary finite number of neurons, which
are connected with each other through non-symmetric synaptic connections with arbitrarily
strong weights. In order to make the network analytically tractable, we make some simplifying
assumptions. In particular, we assume (as it is often made when considering local cortical cir-
cuits [30, 31]) that the neurons in each population have homogeneous properties and parame-
ters, that all neurons in the network are connected to each other (fully-connected topology),
and that the axonal delays are negligible. Moreover, we study the deterministic neural
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equations, as it is common practice in the analysis of bifurcations. Therefore we do not con-
sider typical sources of randomness such as stochastic fluctuations in the firing rates and ran-
dom distributions of the strength of the synaptic weights. However, we note that some of these
assumptions can be overcome by extensions of this formalism (see Discussion).

In more detail, we consider a widely used rate model to describe the dynamics of single neu-
rons [30, 35, 38, 40, 48, 53]:

dVi tð Þ
dt

¼ � 1

ti
Vi tð Þ þ

1

Mi

XN�1

j¼0

JijA j Vj tð Þ
� �

þ Ii; i ¼ 0; :::;N � 1; ð1Þ

where N� 4 represents the number of neurons in the network. The function Vi(t) is the mem-
brane potential of the ith neuron, while τi is its membrane time constant.Mi, the total number
of connections to the ith neuron, is a normalization factor that has been introduced to avoid

the explosion of the total synaptic input
PN�1

j¼0 JijA jðVjðtÞÞ in Eq (1) in the thermodynamic

limit N!1. The synaptic connectivity matrix J specifies the strength of the synaptic connec-
tions in the network. Jij is the synaptic weight from the jth to the ith neuron, and for simplicity
it is assumed to be deterministic and constant in time, for every pair of neurons. A j (�) is the
activation function of the jth neuron and converts its membrane potential into the correspond-
ing firing rate nj ¼ A ðVjÞ. Typically, piecewise-linear activation functions are required in order

to obtain analytical results [11, 55, 56]. However, here we will show how to obtain explicit
expressions for the equilibrium points and the local bifurcations of the network when A ðVÞ is
a smooth (i.e. infinitely differentiable) function. In more detail, we will consider S-shaped (i.e.
sigmoidal) activation functions, since they are biologically realistic [6, 54]. Particularly conve-
nient from the mathematical point of view is the so-called algebraic activation function, which

Fig 1. Structure of the analyzed network. Neurons are fully connected and grouped into one excitatory and one inhibitory population. Jαβ
represents the set of synaptic weights from the population β to the population α, while Iα is the external current (i.e. the stimulus) to the
population α.

doi:10.1371/journal.pcbi.1004992.g001
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is defined as follows:

A jðVÞ ¼
nmax
j

2
1þ

Lj

2
ðV � VT

j Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

j

4
ðV � VT

j Þ2
s

266664
377775: ð2Þ

Here νmax is the maximum firing rate, Λ determines the slope of the activation function when
νmax is fixed, and VT is the horizontal shift, therefore it can be interpreted as a firing threshold
for the membrane potentials. In Eq (1), Ii are external input currents, namely the stimuli to the
network, which here are supposed to be constant in time, in order to perform the bifurcation
analysis of the network with Ii as bifurcation parameters.

In order to make our analysis analytically tractable, we suppose that all the parameters of
the system are homogeneous for each population of neurons considered. Thus, these parame-
ters will be indexed only at the population level. By defining NE (NI) to be the size of the excit-
atory (inhibitory) population (with NE,I � 2), and by indexing the neurons of the excitatory
population as i = 0, . . ., NE − 1 and the inhibitory neurons as i = NE, . . ., N − 1 (with N = NE +
NI), the synaptic connectivity matrix is structured as follows:

J ¼
JEE JEI

JIE JII

" #
; Jab ¼

( JaaðINa
� IdNa

Þ;

JabINa ;Nb
;

for a ¼ b

for a 6¼ b

where the block Jab is a Nα × Nβmatrix that represents the connections from the population β

to the population α, with α, β 2 {E, I}. Moreover, INa ;Nb
is the Nα × Nβ all-ones matrix (here we

use the simplified notation INa
¼def INa ;Na

), while IdNα
is the Nα × Nα identity matrix. Since

approximately 80% of neocortical neurons are excitatory and the remaining 20% are inhibitory

[58], we set NE
NI
¼ 4. This is a typical choice in many theoretical works (e.g. [9, 10]). Then we set

the diagonals of JEE and JII to zero because of the absence of self-connections in biological net-
works. JEE, JII, JEI, JIE are free parameters that describe the strength of the interactions between
and within the neural populations. Clearly we have JEE, JIE > 0, and JII,JEI < 0, which also
means thatME =MI = N − 1. It is important to observe that, compared to [21] where the
authors divided the synaptic weights by the population size, we have chosen a different normal-

ization. In both cases, the total synaptic input
PN�1

j¼0 JijA jðVjðtÞÞ is convergent in the thermody-

namic limit, but the two normalizations behave in different ways when the network is mixed
with both finite-size and infinite-size populations. According to our normalization, if one pop-
ulation has infinite size and the other has a finite size, then the contribution of the finite-size
population to the total synaptic input of a neuron is negligible compared to the one of the infi-
nite-size population. The normalization introduced by [38] leads instead to the infinite-size
and finite-size populations both providing finite contributions to the total synaptic input. How-
ever, if required, it is possible to switch from our normalization to the other one by performing
the following substitution:

Jab !
N � 1

Nb

Jab

in all the analytical results reported in Results and in S1 Text.
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Given the notations described above, the external input currents are defined by two vectors,
IE and II, representing the inputs to the excitatory and inhibitory populations:

Ia ¼ Ia1Na

where 1Na
¼def INa ;1

is the Nα × 1 all-ones vector. The same subdivision between excitatory and

inhibitory populations is performed for the other parameters of the network, namely τ, νmax, Λ,
VT.

To summarize, the equations of our neural system (1) can be written explicitly as follows:

E :
dViðtÞ
dt

¼ � 1

tE
ViðtÞ þ JEE

N � 1

XNE�1

j¼0
j6¼i

A EðVjðtÞÞ þ JEI
N � 1

XN�1

j¼NE

A IðVjðtÞÞ þ IE

i ¼ 0; . . . ;NE � 1;

I :
dViðtÞ
dt

¼ � 1

tI
ViðtÞ þ JIE

N � 1

XNE�1

j¼0

A EðVjðtÞÞ þ JII
N � 1

XN�1

j¼NE
j 6¼i

A IðVjðtÞÞ þ II;

i ¼ NE; . . . ;N � 1:

ð3Þ

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
Results
Here we study the dynamics of small networks with an arbitrary number of firing rate neurons.
The system is composed of two fully-connected and homogeneous neural populations of excit-
atory and inhibitory neurons respectively, with negligible axonal delays and without random
noise. We perform a bifurcation analysis of their dynamics to understand the mechanisms
underlying the emergence of complex neural activity and how they relate to biological functions.

The bifurcation analysis characterizes the dynamics the model is able to exhibit, depending
on two parameters: the static external currents IE,I in Eq (3). In particular, we perform this
analysis for increasing values of a third parameter: the self-inhibition strength JII. We focus on
this parameter, instead of the other synaptic weights (i.e. JEE, JEI, JIE), since JII is the one respon-
sible for the formation of the branching-point bifurcations. For the remaining synaptic weights
we will provide only a qualitative description of the effects they exert on the system. The non-
varying network parameters for the bifurcation analysis are set as in Table 1. In particular, we
consider a network made of NE = 8 excitatory and NI = 2 inhibitory neurons, since we want to
study finite-size effects in small neural masses.

We perform a detailed bifurcation analysis by means of numerical tools and, whenever pos-
sible, through analytical techniques. The numerical analysis is performed with the Cl_MatCont
Matlab toolbox [59] and XPPAUT [60], which are built up the mathematical theory of bifurca-
tions described in [49, 61], while the analytical results are based on linear algebra. In principle,
a study of bifurcations accomplished by means of such continuation toolboxes can be difficult

Table 1. Values of the parameters used in this article.

Population Sizes Synaptic Weights Activation Functions Memb. Time Consts.

NE = 8 JEE = 10 nmax
E ¼ nmax

I ¼ 1 τE = τI = 1

NI = 2 JEI = −70 ΛE = ΛI = 2

JIE = 70 VT
E ¼ VT

I ¼ 2

JII and IE,I are not fixed, since they represent the bifurcation parameters of the network.

doi:10.1371/journal.pcbi.1004992.t001
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due to the high symmetry of Eq (3). The eigenvalues of the Jacobian matrix of highly symmet-
ric systems can have multiplicity larger than one, leading standard numerical toolboxes to fail
in detecting all bifurcations [78]. Nevertheless, by assuming NI = 2 throughout the article, the
eigenvalues that generate the bifurcation points have always multiplicity one, thus ensuring a
correct functioning of the continuation toolboxes. Furthermore, the choice NI = 2 allows us to
provide a thorough bifurcation study that would have become prohibitive, in terms of clarity,
for NI > 2. We also implement the analytical formulas in a standalone Python script (see S1
File), which performs the analysis of local bifurcations in a few seconds without a need of fur-
ther more complex tools. This script is based on the bifurcation analytical formulas presented
hereafter, which assume a sigmoidal activation function as in Eq (2). We however verified that
different sigmoidal functions, such as the logistic function, provide qualitatively similar bifur-
cation diagrams [54].

Finally, it is important to underline that bifurcations are defined by many conditions. None-
theless, in our analytical study we checked only the conditions on the eigenvalues of the net-
work, since they proved sufficient to reproduce the numerical results. Due to the high variety
of the bifurcations the system exhibits, a full check of all the remaining (non-degeneracy) con-
ditions is beyond the purpose of this article.

Intuitive interpretation of the branching points
In mathematics, the branching-point bifurcations are described by the so-called equivariant
bifurcation theory [50], namely the study of bifurcations in symmetric systems. The latter
being rather technical, here we prefer to follow a more intuitive approach to the problem. First
of all, we observe that according to bifurcation theory, local bifurcations are calculated by
means of the eigenvalues of the Jacobian matrix of the network evaluated at the equilibrium

points. Therefore, we set dViðtÞ
dt

¼ 0 8i in Eq (3) to compute the stationary solutions of the sys-

tem. For the subsequent analysis, it is useful to introduce the following parameter:

c¼def tI jJII jn
max
I LI

4 N � 1ð Þ ð4Þ

and we will show that, as long as inhibition is weak (ψ< 1), the equilibrium points in each pop-
ulation are always homogeneous:

μ ¼ mE; . . . ; mE

zfflfflfflfflfflffl}|fflfflfflfflfflffl{NE�times

; mI; . . . ; mI

zfflfflfflfflffl}|fflfflfflfflffl{NI�times
 !

: ð5Þ

Specifically, μE and μI are the solutions of the following system of algebraic non-linear equa-
tions, obtained from Eq (3):

F mE; mIð Þ¼def � 1

tE
mE þ

NE � 1

N � 1
JEEA E mEð Þ þ NI

N � 1
JEIA I mIð Þ þ IE ¼ 0

G mE; mIð Þ¼def � 1

tI
mI þ

NE

N � 1
JIEA E mEð Þ þ NI � 1

N � 1
JIIA I mIð Þ þ II ¼ 0 :

8>>>>><>>>>>:
ð6Þ

The curves defined by Eqs. F ðx; yÞ ¼ 0 andGðx; yÞ ¼ 08ðx; yÞ 2 R
2 are the so-called null-

clines of the network [17, 18]. Fig 2 (top) shows an example obtained for JII = −10, while the
remaining parameters are chosen as in Table 1. For completeness, in S1 Text we show how to
get approximate analytical solutions for μE,I, even though our bifurcation analysis can be per-
formed without knowing them explicitly.
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From Eqs (3) + (5), we obtain that the Jacobian matrix J of the linearized system evaluated
at the stationary solution on the primary branch Eq (5) is:

J ¼
J EE J EI

J IE J II

" #
;

J ab ¼
� 1

ta
IdNa

þ Jaa
N � 1

A 0
aðmaÞðINa

� IdNa
Þ; for a ¼ b

Jab
N � 1

A 0
bðmbÞINa ;Nb

; for a 6¼ b

8>>><>>>:
ð7Þ

Fig 2. Formation of multiple stationary solutions in the weak-inhibition regime. The two top panels show the nullclines of the network
for fixed values of IE,I in a weak-inhibition regime, obtained for JII = −10 and the values of the parameters in Table 1. Their intersection points
(black dots) correspond to the solutions of the system (6). The top-left panel was obtained for IE = 10, II = −10, while the top-right panel for IE
= 13, II = −10. The system (6) admits multiple solutions for specific values of the parameters. The two figures at the bottom show the
solutions μE and μI (bottom-left and bottom-right panel, respectively) of the system (6) for the same values of the parameters, but with
varying current IE. The black curve represents the primary branch of the network equations, and for IE = 10 and IE = 13 it admits one and
three solutions respectively (see the black dots at the intersection with the vertical dashed lines). The (μE,μI) coordinates of these solutions
correspond to those of the black dots in the top panels of the figure. The stability of these solutions is examined for the sake of
completeness in S5 Fig.

doi:10.1371/journal.pcbi.1004992.g002
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From this we can prove (see S1 Text) that the eigenvalues of J are:

lR
0;1 ¼

Y þ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY � ZÞ2 þ 4X

q
2

;

lE ¼ � 1

tE
þ JEE
N � 1

A 0
EðmEÞ

� �
;

lI ¼ � 1

tI
þ JII
N � 1

A 0
IðmIÞ

� �
;

ð8Þ

where:

X ¼ NEN1

ðN � 1Þ2 JEIJIE A
0
EðmEÞA 0

IðmIÞ;

Y ¼ � 1

tE
þ NE � 1

N � 1
JEE A

0
EðmEÞ;

Z ¼ � 1

tI
þ NI � 1

N � 1
JII A

0
IðmIÞ:

ð9Þ

The inequalities ψ< 1 and λI � 0 imply:

A 0
I mIð Þ � N � 1

tIjJII j
>

nmax
I LI

4

while, according to Eq (2), the derivative of the activation function cannot exceed

A 0
I VT

I

� 	 ¼ nmax
I LI

4
. Therefore λI is always negative in the weak-inhibition regime.

According to bifurcation theory [49], the system undergoes special bifurcations when one of
its eigenvalues is equal to zero. In particular, whenever λI = 0, the network may undergo a so-
called branching-point bifurcation. Since λI is always negative in the weak-inhibition regime,
branching-point bifurcations occur only in the strong-inhibition regime (ψ� 1). This special
bifurcation corresponds to the formation of heterogeneous membrane potentials in the inhibi-
tory population. In other words, strong inhibition may break the symmetry of the system. Intu-
itively, this can be understood as in Fig 3. In the weak-inhibition regime there is only one valley
or basin in the “energy landscape” of the network. However, strong inhibition may lead to the
formation of multiple valleys, and a small perturbation determines the valley the inhibitory
potential will converge to. For this reason, for strong inhibition multiple new branches of the
equilibrium points may emerge, which are described by the following stationary solutions:

μ ¼ mE; . . . ; mE

zfflfflfflfflfflffl}|fflfflfflfflfflffl{NE�times

; mI;0; . . . ; mI;NI�1

 !
ð10Þ

where μE and μI,i are the solutions of the following system of algebraic non-linear equations,
obtained from Eq (3) in the stationary regime:

� 1

tE
mE þ

NE � 1

N � 1
JEEA EðmEÞ þ

JEI
N � 1

XNI�1

j¼0

A IðmI;jÞ þ IE ¼ 0

� 1

tI
mI;i þ

NE

N � 1
JIEA EðmEÞ þ

JII
N � 1

XNI�1

j¼0
j 6¼i

A IðmI;jÞ þ II ¼ 0 for i ¼ 0; . . . ;NI � 1 :

ð11Þ

8>>>>>>>>><>>>>>>>>>:
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For example, for NI = 2, Eq (11) can be written more explicitly as follows:

F mE; mI;0; mI;1

� 	¼def � 1

tE
mE þ

NE � 1

N � 1
JEEA E mEð Þ þ JEI

N � 1
A I mI;0

� 	þ A I mI;1

� 	
 �þ IE ¼ 0

G mE; mI;0; mI;1

� 	¼def � 1

tI
mI;0 þ

NE

N � 1
JIEA E mEð Þ þ JII

N � 1
A I mI;1

� 	þ II ¼ 0

H mE; mI;0; mI;1

� 	¼def � 1

tI
mI;1 þ

NE

N � 1
JIEA E mEð Þ þ JII

N � 1
A I mI;0

� 	þ II ¼ 0 :

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð12Þ

The surfaces F ðx; y; zÞ ¼ 0;Gðx; y; zÞ ¼ 0;H ðx; y; zÞ ¼ 0; 8ðx; y; zÞ 2 R
3 are a higher-

dimensional extension of the nullclines F ðx; yÞ ¼ 0 andGðx; yÞ ¼ 0 8ðx; yÞ 2 R
2 that we

encountered in the weak-inhibition regime. These surfaces have been called nullsurfaces in
[48]. Fig 4 (top) shows an example obtained for JII = −100, while the remaining parameters are
chosen as in Table 1.

For the sake of clarity, here we treat in detail only the case NI = 2, and we will discuss briefly
some results in the strong-inhibition regime for NI > 2. For NI = 2, from Eq (12) the Jacobian
matrix on the secondary branches Eq (10) is:

J ¼

J 00 J 01 J 02

J 10 J 11 J 12

J 20 J 21 J 22

26664
37775 ð13Þ

Fig 3. Spontaneous symmetry-breaking under strong inhibition.When λI (see Eq (8)) is negative, the system (3) has only one
stationary solution for a fixed set of parameters. This solution is stable and symmetric, but if a network parameter (e.g. IE) is allowed to vary
continuously, λI may change sign. If this occurs, the solution becomes unstable and the network chooses randomly between two new
alternative states, breaking the symmetry. The new states can be stable (e.g. for NI = 2) or unstable. In the former case the phenomenon of
spontaneous symmetry-breaking may be understood intuitively as a ball that rolls in a double well potential and reaches a state of minimum
energy, which corresponds to a stable stationary solution of Eq (3). In the weak-inhibition regime λI is always negative, therefore strong
inhibition is a necessary condition for spontaneous symmetry-breaking.

doi:10.1371/journal.pcbi.1004992.g003
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Fig 4. Formation of multiple stationary solutions in the strong-inhibition regime. The top panel shows the nullsurfaces of the network
for fixed values of IE,I in the strong-inhibition regime, obtained for JII = −100, IE = 5, II = −10 and the values of the parameters in Table 1. The
black intersection point corresponds to the solution of the system (12) on the primary branch, while the violet dots represent the solutions on
the secondary branches. The two figures at the bottom show the solutions μE and μI (left and right panel, respectively) of the system (12) for
the same values of the parameters, but with varying current IE. The black and violet curves represent, respectively, the primary and
secondary branches of the network equations. For IE = 5 the system admits three solutions (μE,μI) (see the dots at the intersection with the
vertical dashed lines: we have only three solutions because μI has three intersection points, two of which, i.e. the violet ones in the right
panel, correspond to the same μE, i.e. the violet dot in the left panel). The (μE,μI) coordinates of these solutions correspond to those of the
dots in the top panel of the figure. Again, here we do not care about the stability of the solutions, which is shown for the sake of
completeness in Fig 9 and in S9 Fig.

doi:10.1371/journal.pcbi.1004992.g004
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where:

J 00 ¼ � 1

tE
IdNE

þ JEE
N � 1

A 0
EðmEÞðINE

� IdNE
Þ;

J 01 ¼
JEI

N � 1
A 0

IðmI;0Þ1NE
; J 02 ¼

JEI
N � 1

A 0
IðmI;1Þ1NE

;

J 10 ¼
JIE

N � 1
A 0

EðmEÞ1t
NE
; J 11 ¼

1

tI
; J 12 ¼

JII
N � 1

A 0
IðmI;1Þ;

J 20 ¼
JIE

N � 1
A 0

EðmEÞ1t
NE
; J 21 ¼

JII
N � 1

A 0
IðmI;0Þ; J 22 ¼

1

tI

(here t is the transpose operator applied to a matrix), as derived in more detail in S1 Text. Intu-
itively, on the primary branch the Jacobian matrix was a 2 × 2 block matrix (see Eq (7)),
because we had only one excitatory and one inhibitory membrane potential (μE and μI respec-
tively), while on the secondary branches it is a 3 × 3 block matrix since now the two inhibitory
neurons have different potentials (μI,0 and μI,1). However, the Jacobian matrix on the new
branches can be calculated for a network with an arbitrary number of inhibitory neurons (see
S1 Text for more details).

Finally, we observe that for any NI it is possible to find a relation between any pair (i,j) of
inhibitory membrane potentials in the strong-inhibition regime, which proves very useful
when we calculate analytically the local bifurcations of the system on the secondary branches.
Indeed, from the second equation of the system (11), we get:

� 1

tI
mI;i þ

JII
N � 1

A I mI;j

� �
¼ � 1

tI
mI;j þ

JII
N � 1

A I mI;i

� 	
: ð14Þ

After some algebra Eq (14) can be converted into the following fourth-order polynomial equa-
tion:

bam4
I;j þ bbm3

I;j þbcm2
I;j þ bdmI;j þ be ¼ 0 ð15Þ

whose coefficients depend on μI,i as follows:

ba ¼ L2

I

4t2I

bb ¼ � L2

I

2tI
b� þ VT

I

tI

� 


bc ¼ L2

I

4
b�2 þ VT

I

tI

� 
2

þ 4

tI
VT

I
b�" #

þ 1

t2I
� bx

bd ¼ �L2

I

2
b�VT

I

VT
I

tI
þ b�� 


� 2

tI
b� þ 2bxVT

I

be ¼ LI

2
b�VT

I

� 
2

þ b�2 � bxðVT
I Þ2

b� ¼ 1

tI
mI;i þ

JII
N � 1

A IðmI;iÞ �
nmax
I JII

2ðN � 1Þ

bx ¼ nmax
I LI JII

4ðN � 1Þ
� 
2

:

Eq (15) can be solved analytically, providing an explicit expression of μI,j as a function of μI,i,
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which will be used later to evaluate the local bifurcations in the strong-inhibition regime. In Fig
5 we plot this relation by removing the spurious portions of the solutions of Eq (15) that do not
satisfy Eq (14). This figure proves the formation of three branches of solutions of the stationary
membrane potentials at the branching-point bifurcations of the network.

Weak-inhibition regime (ψ < 1)
Even though in the article we focus on the case NE = 8 and NI = 2, the analytical results derived
in this subsection are valid for arbitrary NE,I.

As we said, we want to understand how the network’s dynamics changes when we vary the
external input currents IE,I and the strength of the synaptic weight JII. In this subsection we
show the results that we obtain when we vary these parameters one by one, because this allows
us to introduce the concepts of codimension one and codimension two bifurcation diagrams.

For NI = 2, we first fix II to −10 and the inhibitory strength JII to −10. As illustrated in Fig 2
(top), Eq (6) admits multiple solutions depending on the specific value chosen for the current
IE. Thus, we vary IE continuously while keeping II and JII fixed. In this way we can plot how the
solutions μE,I of the system (6) change as a function of IE. As we anticipated in the previous
subsection, the curve that we obtain (Fig 2 (bottom)) is called the primary branch of the net-
work. This figure represents the codimension one bifurcation diagram of the network from
which we individuate two special points, called local saddle-node bifurcations (shortened to LP
hereafter). They identify the value of IE for which the number of solutions of Eq (6) changes
(notice the correspondence with the top panels of Fig 2). These are the first examples of (local)
bifurcation points that the neural network exhibits, and that lead to the formation of hysteresis
(see left panel in Fig 6). Briefly, hysteresis was suggested to describe the reverberation and per-
sistence of neural activity sustained endogenously after an external input is removed, which is
thought to be crucial for phenomena such as working memory [62–64]. It is important to
observe that even if reverberation requires bistability, the latter can be present without hystere-
sis, but very often they coexist, as in our model.

We then continuously vary both IE and II, while keeping JII fixed, and we plot the solutions
of Eq (6) as a function of both the external currents, so that μE,I = μE,I(IE,II) now define three

Fig 5. Relation between any pair of inhibitory membrane potentials in the network. This figure is obtained for JII = −100 by plotting the
four solutions [μI,j]0,1,2,3 of Eqs (14) + (15) (see S1 Text for their analytical calculation) as a function of μI,i, and proves the formation of three
branches of solutions of the stationary membrane potentials at the branching-point bifurcations. For example, in the caseNI = 2 (left panel),
the bisector of the first and third quadrants μI,j = μI,i represents the primary branch of the network, while the other two solutions that bifurcate
from the branching points represent the secondary branches. The coordinates of the branching points are given by Eq (23). For the sake of
clarity, we do not show the stability of the solutions, which is examined in the text. Moreover, the figure shows that for increasingN these
bifurcations disappear, as we discuss in more detail in S1 Text.

doi:10.1371/journal.pcbi.1004992.g005
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dimensional manifolds (see Fig 7 (left) for μE). On these manifolds, the special points LP
depend also on II, therefore they form a set of points called saddle-node curves (see the blue
curves in Fig 7, left). For visual convenience, these curves are projected on the IE−II plane in
Fig 7 (right), defining the so-called codimension two bifurcation diagram of the network. This
diagram will be the main instrument of the analysis presented hereafter. However, from Fig 7
(left) and the bottom panels of Fig 2, we can see that the saddle-nodes are not the only

Fig 6. An example of catastrophemanifold.On the left, we show an example of hysteresis displayed by the system. The plain lines
describe stable equilibria, while the dashed line the unstable ones. On the right, we show an example of catastrophe manifold. The panel
highlights three different behaviors of the network for increasing values of jIIj: leaky integrator, perfect integrator and switch (red curves). In
particular, the perfect integrator corresponds to a cusp bifurcation (see Fig 7).

doi:10.1371/journal.pcbi.1004992.g006

Fig 7. Three- and two-dimensional bifurcation diagrams in the weak-inhibition regime. Left, μE is shown on the z−axis as function of
IE−II. Here we plot only the local bifurcations (blue: saddle-node curves, red: Andronov-Hopf curves) that bound the plain/dashed regions
representing the stable/unstable equilibrium point areas. Right, complete set of codimension two bifurcations. The Andronov-Hopf
bifurcation curves (red lines) are divided into supercritical (plain) and subcritical (dashed) portions. The supercritical/subcritical portions are
bounded by a generalized Hopf bifurcation, GH, and Bogdanov-Takens bifurcations, BT. The latter are the contact points among saddle-
node bifurcation curves (blue lines), Andronov-Hopf bifurcation curves (red lines), and homoclinic bifurcation curves (hyperbolic-saddle/
saddle-node homoclinic bifurcations are described by plain/dashed orange curves). SNIC bifurcations identify the contact point between the
saddle-node curve and the homoclinic one. From GH originate two limit point of cycles curves (dark green lines) that collapse into the
homoclinic curves. Before this, they present a cusp bifurcation, CPC. Each saddle-node curve shows, in addition to BT, a cusp bifurcation,
CP.

doi:10.1371/journal.pcbi.1004992.g007
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bifurcations we have in our network. For some values of the pair IE−II, the system can undergo
also a local Andronov-Hopf bifurcation, or H for short. These bifurcations are represented by
the red curves in Fig 7, and correspond to the emergence of neural oscillations, which are
thought to play a key role in many cognitive processes [65].

Hereafter, we list all the bifurcations the system undergoes, dividing them in groups
depending on the codimension of the bifurcation, which is defined as the number of parame-
ters (in our case IE,I) that must be varied for the bifurcation to occur. Although only few of
them are represented in Fig 2 (bottom), the complete set of codimension one bifurcations our
system undergoes is:

• local saddle-node bifurcations (LP), for which new equilibria arise, or collide and annihilate
each other;

• local Andronov-Hopf bifurcations (H), where stable or unstable self-sustained oscillations,
described by limit cycles, arise or disappear;

• global homoclinic bifurcations, where limit cycles vanish in a special equilibrium point (i.e. a
neutral saddle, see the next subsection, or an LP bifurcation point), giving rise to an orbit
with infinite period;

• global limit point of cycles bifurcations (LPC), at which new limit cycles arise, or collide and
annihilate each other.

The codimension one diagrams collecting all these bifurcations are shown in S1 Text. More-
over, on the curves defined by these bifurcations, and that are obtained by varying both IE and
II, the following codimension two bifurcations appear (see Fig 7, right):

• local cusp bifurcations (CP), on the LP curves;

• local generalized Hopf bifurcations (GH), which divide subcritical H curves from supercriti-
cal ones;

• local Bogdanov-Takens bifurcations (BT), which represent the contact point between the LP,
H (ending here) and homoclinic curves;

• global cusp bifurcation of cycles (CPC), on the limit point of cycles curves;

• global saddle-node on invariant circle (SNIC), where an LP bifurcation occurs simulta-
neously with a homoclinic bifurcation.

It is worth remarking that the bifurcation diagram in Fig 7 (right), obtained from the voltage-
based model (3) in the weak-inhibition regime, is qualitatively similar to that of the activity-
based (mean-field) Wilson-Cowan model (see Fig. 2.12 in [66]). This strong similarity results
from the fact that under the hypotheses of stationary inputs, invertible connectivity matrix J
and homogeneous membrane time constants, the two models are mathematically equivalent
(apart from a rescaling by τ of the external input). Indeed, it is possible to prove that the mem-
brane potentials Vi(t) and the neural activities Ai(t) are formally related by the linear expression

Vi tð Þ ¼ 1
Mi

PN�1

j¼0 JijAj tð Þ þ Ii [66]. However, in the next subsection we will show that things

may change significantly in the strong-inhibition regime if we take into account finite-size
effects.

Interestingly, Fig 7 presents two of the so-called catastrophe manifolds [67], one of which is
shown in the right panel of Fig 6. This figure emphasizes the ability of the model to describe
three different behaviors: leaky integrator, perfect integrator and switch. This triad represents
the main ingredient for describing a mechanism which was proposed to explain interval timing
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by neural integration [68, 69]. According to the theory, by changing some parameters of the
network, it is possible to modify the shape of the equilibrium curve on the catastrophe mani-
fold generating a ramping activity that can explain Weber’s law of time perception [70]. This
phenomenon can easily occur in our model, where the shape of the equilibrium curve can be
changed dynamically by varying the input currents.

Now we prove some of our previous results on local bifurcations from the analytical point
of view (global bifurcations are often harder to study analytically, therefore they are not consid-
ered here). We base our analysis on [5], where the authors developed a technique for deriving
analytical expressions of local codimension one bifurcations. Furthermore, for the first time we
will extend their method to the analysis of spontaneous symmetry-breaking in systems with
arbitrary size and to some local bifurcations with codimension larger than one. We start by
observing that, according to bifurcation theory [49, 61], LP is defined by the condition that one
real eigenvalue of the Jacobian matrix becomes equal to zero. Therefore, from Eq (8), we con-

clude that for our network this bifurcation occurs whenever lR
0 ¼ 0 or lR1 ¼ 0, because λE is

always negative, while λI is always negative in the weak-inhibition regime. For example, if

Y þ Z < 0, the condition lR0 ¼ 0 is equivalent to X ¼ YZ which, according to Eq (9), pro-
vides:

A 0
IðmIÞ ¼

� 1

tEtI
þ 1

tI

NE � 1

N � 1
JEE A

0
EðvÞ

� 1

tE

NI � 1

N � 1
JII þ

1

ðN � 1Þ2 ½ðNE � 1ÞðNI � 1ÞJEEJII � NENIJEIJIE�A 0
EðvÞ

ð16Þ

where we have defined the parameter v¼def mE . Now we invert A 0
IðmIÞ (more details are provided

in S1 Text), obtaining:

mIðvÞ ¼ VT
I � 2

LI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmax
I LI

4A 0
IðmIÞ

� 
2
3

s
� 1

vuut ð17Þ

and from Eq (6) we get:

IE vð Þ ¼ 1

tE
v� NE � 1

N � 1
JEEA E vð Þ � NI

N � 1
JEIA I mI vð Þð Þ

II vð Þ ¼ 1

tI
mI vð Þ � NE

N � 1
JIEA E vð Þ � NI � 1

N � 1
JIIA I mI vð Þð Þ:

8>>>>><>>>>>:
ð18Þ

These are parametric equations in the parameter v 2 ðva; vbÞ, where:

vb;a ¼ VT
E � 2

LE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NE � 1

N � 1
JEE

nmax
E LE

4
tE

� 
2
3

s
� 1

vuut ð19Þ

and they define analytically the blue curves in Fig 7 (right) (the same result is obtained if

Y þ Z > 0, in which case the condition lR1 ¼ 0 is equivalent to X ¼ YZ). As we said, this is
not sufficient to prove that Eqs (16)–(19) describe LP curves, since we should check also the
corresponding non-degeneracy conditions. Nevertheless, we observe a perfect agreement
between these analytical curves and those obtained numerically by Cl_MatCont and XPPAUT,
therefore for simplicity we do not check the remaining conditions and we leave them to the
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most technical readers. We adopt the same approach for the remaining bifurcations we are
about to describe.

Now we focus on the H bifurcations. According to [49, 61], they appear whenever the net-
work has complex-conjugate purely imaginary eigenvalues. Since λE,I are always real, this con-

dition can be satisfied only by lR0;1, by setting Y þ Z ¼ 0 and ðY � ZÞ2 þ 4X < 0. In

particular, from the equation Y þ Z ¼ 0 we get:

A 0
I mIð Þ ¼ N � 1

NI � 1ð ÞJII
1

tE
þ 1

tI
� NE � 1

N � 1
JEEA

0
E vð Þ

� �
; ð20Þ

where v¼def mE as before. Following the same procedure introduced before for the LP curves, we
obtain a set of parametric equations for the pairs IE−II that generate the H curves, with parame-
ter v 2 ½vf ; vd� [ ½vc; ve�, where:

vc;d ¼ VT
E � 2

LE
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E LEðNE � 1ÞJEE
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þ 1

tI
� nmax

I LIðNI � 1ÞJII
4ðN � 1Þ

0BB@
1CCA

2

3

vuuuuut �1

vuuuuuut

ve;f ¼ VT
E � 2

LE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmax
E LE

4z

� 
2
3

s
�1

vuut
z ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a

a ¼ NE � 1

N � 1
JEE

� 
2

� NENIðNE � 1Þ
ðN � 1Þ2ðNI � 1Þ

JEEJEIJIE
JII

b ¼ � 2

tE

NE � 1

N � 1
JEE þ

NENI

ðN � 1ÞðNI � 1Þ
JEIJIE
JII

1

tE
þ 1

tI

� 

c ¼ 1

t2E
:

ð21Þ

As described above, BT represents the point where the LP and H curves meet each other,

and identifies also the end of the H curve. From the condition lR0 ¼ 0 or lR1 ¼ 0 that defines

the LP curves, and the condition lR0;1 ¼ �io (where ι represents the imaginary unit) that

defines the H curves, we get lR0 ¼ lR
1 ¼ 0. This is the condition that defines analytically the BT

points, or equivalently vBT ¼ ve;f as given by Eq (21), from which the coordinates of the BT

points in the IE−II plane can be easily obtained through Eq (6). The remaining local bifurca-
tions (i.e. CP and GH) are analytically intractable.

To conclude this subsection, we describe briefly the effect of the variation of the remaining
synaptic weights on the codimension two bifurcation diagram, considering the weights in
Table 1 as reference point. Given that their variation does not generate interesting phenomena
such as the branching-point bifurcation which is obtained by varying JII, we describe the effects
of these parameters succinctly. The reader may verify the following results by the supplemental
Python code (see S1 File).

For JEE � 10, the two LP curves become larger and larger on the IE axis (i.e. the distance
between their vertical asymptotes increases). Moreover, the curves get closer and closer to each
other, by shifting on the IE axis, until they intersect and their oblique parts (i.e. those between
the BT points) overlap. If we increase JEE further, the LP curves split again in two disjoint parts,

The Complexity of Dynamics in Small Neural Circuits

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004992 August 5, 2016 17 / 35



each one presenting two BT and two CP bifurcations (thus the total number of CP points
increases from two to four). Between each pair of BT points (on the same LP curve) there is an
H curve. These curves are very close to the corresponding LP curves, and if we increase JEE fur-
ther they disappear, together with the BT bifurcations. Thus for very large JEE we get only two
disconnected LP curves, or in other terms, for very strong excitation the oscillatory activity can-
not be sustained anymore. Also on the opposite side, namely for weak excitation (i.e. JEE ! 0),
the H curves disappear. More precisely, according to Eq (21), these curves vanish whenever the
following condition is satisfied:

nmax
E LE

4z
� 1 or b2 � 4ac � 0:

Moreover, for weak excitation the width on the IE axis of the LP curves decreases, i.e. the
distance between their vertical asymptotes becomes smaller and smaller, until the asymptotes
collapse on each other and the LP curves disappear as well. In particular the curves vanish
whenever the following condition is satisfied (see Eq (19)):

NE � 1

N � 1
JEE

nmax
E LE

4
tE � 1:

For jJEIj � 70, the width of the two LP curves remains almost constant, while the distance
between them (and therefore also the length of the H curves) increases continuously. On the
other side, for jJEIj ! 0, the two LP curves get closer and closer to each other, until they inter-
sect and then their oblique parts between the BT points overlap. If we decrease jJEIj further,
similarly to the case with large JEE, the two LP curves split in two disjoint parts, each one pre-
senting two BT and two CP bifurcations. For even smaller values of jJEIj, the BT, CP and H
bifurcations disappear, while the LP curves disappear for jJEIj = 0.

For JIE � 70, the LP curves are stretched vertically and shifted downwards along the II axis.
Clearly, in the opposite direction (i.e. for JIE ! 0), they are compressed, and while the IE coor-
dinates of the vertical asymptotes remain almost unchanged with JIE, the two CP points get
closer and closer to each other. At the same time, the two H curves tend to overlap. At some
value of JIE, the two CP bifurcations touch each other and disappear, thus the two LP curves
become tangent. If we further decrease JIE, the two LP curves split again, one over the other,
and the BT and H bifurcations disappear.

All the phenomena that we have just described are qualitatively similar for different values
of JII, thus they occur also in the strong-inhibition regime for the primary branch.

Strong-inhibition regime (ψ� 1)
In the strong-inhibition regime (in particular here we consider the cases JII = −34 and JII =
−100), most of the features of the weak-inhibition bifurcation diagram are preserved. However,
besides the bifurcations explained in the previous subsection, from Figs 8, 9 and 10, we can see
that the system undergoes also the following codimension one bifurcations:

• local branching-point bifurcations (BP), at which two or more equilibrium curves emanate
or collapse;

• local torus bifurcations (TR), at which the network exhibits quasi-periodic oscillations; this is
a local bifurcation of the Poincaré map of a limit cycle of the network [49], whose change of
stability determines the formation of solutions of Eq (3) containing two incommensurable
frequencies;

and the following codimension two bifurcations:
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• local zero-Hopf (neutral saddle) bifurcations (ZH), at which the H curves and the BP curves
intersect each other. This point identifies a change in stability of the H bifurcation curve.

In particular, the BP bifurcations lead our model to show multiple branches of stationary solu-
tions for suitable current values. This is a finite-size effect due to the finite number of neurons
in each population, which leads to a richer set of eigenvalues than that obtained by using meth-
ods based on the reduction of the number of equations, such as the mean-field approximation
(see S1 Text for more details). In order to thoroughly investigate the bifurcations the system
undergoes in presence of strong inhibition, we start by analyzing the codimension one bifurca-
tion diagram for JII = −34. In particular, the diagram in Fig 8 is obtained by setting II = −10. It
turns out that, in addition to the primary equilibrium curve (black line), new branches of sta-
tionary states (violet lines) emanate and collapse in two BP bifurcations. These secondary
branches hold supercritical H bifurcations that give rise to stable limit cycles. Instead, on the

Fig 8. Codimension one bifurcation diagrams for μE (left) and μI (right) as a function of IE, for JII = −34 and II = −10. In the top panels,
the stable/unstable primary equilibrium curve is described by plain/dashed black curves, while the secondary ones are described by plain/
dashed violet curves. H bifurcations appear on both the primary (red) and secondary (purple) equilibrium curves, giving rise to unstable and
stable limit cycles respectively (the maxima and minima of the oscillations are described by dashed and plain brown curves respectively). In
particular, the unstable cycles collapse into a homoclinic bifurcation, described by an orange line. The shaded colored boxes emphasize
sampled areas of the codimension one bifurcation diagram, whose corresponding temporal dynamics is shown in the bottom-panels. In
particular, the figure shows the correspondence between the BP, H and LP bifurcations and the split of the inhibitory membrane potentials,
the emergence of oscillations and the sudden jump of the neural activity, respectively. We induced transitions between these different kinds
of dynamics by increasing linearly the external input current IE while keeping II fixed.

doi:10.1371/journal.pcbi.1004992.g008
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primary branch, we find two LP bifurcations and a subcritical H bifurcation, whose unstable
limit cycles vanish in a homoclinic orbit. We also observe that the inhibitory neurons, as well
as the excitatory neurons, for NI = 2 have the same bifurcation diagram (see Fig 8). However,
differently from the excitatory case, this does not mean that the inhibitory membrane poten-
tials are homogeneous. Indeed, when an inhibitory neuron is on the upper secondary branch
(see the violet curve above the primary equilibrium curve in Fig 8, right), the other one is on
the lower secondary branch, thus they are heterogeneous.

For JII = −100, secondary branches of equilibrium points are still present, see Fig 9. Together
with a subcritical H bifurcation, they unveil also LP bifurcations. In particular, the former gener-
ates unstable limit cycles that become stable after having crossed the limit point of cycles bifurca-
tion (dark green loop). For increasing values of IE, the stable limit cycles collapse into the
unstable limit cycles originated from the subcritical H bifurcation belonging to the primary equi-
librium curve. Before collapsing, the stable limit cycles undergo a torus bifurcation (gray loop).

By varying also II, we obtain the codimension two bifurcation diagrams displayed in Fig 10.
It is worth noting that the branching points the system undergoes generate two bifurcation

Fig 9. Codimension one bifurcation diagrams for μE (left) and μI (right) as a function of IE, for JII = −100 and II = −10. The colored
curves in the top panels describe the same bifurcations as in Fig 8. Besides, we observe LP bifurcations on the secondary branches (light
blue points), an LPC bifurcation (dark green loop), and a TR bifurcation (gray loop). To conclude, similarly to Fig 8, in the bottom panels we
plot some examples of dynamics of the membrane potentials for linearly increasing values of the current IE.

doi:10.1371/journal.pcbi.1004992.g009
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curves (light green dot-dashed lines) that pass through the whole IE−II domain. The presence
of these curves is the most relevant difference with the weak-inhibition regime and the classic
(mean-field) Wilson-Cowan model (compare with Fig. 2.12 in [66]). Furthermore, the LP and
H bifurcations that belong to the secondary branches give rise to further bifurcation curves
(purple and light blue lines, respectively) in the IE−II domain, as shown in Fig 10.

Interestingly, since the BP bifurcation increases the dimension of the network from 2 (for λI
< 0, see Eq (6)) to 3 (for λI > 0, see Eq (12)), the network can exhibit more complex dynamics,
such as quasi-periodic motions originated from the torus bifurcations. The biological impor-
tance of quasi-periodic oscillations in neural communication was discussed in [71].

Now we want to study the local bifurcations from the analytical point of view. On the pri-
mary branch, the LP, H and BT bifurcations have the same expressions obtained in the weak-
inhibition regime, therefore they are valid for arbitrary NE,I, as well as the formulas that we
derive below for the BP and ZH bifurcations. On the contrary, unlike the weak-inhibition
regime, the formulas of the LP, H and BT bifurcations on the secondary branches in the
strong-inhibition regime are valid only for NI = 2 (while NE can still be arbitrary), even though
our formalism can be extended to the case NI> 2.

We start by considering the BP bifurcations, which are defined by the condition λI = 0, as
we saw before. From Eq (8) this condition implies:

A 0
I mI BPð Þð Þ ¼ N � 1

tIjJII j
; ð22Þ

thus the solutions of this equation are:

mI BPð Þ ¼ VT
I � 2

LI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c23

q
�1 :

r
ð23Þ

Eq (23) shows that μI (BP) is defined only for ψ� 1, and therefore that the BP bifurcations
occur only in the strong-inhibition regime. Now, from the second equation of the system (6)

Fig 10. Codimension two bifurcation diagram on the IE−II plane for JII = −34 (left) and JII = −100 (right). In addition to the bifurcations
already displayed in Fig 7 (right) we stress the presence of new ones. The branching points form two curves (light green dot-dashed lines)
that define the values of IE−II that bound the secondary branches of equilibrium points (see the violet curves in Figs (8) and (9)). The
bifurcations originated on the secondary branches are differentiated from those originated on the primary one. Specifically, we show H and
LP curves (purple and light blue lines, respectively). In addition, we display the torus bifurcation curves (gray lines).

doi:10.1371/journal.pcbi.1004992.g010

The Complexity of Dynamics in Small Neural Circuits

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004992 August 5, 2016 21 / 35



(we can also use Eq (12), since for λI = 0 they are equivalent) we get:

mE BPð Þ ¼ VT
E � 2

LE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1

2 N � 1ð Þ
nmax
E NEJIE

1

tI
mI BPð Þ � NI � 1

N � 1
JIIA I mI BPð Þð Þ � II

� �
� 1

� �2 � 1

vuuuuut ð24Þ

while from the first equation of Eq (6) we get:

IE ¼
1

tE
mE BPð Þ � NE � 1

N � 1
JEEA E mE BPð Þð Þ � NI

N � 1
JEIA I mI BPð Þð Þ ð25Þ

where μI (BP) and μE (BP) are given by Eqs (23) and (24) respectively. Since μE (BP) depends
on II, Eq (25) defines two explicit functions IE ¼ F�ðIIÞ, that provide the curves on which we
have a BP bifurcation (see the light green lines in Fig 10 for JII = −34 and JII = −100. More
details can be found in S1 Text).

It is important to observe that for NI > 2 the network may undergo special branching points
that are not determined by the condition λI = 0, rather by the fact that one of the eigenvalues of
the reduced Jacobian matrix introduced in S1 Text tends to zero. These branching points can
be studied analytically through our approach, but since the complexity of the corresponding
eigenvalues strongly depends on NI and on the degree of heterogeneity of the inhibitory popu-
lation, we do not analyze them in detail.

The points where the H and BP curves meet each other define the ZH bifurcations. From

this definition, we see that they can be calculated analytically from the conditions lR0;1 ¼ �io
and λI = 0, from which in turn we get:

A 0
EðmEðZHÞÞ ¼ N � 1

ðNE � 1ÞJEE
1

tE
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tI
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A 0
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and therefore:
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As usual, if we substitute these expressions of the membrane potentials into Eqs (6) or (12), we
obtain the coordinates of the ZH points in the IE−II plane.

On the secondary branches that are generated by the branching points, new bifurcations
can occur (in the case NI = 2, see for example the LP and H bifurcations in Figs (8) and (9), and
the corresponding light blue and purple curves in Fig 10), also new branching points (for NI >

2), from which tertiary branches emerge, and so on. To study them, according to bifurcation
theory, we need the Jacobian matrix of the network on the secondary (tertiary, and so on)
branches, as we will explain more clearly in the next subsection. Here we focus again on the
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case NI = 2, therefore we can determine the local bifurcations on the secondary branches by
means of Eq (13).

Now we start with the LP bifurcations. We know that they are defined by the condition that
one of the eigenvalues of Eq (13) is equal to zero. From it, as explained in S1 Text, we obtain
that:

A 0
E mEð Þ ¼

�b
�a

ð26Þ

where:

�a ¼ 1

t2I

NE � 1

N � 1
JEE þ

1

tI

NE

ðN � 1Þ2 JEIJIE½A
0
IðmI;0Þ þ A 0

IðmI;1Þ�

þ 1

ðN � 1Þ3 ½2NEJEIJIEJII � ðNE � 1ÞJEEJ2II �A 0
IðmI;0ÞA 0

IðmI;1Þ

�b ¼ 1

tE

1

t2I
� JII

N � 1

� 
2

A 0
IðmI;0ÞA 0

IðmI;1Þ
" #

:

Therefore if we invert Eq (26) and we use the solution of Eq (15), we obtain the expression of
μE as a function of μI,0. If we replace the solutions μE and μI,1 in the system (12), we get
parametric equations for IE,I as a function of a single parameter, which is now defined as

v¼def mI;0. These equations are an analytical description of the light blue curves shown in Fig 10

(right) for JII = −100. Similarly, for the H bifurcations we obtain the following condition:
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therefore again it is possible to describe these bifurcations analytically, obtaining the same
results we got numerically in Fig 10 for JII = −34 and JII = −100 (see the purple curves in both
the panels). However, unlike the primary branch, our theory does not allow us to calculate the
range of the parameter v ¼ mI;0 on the secondary branches, since the resulting equations that

define the range are analytically intractable. In the same way, it is not possible to calculate
explicitly the coordinates of the new BT bifurcations, where the LP and H curves that emanate
from the secondary branches meet each other. Therefore they can be evaluated only through
analytical approximations (which are beyond the purpose of the article), or through a numeri-
cal approach (as in S1 File).
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For an arbitrary NI, if spontaneous symmetry-breaking has not occurred, and if the initial
conditions are homogeneous, then all the neurons in each population are described by the
same equation. Therefore the network can be interpreted as a two-dimensional system, and
for the Poincaré-Bendixson theorem it cannot show chaotic behavior. Nonetheless, when a
symmetry-breaking occurs, the inhibitory neurons split in subgroups, and the network
becomes at least three-dimensional depending on the number of inhibitory subpopulations
arisen. In this case, it is possible to check numerically the presence of chaos by computing the
Lyapunov exponents [62]. In particular, when the symmetry-breaking occurred in the sim-
plest case NI = 2, we excluded the presence of chaos since the Lyapunov exponents were
always negative. However, the emergence of chaos is still possible for NI > 2, as we will discuss
in the next subsection.

We conclude by describing briefly the effect of the variation of the remaining synaptic
weights. When we discussed the weak-inhibition regime, we showed that the LP and H curves
on the primary branch change in a qualitatively similar way for different values of JII, and the
same conclusions apply to the strong-inhibition regime. On the other side, now we want to
analyze the behavior of the BP curves and of the bifurcations on the secondary branches. For
JII = −100 and increasing JEE, the most notable phenomenon is the overlap between the obli-
que parts of the BP and the LP curves of the primary branch. The latter finally collapse on
each other and split in two disjoint parts, as in the case JII = −10 discussed for the weak-inhibi-
tion regime, while the bifurcations on the secondary branches do not show any interesting
variation. Furthermore, when JEE ! 0, we observe first of all the disappearance of the ZH
bifurcations. This occurs because the H curves on both the primary and the secondary
branches do not meet the BP curve anymore. If we further decrease JEE, the two CP bifurca-
tions on the LP curve of the secondary branches get closer and closer until they annihilate
each other and the curve disappears. This phenomenon implies also the disappearance of the
BT bifurcations on the secondary branches. For smaller values of JEE, the H curves on both the
primary and secondary branches disappear, and finally also the LP curve on the primary
branch (see the weak-inhibition regime) and the BP curve. To conclude, for large jJEIj or large
JIE, the LP curve on the secondary branches disappears again through the annihilation of its
CP points (as explained above), while on the other side, when at least one of the two synaptic
weights is small, we do not observe any interesting variation of the bifurcations on the second-
ary branches.

The study of networks with arbitrary NI

The same analysis can be performed on networks with an arbitrary number NI of inhibitory
neurons. When λI in Eq (8) goes to zero, we observed the formation of secondary branches
from the primary one. This means that the inhibitory neurons split into two subsets [52, 78],
and all the neurons in a given subset behave identically. For this reason we can reinterpret the
system as a network with an excitatory population with NE neurons, and two inhibitory popu-
lations. Furthermore, when we change the current IE (while keeping λI > 0) with II fixed, at
some point one of the eigenvalues of the Jacobian matrix of the system (11) (see S1 Text for
their analytical calculation, supposing that the sizes of the clusters are known) may go to zero,
generating a new branching point on the secondary branches. In this case we observe the for-
mation of tertiary branches, and so on.

Whenever a group of K inhibitory neurons splits into two clusters with sizes P and Q = K−P

and membrane potentials mðPÞ
I and mðQÞ

I respectively, the Jacobian matrix of the network has

eigenvalues lðPÞ
I ¼ � 1

tI
þ JII

N�1
A 0

IðmðPÞ
I Þ

h i
and lðQÞI ¼ � 1

tI
þ JII

N�1
A 0

IðmðQÞ
I Þ

h i
with multiplicity Q−1
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and P−1 respectively. Immediately beyond the BP bifurcation that originated the two clusters,

one of lðPÞI and lðQÞ
I is positive. Thus if P and/or Q is larger than one, the new branches are

unstable near the bifurcation point. These eigenvalues do not affect the stability of the new
branches only in the case P = Q = 1 (having multiplicity equal to zero), which is compatible
with the fact that for NI = 2 the secondary branches are stable near the branching point (see
Figs 8 and 9). In the general case P = Q = 1 the stability of the new branches depends on the
eigenvalues of the reduced Jacobian matrix introduced in S1 Text. These eigenvalues are
strongly affected by the value of the parameter NI and by the degree of heterogeneity of the
inhibitory population. For this reason it is not easy to draw general conclusions about the sta-
bility of the new branches in the case P = Q = 1.

In Fig 11 we show an example of formation of secondary branches in the case NI = 4,
obtained as usual for the values of the parameters reported in Table 1. In this case K = 4, P = 3
and Q = 1, therefore the secondary branches are unstable near the branching points.

It is apparent there is an important difference compared to the case NI = 2. For a network
with only two inhibitory neurons, Eq (12) implies that they both have the same codimension
one bifurcation diagram (see the right panels of Figs 8 and 9). This is just a special case, because
in general, for NI > 2, the inhibitory neurons have different codimension one bifurcation dia-
grams. Although Fig 11 is useful to get an idea of how a bifurcation diagram for NI = 4 would
look like, it is important to underline that this diagram could not be entirely thorough. Indeed,
since in this case λI in Eq (8) has multiplicity larger than one, the Cl_MatCont toolbox may fail
in providing us the complete picture [78]. Nonetheless, in principle it is possible to check the
completeness of the diagram since, for an arbitrary NI, local bifurcations can still be calculated
analytically through our approach. In fact, from Eqs (14) + (15), it is possible to express NI−1
inhibitory membrane potentials as functions of the remaining one, which can be used as a
parameter for the parametric equations in the codimension two bifurcation diagram.

To conclude, we observe that for NI > 2 new kinds of bifurcations may appear, which do
not occur in the case NI = 2. For example, for NI = 3, if the network has three different inhibi-
tory potentials, the characteristic equation of the Jacobian matrix has the form

pðlÞ ¼ ðl� lEÞNE�1pRðlÞ, where pRðlÞ (the characteristic polynomial of the reduced Jacobian
matrix introduced in S1 Text) is a fourth order polynomial. This means that in principle, for
some values of the parameters, the network may have two pairs of purely imaginary eigenval-
ues. This condition corresponds to the formation of a double-Hopf bifurcation, which in turn
may imply a local birth of chaos (see for example [72, 73]).

Fig 11. Codimension one bifurcation diagrams forNI = 4. The left panel shows the diagram of the excitatory neurons, the central panel
that of three inhibitory neurons, while the right panel shows the diagram of the remaining neuron in the inhibitory population. The secondary
branches are unstable near the BP bifurcations, see text. Compared to the caseNI = 2, now the inhibitory neurons have not only different
membrane potentials, but also different codimension one bifurcation diagrams.

doi:10.1371/journal.pcbi.1004992.g011
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Discussion
We proved the emergence of complex dynamics in small neural circuits, characterized by
strong finite-size effects, which cannot be accounted for by the mean-field approximation and
that are much less likely to occur in large fully-connected neural systems. We showed, through
a detailed numerical and analytical study of the bifurcations, that small homogeneous neural
networks undergo spontaneous symmetry-breaking through branching-point bifurcations,
which leads to the formation of strongly heterogeneous activity in the inhibitory population.
This phenomenon occurs when we increase the strength of the synaptic weights in the inhibi-
tory population, and shows the dangers of applying mean-field hypotheses to small popula-
tions of homogeneous neurons. A reason of interest of this finding is that it shows that it is
possible to obtain a heterogeneous distribution of activity across neurons, as observed in real
networks, even starting from the simple assumption of neurons with homogeneous characteris-
tics. Heterogeneity of neural responses is thought to be an important feature of neural popula-
tion codes, as it helps increasing the diversity of response profiles of different neurons [14, 15]
and to reduce the detrimental effect of noise correlations on information processing [16]. Both
such effects help reducing the redundancy of the information carried by different neurons. It is
natural to speculate that avoiding massive redundancy is particularly important for small neu-
ral systems, as they must code as much information as possible with a small number of units.
Thus, the features of neural dynamics specific to small neural systems that we reported here
may be helpful for their function.

The analysis we performed can be used to understand not only the dynamics of circuits at
the mesoscopic scale in mammals, but also the behavior of tiny brains such as those of rotifers
and nematodes [19]. However, it is important to observe that the finite-size phenomena that
we described here may also in principle arise in networks of large sizes, for example when jJIIj
is at least of the order of N

tI
in fully-connected networks, or when the connectivity is suffi-

ciently sparse (see S1 Text). It is possible to extend our reasoning to argue that also in such
cases the formation of multiple branching-point bifurcations and a stronger heterogeneity of
the neural activity may arise from populations of neurons with homogeneous characteristics.
This leaves the possibility open that such effects may happen also in circuits of not-so-small
size.

The model we introduced is largely analytically tractable, therefore it allowed us to derive
exact formulas of the local bifurcation points. We implemented these formulas in a standalone
Python script, which performs the analysis of local bifurcations in a few seconds without the
need of complex tools for the study of bifurcations, such as Cl_MatCont and XPPAUT, which
make use of the continuation of equilibria.

To conclude, we discuss the differences and advances that our model presents with respect
to previous work on neural networks, and we discuss how it can be significantly extended and
generalized through the introduction of new features that improve the biological plausibility of
the model, without losing the possibility to investigate analytically its dynamics.

Comparison with previous work
Bifurcations in networks of arbitrary size. In his pioneer work [48], Beer provided a

fairly complete description of bifurcations for 1- and 2-neuron circuits, and added a few results
for networks of larger size that are valid under very specific, and not always biologically plausi-
ble, assumptions about synaptic connectivity. Our work builds on this knowledge and extends
it. Specifically, we performed a detailed analytical and numerical analysis of the possible
dynamical behavior of a network composed of two neural populations. Due to the high dynam-
ical complexity of the network, we studied extensively the case of an excitatory population
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composed of an arbitrary number of neurons NE and an inhibitor populations with NI = 2, and
then we described how to extend our results to the case NI > 2.

The neurons in each population were identical, and this made the equations of our model
symmetric under permutations of the neural indexes within a population. More precisely, our
equations are invariant under the action of the group SNE

× SNI
, where SNα

is the permutation
group on Nα items (also known as symmetric group). To the best of our knowledge, previous
studies of homogeneous neural systems with symmetry have been restricted to networks of
neural oscillators composed of one population with symmetry group SN [78]. Networks com-
posed of one excitatory and one inhibitory population have been considered (e.g. [13, 66]), but
only for large populations or in the thermodynamic limit N!1. In our work we performed a
detailed bifurcation analysis for a two-populations network in the more complex case of popu-
lations with arbitrary finite size. The presence in our finite-size model of a second population
(and the corresponding SNE

× SNI
symmetry) increased the complexity of the model with

respect to these previous studies, and was a key factor in creating a surprisingly rich network
dynamics even under the hypothesis of homogeneous neurons in each population.

As in [4], we based our analytical study of bifurcations on the method introduced in [5] for
local codimension one bifurcations. Moreover, for the first time we extended this approach to
the analysis of spontaneous symmetry-breaking and to some codimension two bifurcations.
Our approach can also be easily applied to local bifurcations with codimension larger than two
in neural networks composed of several populations (see S1 Text). This may become useful to
study more complex and biologically plausible networks, especially when the complexity of the
numerical simulations becomes prohibitive. In general we may consider a network withP pop-
ulations, and whose equations are invariant under the action of the group
SN0

	 SN1
� � � 	 SNP�1

. In this network, a codimension C bifurcation is described by a

ðP� C Þ-dimensional manifold, whose parametric equations containP� C independent
parameters. The only exception, as in the case with two populations considered in this article,
is the BP manifold, whose equation can be written by expressing any current as an explicit
function of all the others (see Eqs (23) + (24) + (25)). For example, in a network with three
populations A, B, C, in the codimension three diagram spanned by the currents IA, IB, IC we get
that:

• the bifurcations LP, H etc. are described by surfaces with two parameters;

• BT, CP etc. by lines with one parameter;

• codimension three bifurcations by points;

• the BP bifurcations are described by surfaces with explicit formulas IA ¼ FðIB; ICÞ.
However, a complete classification of bifurcations with C � 3 is still missing in the literature.
Nevertheless, the method introduced in this article can be used in principle to extend the
approach introduced in [5] to local bifurcations with large codimension.

Spontaneous symmetry-breaking in neural fields. Since we consider identical neurons
within each population, our model can be cast in the context of the bifurcation theory of
dynamical systems with symmetry, which is known as equivariant bifurcation theory [50].
Symmetry-breaking and branching-point bifurcations have already been studied in neurosci-
ence through equivariant bifurcation theory, but in a conceptually different way. In [51],
Ermentrout and Cowan used symmetry-breaking, as well as arguments developed in the con-
text of reaction-diffusion equations, to evaluate hallucinations in primary visual cortex under
the effect of drugs. They idealized the cortex as a plane and described the local activity of a pop-
ulation of neurons by means of neural-field equations, so that each population was univocally
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identified by its position in the continuous space of the plane. Their theory exploits the symme-
try the neural-field equations inherit from the geometrically regular structure of the anatomical
connections in primary visual cortex. In equivariant bifurcation theory, this symmetry is
described by the invariance of the equations under the action of the Euclidean group E(2),
which is the group of rigid motions in the plane, generated by translations, rotations, and
reflections. However, the network analyzed in our work is described by equations that are
invariant under the action of the group SNE

× SNI
. This is a completely different kind of symme-

try compared to that of the Euclidean group E(2), and it allows us to study in an analytically
simple way networks made of a finite number of neurons. Indeed, this is conceptually different
from the theory of Ermentrout and Cowan, which relies on infinite-dimensional neural-field
equations. Thus, their theory does not describe finite-size effects, and does not use the underly-
ing symmetry for this purpose.

From a biological point of view, the strong inhibition that leads to spontaneous symmetry-
breaking may loosely correspond to effect of anesthesia, as some kinds of anesthetics, such as
propofol, thiopental and isoflurane, act on γ-Aminobutyric acid (GABA), the primary inhibi-
tory neurotransmitter [74]. Our results prove that the dynamics repertoire of small neural popu-
lations can be completely different depending on the level of inhibition. In particular, in our
model symmetry is broken by an increase of the inhibitory synaptic weights. This differs from
the theory of hallucinations of Ermentrout and Cowan, in which spontaneous symmetry-break-
ing requires enhanced excitatory modulation as well as a decreased inhibition to occur [51].

Future directions
Comparison with spiking models. Rate models of the type used in our study have been

shown to generate dynamics similar to that of the firing rate in spiking neuron networks under a
wide variety of conditions. These conditions include slow dynamics [80], slow synapses [81], and
asynchronous states [82]. An important topic for future research is to understand when the
dynamics of the rate model we used is close to that of spiking neuron models and when it is not.
While addressing this issue goes far beyond the remit of the present study, it is useful to speculate
on the conditions in which we expect our rate model to correspond more closely to spiking neu-
ron models. This correspondence may depend on the details of the spiking neuron model chosen
for comparison [83] as well as on the specific set of considered model parameters and the
dynamics it generates [84]. In particular, it is likely that the correspondence between our model
and a spiking neuron model holds better when the network is in an asynchronous state [82]. Net-
works with all-to-all coupling, like ours, are relatively easy to synchronize [85] since they have
the shortest path length possible (L = 1). However, asynchrony is not incompatible with an all-
to-all connectivity assumption. Asynchronous states may be generated in several ways, e.g. with
both inhibitory and excitatory neurons [86] or with purely excitatory networks [83]. Because of
this, it is tempting to speculate that the rate equations we used describe reasonably well the firing
rate of an underlying spiking model in a wide range of bifurcation parameters IE, II. At the light
of the results of [83, 86] strong synchronization is expected to arise mainly with strongly hyper-
polarizing currents IE, since these strong currents deactivate the excitatory population thereby
effectively making the network purely inhibitory and thus more likely to strongly synchronize.

Possible extensions of the model. In this article, for simplicity we decided to lay down the
foundations for the mathematical study of small neural systems by making a number of simpli-
fying assumptions in the model. However, it is important to note that many of these assump-
tions can be relaxed in future work, while still keeping the model analytically tractable.

For example, it is possible to introduce some heterogeneity in the network. A first element
of heterogeneity that we discussed in Results was the heterogeneity generated in the inhibitory
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population by spontaneous symmetry-breaking. However, another, and perhaps more trivial,
way to introduce heterogeneity in both the neural populations is through an explicit symmetry-
breaking, namely the breaking of the permutation symmetry by parameters in the neural Eq
(3) that do not respect the symmetry. Clearly, in order to break the permutation symmetry
explicitly, these parameters must introduce differences between the neurons in a given popula-
tion, so that they are not identical anymore under exchange of the neural indexes. Any parame-
ter of the network can serve to this purpose, but since in this article we focused mainly on the
importance of the synaptic weights, here we suppose that the symmetry is explicitly broken by
the terms Jαβ. For this reason, we can suppose for example that the weights between two popu-
lations are independent and identically distributed as Jab 
 N ð�J ab; s2

Jab
Þ, where �J ab and σJαβ are

respectively the mean and the standard deviation of the normal distribution. σJαβ measures the
degree of heterogeneity of the network, since for large σJαβ the Nα × Nβ weights from population
β to population α are more likely to be different. The main effect of this heterogeneity is to
remove the degeneracy of the eigenvalues λE,I, see S11 Fig.

The spectrum of matrices with distributed weights is studied in the field of random matrix
theory [75]. However, random asymmetric block-matrices have been considered only recently
[76]. Usually these matrices are supposed to have zero-mean random entries, also on the main
diagonal, while the entries of our Jacobian matrix have non-zero mean and are deterministic
on the main diagonal. For this reason some heuristics must be introduced to adapt the results
of randommatrix theory to our neural network. For example, it is possible to prove that in the
weak-inhibition regime, given sufficiently small standard deviations σJαβ, the eigenvalues λE and
λI respectively split into NE−1 and NI−1 eigenvalues, which are uniformly distributed in the

complex plane within the circles of radius
ffiffiffiffi
NE

p
N

sJEE
A 0

E �mEð Þ and
ffiffiffiffi
NI

p
N

sJII
A 0

I �mIð Þ, and centered in
the points with coordinates � 1

tE
þ �J EE

N�1
A 0

E �mEð Þ
h i

; 0
� �

and � 1
tI
þ �J II

N�1
A 0

I �mIð Þ
h i

; 0
� �

(see S11

Fig). Here �mE;I are the solutions obtained from Eq (6) after replacing Jαβ with �J ab. This distribu-

tion is a generalization of Girko’s circular law [77], and it clearly shows that heterogeneity in
the neural equations removes the eigenvalues degeneracy increasing the complexity of the
bifurcation structure.

It is interesting to observe that, similarly to the heterogeneity caused by spontaneous sym-
metry-breaking, also the one determined by explicit symmetry-breaking can be regulated
dynamically through the stimuli IE,I. Indeed, the degree of heterogeneity caused by the random

weights in the population α is
ffiffiffiffi
Na

p
N

sJaa
A 0

a �mað Þ. Therefore, it depends on the input currents

through the activation function. This suggests that in real networks the effective degree of het-
erogeneity is determined by a superposition of both kinds of symmetry-breaking.

Our work can also be extended to spatially organized interacting populations of neurons. As
it is often the case in numerical simulations of neural-field dynamics, the populations may be
arranged on a two-dimensional regular lattice with periodic boundary conditions. In topologi-
cal terms, the two-dimensional lattice can be thought of as being mapped onto a torus. The
torus does not have boundaries and the neurons on it would be still identical since they would
all have the same number of connections to other neurons. Therefore we expect that spontane-
ous symmetry-breaking would play an important role also in this kind of networks.

To conclude, it is possible to study how the bifurcations affect the behavior of the network
under periodic inputs, as in [57], and the relationship between bifurcations and random noise.
For example, it is well-known that saddle-node bifurcations in stochastic systems lead to criti-
cal slowing down [12], while random fluctuations may perturb a stable equilibrium state close
to an Andronov-Hopf bifurcation, generating sustained oscillations known as quasi-cycles [13].
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Recent studies of neural models of the whole cortex at the edge of criticality have proposed
stimulus- and noise-driven bifurcations as the neurophysiologic mechanism underlying the
rich dynamical behavior of the brain [7, 8]. In principle our formalism may be applied to per-
form a systematic analysis of bifurcations in these models.

Supporting Information
S1 Text. Supplementary calculations and numerical simulations. This text contains addi-
tional information about the analytical derivation of the equilibrium points and the codimen-
sion two bifurcation diagram. By means of numerical simulations we also provide a complete
picture of the codimension one bifurcation diagrams for weak and strong inhibition. Moreover,
we show how the network size and sparse connections influence the branching-point bifurca-
tions of the system.
(PDF)

S1 Fig. Equilibrium points obtained from the first-order perturbative expansion on the pri-
mary branch. The panels on the top represent the solutions μE,I for II = −10, while those at the
bottom are the solutions for II = −30. The figure shows a good agreement with the numerical
solutions provided by Cl_MatCont on all the portions of the primary branch with the excep-
tion of most of the cyan colored curve, and also the green and yellow ones close to point A,
where the first-order perturbative approximation does not work anymore due to the divergence

of mð1Þ
E . For II = −10 the curves μE,I are made of 5 portions (green, yellow, blue, red, cyan), while

for II = −30 the blue and red portions disappear, see text.
(TIF)

S2 Fig. LP curve obtained from the first-order perturbative expansion on the primary
branch. The zoom in the right-hand side of the figure shows that the approximation does not
describe the cusp bifurcation (CP for short), even if the overall LP curve corresponds qualita-
tively to that shown in Fig 7 in the main text.
(TIF)

S3 Fig. Analytical bifurcation diagram obtained from the eigenvalues on the primary
branch. The zoom in the right-hand side of the figure shows the CP bifurcation, which is not
predicted by the first-order perturbative expansion (compare with S2 Fig).
(TIF)

S4 Fig. Areas with qualitatively similar dynamics in the weak-inhibition regime.Due to the
high symmetry of the codimension two bifurcation diagram shown in Fig 7 in the main text,
we focus here on its upper-half part. In addition to the codimension two bifurcations presented
in Fig 7, we consider three additional points p1, p2, p3 that allow us to divide the diagram hori-
zontally in nine areas, identified by the letters A-I. The codimension one bifurcation diagram
of each slice is shown in S5 Fig. For the meaning of the line colors see the main text.
(TIF)

S5 Fig. Representative samples of the codimension one bifurcation diagram in the weak-
inhibition regime. Each panel of this figure describes μE on the vertical axis as a function of IE
on the horizontal axis (the panels of μI have been omitted, see text), for different values of II in
areas A-I. The stable/unstable equilibrium curves are described by plain/dashed black lines.
Saddle-node (LP), as well as Andronov-Hopf (H) bifurcations, lie on the equilibrium curve.
Supercritical/subcritical H bifurcations give rise to stable/unstable limit cycles, whose maxima
and minima are described by plain/dashed brown curves. Homoclines, which are characterized
by large amplitude limit cycles with infinite period, are described by orange loops. The dark
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green loops identify the values of the current at which the limit cycles cross the limit point of
cycles bifurcations. Here, limit cycles change stability.
(TIF)

S6 Fig. Examples of neural dynamics. This figure shows the time evolution of the excitatory
membrane potentials Vi(t) (for any i = 0,. . ., NE−1), obtained from Eq (3) of the main text for
different values of the external currents. Left, we fix II = −4 (area A in S5 Fig). For IE = 2 and IE
= 7 the solutions converge to stable foci, giving rise to damped oscillations (red and blue curve,
respectively). For IE = 13 and IE = 15 the solutions converge to stable nodes (black and purple
curve, respectively). Right, we fix II = −13.3 (area G in S5 Fig). For IE = 0.216 we find low-
amplitude oscillations of about 35 Hz (red curve). For IE = 5.564 the amplitude of the oscilla-
tions is larger than the previous case, and the frequency increases up to 160 Hz (blue curve).
High-amplitude oscillations occur for IE = 11.85; since this current is close to the homoclinic
bifurcation, the frequency decays to 19 Hz (black curve). Finally, for IE = 12.5 the system
reaches a stable node (green curve).
(TIF)

S7 Fig. Areas with qualitatively similar dynamics in the strong-inhibition regime. As in S4
Fig, here we focus on the upper-half part of the codimension two bifurcation diagrams
obtained for JII = −34 (left), and JII = −100 (right). Specifically, we identify three regions in both
of them, represented by gray backgrounds, whose corresponding codimension one diagrams
are shown in S8 and S9 Figs.
(TIF)

S8 Fig. Representative samples of the codimension one bifurcation diagram for JII = −34.
Each row of this figure describes μE and μI for JII = −34 as a function of IE, for three different
values of II.
(TIF)

S9 Fig. Representative samples of the codimension one bifurcation diagram for JII = −100.
As in S8 Fig, but for stronger inhibition.
(TIF)

S10 Fig. Neural dynamics at the torus bifurcation. This figure shows the time evolution of
the excitatory membrane potentials at the torus bifurcation (left) and the corresponding trajec-
tory in the phase space (right). Both the panels have been obtained for JII = −100, II = −16 (area
C in S7 Fig) and IE � 11.804. From the left panel it is easy to see that the time evolution on the
torus is characterized by two (incommensurable) frequencies.
(TIF)

S11 Fig. Removal of the degeneracy of the eigenvalues caused by explicit symmetry-break-
ing. The panels on the left column show the whole set of eigenvalues (blue dots) of the Jacobian
matrix for increasing network’s size (N = 10, 100 and 1,000), while the panels on the right col-
umn represent a zoom of the eigenvalues close to the x-axis in the complex plane. The eigenval-
ues have been calculated numerically for �J EE ¼ 10, �J EI ¼ �70, �J IE ¼ 70, �J II ¼ �10, σJEE = σJIE =
1, σJEI = σJII = 0.1, and IE = II = 0, while the remaining parameters have been chosen according
to Table 1 in the main text. The panels on the right show that the eigenvalues λE and λI split
into NE−1 and NI−1 eigenvalues respectively, which are distributed according to a circular law.
The red circles represent the theoretical prediction of the support of the distribution according
to random matrix theory, see text.
(TIF)
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S1 Table. Domain of the LP parametric curve on the secondary branch. This table reports

the range of the parameter v¼def mI;0 obtained numerically from the system of inequalities (S57)

in S1 Text, for different values of JII. We observe that for large jJIIj the parameter vmin reaches a
constant value, while vmax increases linearly. This result suggests that simple asymptotic expres-
sions of vmin and vmax can be derived analytically. Nevertheless this calculation is beyond the
purpose of the article, and is left to the interested reader.
(TIF)

S1 File. Python script. This code generates the codimension two bifurcation diagram of the
network by using the analytical formulas derived in the article.
(PY)
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