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Abstract: Lichens are classified into different functional groups depending on their ecological and
physiological response to a given environmental stressor. However, knowledge on lichen response
to the synergistic effect of multiple environmental factors is extremely scarce, although vital to
get a comprehensive understanding of the effects of global change. We exposed six lichen species
belonging to different functional groups to the combined effects of two nitrogen (N) doses and direct
sunlight involving both high temperatures and ultraviolet (UV) radiation for 58 days. Irrespective of
their functional group, all species showed a homogenous response to N with cumulative, detrimental
effects and an inability to recover following sunlight, UV exposure. Moreover, solar radiation made
a tolerant species more prone to N pollution’s effects. Our results draw attention to the combined
effects of global change and other environmental drivers on canopy defoliation and tree death, with
consequences for the protection of ecosystems.

Keywords: nitrogen pollution; forest decay; global change; chlorophyll fluorescence; Fv/Fm ratio;
mediterranean ecosystems

1. Introduction

In the last decade, there has been a growing awareness of forests worldwide being
affected by severe decline and mortality driven by biotic and abiotic factors, probably a
consequence of global change [1–3]. Particularly, in Mediterranean ecosystems located in
southern Europe, a severe decline of Quercus suber and Quercus ilex has been detected since
the early 1980s [4–7]. In a context where human-induced stressors (such as global warming,
air pollutants, and invasive exotic species, among others) are weakening and predisposing
trees to defoliation and death, there is a pressing need to understand how these changes
can translate into disturbed ecosystem functioning [8]. Not only that but also how these
changes can interact with other environmental stressors at local or intermediate scales,
such as atmospheric pollutants. Nitrogen (N) deposition is one of the most challenging
drivers of global change in the study area, as N inputs in the Mediterranean Basin are
expected to increase from 7 kg N ha−1 yr−1 of the mid-1990s to 12 kg N ha−1 yr−1 in
2050 [9]. Interactions between environmental changes could trigger complex responses
subjected to important uncertainties [10,11], which could be pivotal drivers of the ecosystem
dynamics [12]. However, our understanding of the consequences of forest decline and its
interactions with N deposition is constrained by the limited available tools for disentangling
these ecological interactions.

Epiphytic lichens can have a large impact on forest dynamics (e.g., N, carbon (C),
phosphorous (P), and water cycling) [13], and due to their ability to regulate canopy
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environments, can improve water use by plants [14]. Hence, changes in lichen communities
could deeply affect other forest processes. To fully understand the implications of the
interactive effect of forest decline and increased N inputs for ecosystem functioning, it
becomes fundamental to assess their impacts on epiphytic lichens.

A direct consequence of tree defoliation and mortality is the substantial increase in
light intensity and, therefore, temperature for epiphytic lichens inhabiting the bark and
branches. Such alterations can have a strong effect on lichens, which are amongst the
most sensitive organisms to environmental changes [15], providing meaningful ecological
systems to model and foresee the response of other less sensitive organisms of the ecosys-
tem [16,17]. These poikilohydric organisms are especially sensitive to climate [15,18] and
air pollution [19–21] because their physiology is tightly linked to their water status, and
they lack mechanisms to control their water and nutrient contents [22]. For this reason,
they have been considered as valuable ecological indicators of environmental factors such
as temperature and N deposition [15,21,23].

Lichen functional groups are defined as groups of species that respond in a similar
way to specific environmental factors [24]. To attribute a species to a given functional group,
researchers assess the data available in the literature (e.g., LIAS [25]; Nimis and Martel-
los [26]; United States Forest Service [27]), and this knowledge has frequently been used to
support environmental policies [28]. Therefore, the scientific community has considered of
pivotal relevance to keep knowledge about species used in monitoring surveys as detailed
and updated as possible [21]. This has been the case for lichens used to identify N pollution
status: Oligotrophic species are highly sensitive to N pollution, whereas nitrophytic species
tolerate such conditions [16]. This way, for example, it is currently well documented that Ev-
ernia prunastri (L.) and species belonging to the genus Usnea are sensitive species that tend
to be affected by increased N availability [29–32], while Xanthoria parietina (L.) is much more
resilient to this pollutant [16,30,31]. Despite the great efforts to increase our knowledge on
the lichen community response to specific environmental factors, there is great uncertainty
on how lichens will respond to the synergistic effect of multiple environmental changes. In
particular, the combined effect of exposure to solar irradiation and increasing N availability
on lichens has never been studied. Similarly, there is very little information about the
recovering capacity of lichens after exposure to stress and none about the above-mentioned
factors. Filling these gaps is vital to get a comprehensive understanding of the potential
effects of global change, not only on lichen communities but also on important ecosystem
processes, which is required for the science-based establishment of environmental policies.

The aim of this research was to assess the combined effect of both increased solar
exposure and increased N deposition on the physiological response of six epiphytic lichen
species belonging to various functional groups in terms of solar radiation and N tolerance.
We hypothesized that the physiological response of lichens to increased solar radiation
would be modulated by the N addition treatment, meaning a lower vitality in N-treated
samples exposed to direct sunlight than in control ones. We also expected that the dif-
ferent species would respond differently to these environmental factors because of their
adaptation strategies. Namely, we expected that the most tolerant species to each one of
these environmental stressors would be the most resilient to their synergistic effect. Finally,
we hypothesized that species belonging to more tolerant functional groups would show
a higher capacity to recover after the stress exposure than sensitive species. To test our
hypotheses, we used chlorophyll a fluorescence as a sensitive but non-destructive method
for assessing the response of photosynthetic organisms to environmental changes [33].
Understanding the response of these sensitive elements of ecosystems to multiple en-
vironmental stressors is a primary goal to improve the use of lichens as indicators for
environmental protection and predict the potential consequences of global change on
ecosystem functioning.
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2. Materials and Methods
2.1. Lichen Sampling

In spring 2020, samples of Xanthoria parietina, Ramalina lacera, Usnea sp., Flavoparmelia
caperata, Parmotrema hypoleucinum, and Evernia prunastri were collected from a forest patch
near Vila Franca de Xira, Portugal (191 m a.s.L., 38◦58′29′′ N, 9◦00′27′′ W). This site was
devoid of important sources of pollution; however, it can receive low N deposition from
local roads and agricultural areas. Whenever possible, lichens were collected whole by
cutting the branch or removing the bark that acted as a substrate. Samples were then
transported to the laboratory, where branches or bark were carefully cut in order to leave
only the minimum necessary to support the lichen. Finally, lichens were carefully cleaned
to remove any impurities. All lichens were stored at room temperature and were fully
rehydrated before performing any measurements.

The Ecological Indicator Values (Table 1) established by Nimis and Martellos [26] were
used in this study as a proxy of functional groups. This table shows categorical values
ranging from 1 to 5 that represent the ecological situations regarding solar irradiation and
eutrophication where these species can be found in nature. Although samples of Usnea
were not identified to species, most species of this genus have very similar ecological
requirements with high tolerance to solar radiation and high sensitivity to N.

Table 1. Lichen’s Ecological Indicator Values established by Nimis and Martellos (2020).

Lichen Species Solar Irradiation 1 Eutrophication 2

Xanthoria parietina 3, 4, 5 3, 4
Ramalina lacera 4, 5 2, 3

Usnea sp. 4, 5 1, 2
Flavoparmelia caperata 3, 4 1, 2, 3

Parmotrema hypoleucinum 4, 5 1, 2
Evernia prunastri 3, 4, 5 1, 2, 3

1 Values mean: 1 in very shaded situations, 2 in shaded situations, 3 in sites with plenty of diffuse light but scarce
direct solar irradiation, 4 in sun-exposed sites, 5 in sites with very high direct solar irradiation. 2 Values mean:
1 no eutrophication, 2 very weak eutrophication, 3 weak eutrophication, 4 rather high eutrophication, 5 very
high eutrophication.

2.2. Nitrogen Treatment

Two levels of N treatment (N 25 and N 50) and a control were established. Treatments
involved daily immersion of the samples in 25 mM (N 25) or 50 mM (N 50) (NH4)2SO4
solutions for 5 min repeated for 58 days. The same protocol was followed for control
samples using only mineral water with low mineral content. It is worth noting that
all species in this experiment have a trebouxioid photobiont, which requires alternate
wetting and drying to get a photosynthetic response of the photobiont. Lichens were
housed in custom-built wire mesh cages that prevented their flotation on the solutions (see
Figure S1 in the Supplementary Materials). After each treatment, the samples were placed
in wire mesh shelves in a well-aerated location, which ensured enough drying before the
subsequent immersion and hence prevented rotting of the lichen thalli or the substrate (see
Figure S2 in the Supplementary Materials). Mineral water with low mineral content was
used to avoid osmotic shock. For each treatment, 5 replicates were used.

2.3. Increased Radiation Treatment

Light exposure treatment was undertaken in 3 stages in parallel with the N treatment.
First, lichens were incubated indoors in front of a big north-facing window, with abundant
light but no direct sun. This started the same day as the N treatment and lasted 20 days.
The 2nd stage involved the daily exposure of the lichens to 5 h of direct sunlight during
the hours of higher solar radiation (from 10 a.m. to 3 p.m., solar time). The average
temperature during the exposure was 28 ◦C, and the maximum temperature was 35.8 ◦C,
with sunny conditions throughout the exposure. The reported temperature was measured
in the closest meteorological station, therefore, in shaded conditions. It should be noted that
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the temperature at the lichen surface, which was permanently facing the sun, was likely to
exceed the measured air temperature considerably. This part of the treatment lasted 8 days
and was performed in mid-May in southern Spain (42 m a.s.l., 37◦16′51′′ N, 5◦54′54′′ W).
After each sun exposure, lichens were returned indoors to avoid humidity or temperature
fluctuations. In the last stage, intended as recovery, lichens were returned to the indoors
location. The recovery lasted 29 days until the end of the experiment. No control group
was established for this treatment because we intended to analyze the difference among N
levels and not radiation levels.

2.4. Chlorophyll a Fluorescence

Treatment effects were quantified using a Plant Efficiency Analyzer Handy PEA
(Hansatech Instruments LTD, Pentney, UK), which determined the Fv/Fm ratio, the
most frequently used chlorophyll a fluorescence parameter, vitality index in ecological re-
search [34–36]. Ten minutes after each daily N treatment, with the samples fully rehydrated,
the Fv/Fm ratio was measured [37,38]. Lichens were dark-adapted at room temperature for
15 min to maximize oxidation of the primary quinone electron acceptor of PSII immediately
before measuring fluorescence. For each treatment, 5 replicates were used.

2.5. Statistical Analyses

Data were checked for conformity with repeated measures ANOVA assumptions
via Shapiro–Wilk normality test and Mauchly’s test of sphericity. Normality tests of the
residuals by time point revealed that they followed approximately a normal distribution.
Sphericity could not be assured due to the number of samples being lower than the number
of repeated measures, hence a Greenhouse–Geisser correction was used. Differences in
Fv/Fm values among N treated and control samples were evaluated via repeated measures
procedure following a 2-way mixed ANOVA design with 1 within-subjects factor and
1 between-groups factor in IBM SPSS Statistics 23.0 (SPSS Inc., Chicago, IL, USA). Pairwise
comparisons were performed by comparing main effects through post hoc tests using the
Bonferroni correction. To investigate interactions, data were divided into subsets based
on N treatments and then were subjected to repeated-measures analyses. The evolution
following the recovery period was computed as the difference between Fv/Fm values at
day 58 (final time) and Fv/Fm values at day 29 (end of the second stage of the radiation
treatment). To test for differences in the ability to recover from the radiation treatment
of the different N treatments, we performed 1-way ANOVA of the differences between
Fv/Fm values for all the studied epiphytic lichens.

3. Results
3.1. Analyses of the Effect of N Pollution

Six measurements over the first 20 days assessed the effects of N pollution alone,
while lichens were not subject to irradiation. Significant effects of the different N treat-
ments and time for all species except Xanthoria were found (Figure 1 and Table 2). For
all affected species, Fv/Fm values gradually dropped, responding to the cumulative ef-
fect of N, especially the 50 N dose (Figure 1). In Evernia and Flavoparmelia there was no
significant effect of the low N dose but a significant reduction with the high N dose com-
pared with both the control and low N dose. In Parmotrema, Ramalina and Usnea, both
N doses caused significant reductions, but the level of reduction between the N doses
was statistically indistinguishable. Measurements of the control indicated there was no
deterioration in the index due to time, i.e., the experimental conditions did not affect the
measurements. However, with the N treatments, as the experimental duration progressed,
the lichens received more N, i.e., time also means a greater cumulative N dose. We detected
significant differences between the control and 50 N and 25 N and 50 N but not between con-
trol and 25 N for Evernia (p control-25 N = 0.960, p control-50 N < 0.0005, p 25 N–50 N < 0.0005) and
Flavoparmelia (p control-25 N = 0.534, p control-50 N = 0.001, p 25 N–50 N = 0.009). These differences
were also found among control and N-treated samples, both 25 and 50 N, although not between
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them, for Parmotrema (p control-25 N = 0.002, p control-50 N = 0.002, p 25 N–50 N = 1.000), Ramalina
(p control-25 N < 0.0005, p control-50 N < 0.0001, p 25 N–50 N = 1.000) andUsnea (p control-25 N < 0.0005,
p control-50 N < 0.0005, p 25 N–50 N = 1.000). There was a significant N treatment × time interac-
tion for Ramalina, Flavoparmelia, Usnea, and Evernia, and when looking into them, we found
a significant effect of time for 25 N and 50 N treatments, but not for control for Ramalina,
Usnea, and Evernia (Table 2). In the case of Flavoparmelia, we only detected a significant effect
of time for 50 N (Table 2).
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Figure 1. Temporal evolution of Fv/Fm ratio during 58 days for Control (no nitrogen [N] addition), 25 N (treated
with 25 mM of (NH4)2SO4) and 50 N (treated with 50 mM of (NH4)2SO4) for the following species: (a) Xanthoria
parietina, (b) Ramalina lacera, (c) Usnea sp., (d) Flavoparmelia caperata, (e) Parmotrema hypoleucinum, (f) Evernia prunastri.
All samples were subjected to the same radiation treatment. The period of exposure to direct sunlight is indicated in yellow.
Lowercase letters indicate significant differences among N treatments for each species (n = 5).

Table 2. Repeated measures ANOVA analyses for all the studied epiphytic lichens during the first
20 days. The samples were subjected to N treatment alone during this period. Control = No nitrogen
(N) addition, 25 N = treated with 25 mM of (NH4)2SO4, 50 N = treated with 50 mM of (NH4)2SO4.

Lichen Species Factor df F p

Xanthoria parietina N treatment 2 0.198 0.823

Time 2.870 1.912 0.148

N treatment × Time 5.740 0.617 0.709

Ramalina lacera N treatment 2 23.679 <0.0005

Time 2.707 20.028 <0.0005

N treatment × Time 5.413 3.857 0.006
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Table 2. Cont.

Lichen Species Factor df F p

Interaction N treatment × Time Control 1.999 0.920 0.437

Interaction N treatment × Time 25 N 1.369 17.619 0.005

Interaction N treatment × Time 50 N 2.247 9.150 0.006

Usnea sp. N treatment 2 22.354 <0.0005

Time 2.418 19.147 <0.0005

N treatment × Time 4.836 3.428 0.016

Interaction N treatment × Time Control 2.102 3.194 0.091

Interaction N treatment × Time 25 N 2.752 15.265 <0.0005

Interaction N treatment × Time 50 N 1.458 6.499 0.038

Flavoparmelia caperata N treatment 2 14.098 0.001

Time 2.310 7.787 0.001

N treatment × Time 4.620 4.170 0.007

Interaction N treatment × Time Control 2.612 1.626 0.243

Interaction N treatment × Time 25 N 2.133 3.792 0.064

Interaction N treatment × Time 50 N 2.060 5.772 0.027

Parmotrema hypoleucinum N treatment 2 14.291 0.001

Time 3.032 5.077 0.005

N treatment × Time 6.064 1.531 0.195

Evernia prunastri N treatment 2 34.371 <0.0005

Time 3.066 28.366 <0.0005

N treatment × Time 6.132 5.988 <0.0005

Interaction N treatment × Time Control 1.911 3.591 0.081

Interaction N treatment × Time 25 N 2.283 6.503 0.024

Interaction N treatment × Time 50 N 1.877 21.993 0.001

3.2. Analyses of the Synergetic Effect of N and Solar Radiation

We found a significant effect of the different N treatments on all lichen species when
analyzing the synergetic effect of N and increased solar radiation (Figure 1 and Table 3). For all
species, direct sun exposure dramatically decreased Fv/Fm (Figure 1), although these values
reached their minimum earliest in N treated samples. Lichens exposed to 50 N treatment
showed a consistent trend towards lower Fv/Fm values for all species (Figure 1). We detected
significant differences between the control and 50 N and 25 N and 50 N but not between
control and 25 N for Xanthoria (p control-25 N = 1.000, p control-50 N = 0.003, p 25 N–50 N = 0.009) and
Evernia (p control-25 N = 0.133, p control-50 N < 0.0005, p 25 N-50 N = 0.009). Differences were
also found among control and N-treated samples, both 25 and 50 N, although not be-
tween them, for Parmotrema (p control-25 N < 0.0005, p control-50 N < 0.0005, p 25 N–50 N = 0.072),
Ramalina (p control-25 N < 0.0005, p control-50 N < 0.0005, p 25 N–50 N = 0.282) and Usnea
(p control-25 N < 0.0005, p control-50 N < 0.0005, p 25 N–50 N = 1.000). We found significant
differences among all the three groups (control, 25 N and 50 N) for Flavoparmelia
(p control-25 N < 0.0005, p control-50 N < 0.0005, p 25 N–50 N < 0.0005). Time was found to
significantly affect all analyzed lichens species (Figure 1 and Table 3). There was a
significant N treatment × time interaction for Ramalina, Flavoparmelia, and Evernia, and
when looking into them, we found a significant effect of time for the control, 25 N and
50 N treatments for all these species (Table 3).
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Table 3. Repeated measures ANOVA analyses for all the studied epiphytic lichens during the whole
experiment. The samples were subjected to N treatment and solar radiation. Control = No nitrogen
(N) addition, 25 N = treated with 25 mM of (NH4)2SO4, 50 N = treated with 50 mM of (NH4)2SO4.

Lichen Species Factor df F p

Xanthoria parietina N treatment 2 10.769 0.002

Time 4.753 71.389 <0.0005

N treatment × Time 9.505 1.230 0.293

Ramalina lacera N treatment 2 112.702 <0.0005

Time 5.020 85.423 <0.0005

N treatment × Time 10.039 2.083 0.040

Interaction N treatment × Time Control 3.381 12.826 <0.0005

Interaction N treatment × Time 25 N 2.000 41.841 <0.0005

Interaction N treatment × Time 50 N 2.786 80.237 <0.0005

Usnea sp. N treatment 2 99.448 <0.0005

Time 4.560 137.635 <0.0005

N treatment × Time 9.119 1.527 0.164

Flavoparmelia caperata N treatment 2 372.020 <0.0005

Time 5.163 36.500 <0.0005

N treatment × Time 10.326 4.744 <0.0005

Interaction N treatment × Time Control 2.369 4.875 0.031

Interaction N treatment × Time 25 N 2.545 13.058 0.001

Interaction N treatment × Time 50 N 2.425 37.915 <0.0005

Parmotrema hypoleucinum N treatment 2 46.314 <0.0005

Time 6.299 32.540 <0.0005

N treatment × Time 12.598 1.629 0.098

Evernia prunastri N treatment 2 21.052 <0.0005

Time 6.129 135.430 <0.0005

N treatment × Time 12.258 7.621 <0.0005

Interaction N treatment × Time Control 2.517 86.264 <0.0005

Interaction N treatment × Time 25 N 2.663 59.673 <0.0005

Interaction N treatment × Time 50 N 3.231 25.576 <0.0005

3.3. Analyses of the Evolution Following the Recovery Period

None of the studied species was able to recover following the solar radiation exposure
(Figures 1 and 2). However, a non-significant trend of decreased ability to recover from solar
radiation stress with increased N dose was found for Xanthoria, Usnea, and Flavoparmelia
(Figure 2 and Table 4).
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Table 4. One-way ANOVA of the Fv/Fm evolution following the recovery period for all the studied
epiphytic lichens.

Lichen Species df F p

Xanthoria parietina 2 0.876 0.442
Ramalina lacera 2 0.304 0.743

Usnea sp. 2 0.280 0.761
Flavoparmelia caperata 2 2.379 0.135

Parmotrema
hypoleucinum 2 0.445 0.651

Evernia prunastri 2 0.789 0.477

4. Discussion

In general, our results showed a detrimental cumulative effect of N and solar radiation
exposure on lichens but did not support the view that increased N availability constrained
the physiological ability of lichens to cope with increased sunlight exposure, disproving
our first hypothesis. However, in the case of Xanthoria, we found a differential response: It
was unaffected by N addition, but solar exposure promoted an N dose-dependent response
of the Fv/Fm parameter. Therefore, the physiological response of this species to increased
N addition was modulated by solar radiation. Our second hypothesis, which states that
different lichen species would vary in their response to the synergetic effect of increased
N doses and solar exposure, was not supported by our data; we expected that the most
tolerant species to each one of these environmental stressors, i.e., Xanthoria, would be the
most resilient to their synergistic effect. In contrast to our expectations, we only found
slight differences among species, as at the end of the combined treatment, Xanthoria was
affected to the same extent as the rest of the analyzed species. Similarly, our last hypothesis
was not supported because more tolerant functional groups were equally unable to recover
after sunlight exposure as sensitive species.

These results indicate that a reduction of vitality among the epiphytic community
should be expected in the face of global change. Increased N deposition that is projected to
occur in the next decades in Mediterranean regions [9] has previously been pinpointed as a
key factor underpinning reduced vitality in many epiphytic lichens [39]. Our data during
20 days of N addition, pre solar radiation, support this view, with reduced vitality in N
sensitive species. Other researchers have found a fertilizing effect of moderate N supply
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shown by increased thalli N, chlorophyll concentration, and rates of photosynthesis [21,40].
It is well documented that N performs as a nutrient below the toxicity threshold, especially
in oligotrophic environments [41–43]. However, we did not observe this, possibly because
the lichens came from a site with limited N contribution from surrounding roads and
agricultural areas. Thus, even modest N addition doses during our experiment exceeded
the fertilization threshold and performed as a pollutant.

Direct exposure to high solar radiation can also cause stress and threaten epiphytic
lichens. Some lichens appear to be highly sensitive to sudden solar exposure increase [44],
such as that observed in anthropogenically induced forest decline. This is despite the
varied protective mechanisms lichens employ to avoid damage from high insolation such
as colored cortical secondary compounds (e.g., usnic acid, parietin, and melanic com-
pounds, [45,46]), thick cortical layer [47–49], hairiness [50], light-reflecting calcium oxalate
crystals, or biochemical protective mechanisms [51]. A number of studies report a high
natural radiation susceptibility of photosystem II in lichens [44,52], with particular sensi-
tivity to both excessive ultraviolet (UV) [53] and photosynthetically active radiation [54].
Likewise, the increased temperature has also been highlighted as a major damaging factor
for epiphytic lichen vitality. Smith and collaborators [55] found that warm climate tolerant
lichen communities are already close to exceeding their upper climatic limits and are even
more vulnerable to increased temperatures than high-elevation lichens. Our experimental
design, which accounted for exposing wet lichens to direct solar radiation, does not allow
us to discriminate between the effect of increased radiation and temperature. However,
when Gauslaa and Solhaug [56] enclosed thalli of various lichens in a desiccator at 15 ◦C
illuminated at 100 mol m−2 s−1, periodic measurements of Fv/Fm showed a decreasing
trend. They then removed all uppermost thalli exposed to the irradiance and measured
thalli that had been shaded by the previously harvested thalli, finding that Fv/Fm values
suddenly rose close to pre-desiccation levels (Gauslaa and Solhaug, unpublished data).
Based on these findings, it is reasonable to think that the damaging factor operating in our
experiment could be increased radiation more than temperature, although the interactive
effect of both factors is also a plausible possibility. Accordingly, Gauslaa and Solhaug [57]
reported a photoinhibition effect on lichen thalli due to heat and light stress both separately
and combined.

Hydration status is a key determinant in how lichens respond to radiation. Wet
thalli are more susceptible to irradiance than dried thalli because humidity increases the
translucency of the protective upper cortex, increasing light absorbance [58,59]. Therefore,
photosystem II needs more protection against the harmful excess light energy compared
to desiccated thalli [60], in which case most of the radiation is reflected from the thalli
surface [58]. Besides this generic aspect that might have had a role in the striking and
undivided negative response of all studied lichens to solar radiation, hydration appears to
deeply affect photoinhibition in a species-specific manner. Looking at the control thalli, the
least affected by solar radiation was F. caperata. This could appear in contradiction with
the fact that F. caperata is the only one among the species used in the experiment, adapted
to diffuse light more than to direct solar radiation [26]. However, shade-adapted species
were found to be most affected by radiation when they are dry, whereas sun-adapted
species tend to be more susceptible when they are wet [56]. Tretiach et al. [61] showed that
when hydrated, F. caperata activate repair mechanisms like ROS-scavenging enzymes and
oxidation of polyols and phenols that allow it to survive in case of environmental stress.
Since our samples were fully hydrated every day, we can reasonably argue that thalli could
restore a proper enzymatic activity and antioxidants concentration daily [62]. In agreement,
Gauslaa and Solhaug [56] observed that the sun-adapted X. parietina was less affected
by radiation in its desiccated state, whereas hydration caused increased photoinhibition.
These authors concluded that the extent of solar damage varies more among species when
dry lichens are exposed to radiation than when radiation affects wet lichens. This, and the
fact that all tested lichens shared a trebouxioid photobiont fully active following alternate
wetting and drying cycles, could explain why we found such a homogeneous response to
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direct insolation among all studied species. Even more, this differential species-specific
response to direct radiation responding to the hydration status could be the reason why
we did not find the expected tolerance to radiation in Xanthoria when compared to shade-
adapted species, as reported by other authors [26]. In other words, hydration status might
be modulating the lichens species-specific response to excess irradiance.

The synergetic effect of N pollution and increased solar exposure (Table 2) did not
differentiate between the lichens, but there were species response differences to N alone
(Table 3). As expected, Xanthoria was the only species avoiding N-related physiological
damage. It has been well established that X. parietina tolerates high atmospheric concentra-
tions of ammonium in the field [16] and was physiologically unaffected when subjected
to NO3

− and NH4
+ excess in laboratory experiments [30,31]. Likewise, treatment with

ammonium nitrate 50 mM for 6 weeks did not cause any significant decrease in the Fv/Fm
parameter [39]. However, N does appear to have impaired the photosynthetic response to
the secondary stress (Table 2). The highest N dose induced a decrease of the Fv/Fm ratio
in Xanthoria responding to increased solar radiation when compared to the control and
the lowest N dose (Figure 1). These results suggest that costly mechanisms to overcome
harmful effects of increased solar irradiance might have compromised the lichen ability
to make the needed investment in N tolerance. Nitrogen tolerance in lichens seems to
be provided by constitutive characteristics [63,64], but also by other inducible metabolic
mechanisms [43,65,66]. The activation of such protective mechanisms comes at a cost, as
shown by proteomic analysis in thalli of Cladonia portentosa: In thalli exposed to long-term
N treatments, the ability to cope with increased N availability was related to an enhanced
energetic metabolism [67]. In contrast, UV protection and tolerance to high solar radiation
are provided by specific sunscreen compounds (e.g., usnic acid, phenolics, parietin [68–70])
and a general capacity to avoid and repair damages of oxidative stress [71]. As for N
protection strategies, both the synthesis of secondary metabolites and antioxidant activities
require energy [69]. Thus, Xanthoria could have spent more resources to respond to solar
radiation, like the production of secondary compounds in the mycobiont, such as parietin,
that can perform as regulators to avoid damage from high solar radiation [45,46], reducing
other tasks. Nevertheless, we cannot unequivocally attribute this process to our results
because measurements of secondary compounds would be needed to test this hypothesis.

As for the recovery capacity, in the light of the results shown in Figure 2 together with
the bibliographic review, we deem the main part of the measured reduction in Fv/Fm
values to be long-lasting photoinhibitory radiation damage. According to Solhaug and
Gauslaa [72], a 2-day recovery period must be used to identify the more permanent long-
term photoinhibitory damage to photosystem II in X. parietina, thus the 29-days recovery
period used in our experiment is more than enough to classify this damage as permanent
long-term. Such large depressions relative to start values responding to solar radiation
in all species along with the lack of difference between species and N treatments in the
recovery capacity, indicated that neither their functional groups nor the N treatments have
a role in modulating the detrimental effect of solar radiation on epiphytic lichens. Gauslaa
and Solhaug [56] observed that in some lichens, photosystem II is highly susceptible to solar
radiation, preventing them from complete recovery even after extended recovery periods
at low light that, according to Ögren [54], should allow recovery from photoinhibition.

5. Conclusions

Our results demonstrate the highly relevant consequences of the synergistic effects of
N pollution and increased solar radiation for epiphytic lichens, likely moderated by the
hydration status. Besides direct pollutant effects, the global change-driven forest decline
promoting tree defoliation and death is likely to exacerbate the impact of N deposition on
epiphytic lichens, making lichen species considered tolerant more prone to N pollution
effects. Furthermore, the high susceptibility of photosystem II in epiphytic lichens should
be taken into account in future studies on the synergetic effect of this environmental factor
along with other global change drivers potentially inducing lichen damage. The loss
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of these organisms would likely have consequences for forest functions such as water
retention, cycling of N, C, and P, as well as the provision of wildlife habitat [13]. Our results
draw attention to the need to protect ecosystems from environmental drivers threatening
canopy defoliation and tree death.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jof7050333/s1, Figure S1: Setup for the nitrogen treatment, Figure S2: Shelves containing the
lichens during the experiment.
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