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Inflammation is an energy-intensive process, and caloric restriction (CR) could pro-
vide anti-inflammatory benefits. CR mimetics (CRM), such as the glycolytic inhibitor 
2-deoxyglucose (2-DG), mimic the beneficial effects of CR without inducing CR-related 
physiologic disturbance. This study investigated the potential anti-inflammatory benefits 
of 2-DG and the underlying mechanisms in mice with lipopolysaccharide (LPS)-induced 
lethal endotoxemia. The results indicated that pretreatment with 2-DG suppressed LPS-
induced elevation of tumor necrosis factor alpha and interleukin 6. It also suppressed the 
upregulation of myeloperoxidase, attenuated Evans blue leakage, alleviated histological 
abnormalities in the lung, and improved the survival of LPS-challenged mice. Treatment 
with 2-DG had no obvious effects on the total level of pyruvate kinase M2 (PKM2), 
but it significantly suppressed LPS-induced elevation of PKM2 in the nuclei. Prevention 
of PKM2 nuclear accumulation by ML265 mimicked the anti-inflammatory benefits of 
2-DG. In addition, treatment with 2-DG or ML265 suppressed the phosphorylation of 
nuclear signal transducer and activator of transcription 3 (STAT3). Inhibition of STAT3 
by stattic suppressed LPS-induced inflammatory injury. Interestingly, posttreatment with 
2-DG at the early stage post-LPS challenge also improved the survival of the experimen-
tal animals. This study found that treatment with 2-DG, a representative CRM, provided 
anti-inflammatory benefits in lethal inflammation. The underlying mechanisms included 
suppressed nuclear PKM2-STAT3 pathway. These data suggest that 2-DG might have 
potential value in the early intervention of lethal inflammation.

Keywords: caloric restriction mimetic, 2-deoxyglucose, pyruvate kinase M2, signal transducer and activator of 
transcription 3, inflammation

inTrODUcTiOn

Uncontrolled inflammation is one of the primary mechanisms responsible for the lethal outcomes in 
patients with critical illness (1, 2). To restrict inflammatory injury, the inflammation-related signal-
ing pathways have been extensively studied, and various targets have been proposed for anti-inflam-
matory therapy (3, 4). In addition, recent studies indicate that inflammation is an energy-intensive 
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process with significant metabolic reprogramming (5), which 
implies that modulation of immunometabolism might become a 
novel strategy to limit inflammatory injury (6).

Caloric restriction (CR), also known as dietary restriction, 
is a natural intervention to restrict energy metabolism (7). The 
increasing evidence suggest that CR is a reliable approach to 
prolong life span and increase health span in both experimental 
animals and human beings (8, 9). However, CR also disturbs some 
physiological functions, which limit its practicability in patients 
(10). Therefore, CR mimetics (CRM) have been developed to 
mimic the beneficial effects of CR without reducing food intake 
(11). Because glucose is the primary energy source, the glycolytic 
inhibitor 2-deoxyglucose (2-DG) was proposed as a representa-
tive CRM (12). Several studies indicate that the beneficial effects 
of CR and CRM might be associated with suppressed inflamma-
tory response (13, 14), but the underlying mechanisms remains 
unclear.

Recently, the pivotal roles of pyruvate kinase M2 (PKM2), an 
unique isoform of the pyruvate kinases, in inflammatory response 
have been revealed (15). PKM2 locates in both cytoplasm and 
nucleus. The cytoplasmic PKM2 functions as a metabolic kinase 
that catalyzes the final rate-limiting step of glycolysis (16). On 
the contrary, the nuclear PKM2 functions as a protein kinase that 
phosphorylates its downstream targets and facilitates transcrip-
tional activation (17). Inflammatory stimuli could suppress the 
metabolic activity of PKM2 but induce the nuclear accumulation 
of PKM2, which promotes the expression of pro-inflammatory 
mediators (18). Thus, the nuclear PKM2 provides a molecular 
mechanism to bridge metabolism and inflammation (19).

In this study, the potential anti-inflammatory benefits of 2-DG 
were investigated in mice exposed to lethal dose of lipopolysac-
charide (LPS), a major pro-inflammatory stimulus originated 
from Gram-negative bacterial (20). In addition, the underlying 
mechanisms were investigated via determination of the modula-
tory effects of 2-DG on nuclear PKM2 and the phosphorylation 
status of its downstream target, such as signal transducer and 
activator of transcription 3 (STAT3) (17).

MaTerials anD MeThODs

Materials
Lipopolysaccharide (from Escherichia coli, 055:B5) and 2-DG 
were the products of Sigma (St. Louis, MO, USA). The PKM2 
activator ML265, the STAT3 inhibitor stattic, and the myeloper-
oxidase (MPO) activity assay kit were the products of Cayman 
Chemical (Ann Arbor, MI, USA). The enzyme-linked immuno-
sorbent assay (ELISA) kits for the determination of mouse tumor 
necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were the 
products of NeoBioscience Technology Company (Shenzhen, 
China). The nuclear protein extract kit was the product of 
Genechem Co., Ltd. (Shanghai, China). The rabbit anti-mouse 
PKM2 (D78A4), STAT3 (79D7), phospho-STAT3 (D3A7), 
and lamin B (D9V6H) antibodies were the products of Cell 
Signaling Technology (Danvers, MA, USA). The horseradish 
peroxidase-conjugated goat anti-rabbit antibody was the prod-
uct of Proteintech (Wuhan, China). The BCA protein assay kit 
was the product of Thermoscientific (Rockford, IL, USA). The 

enhanced chemiluminescence (ECL) reagents were the products 
of Advansta (Menlo Park, CA, USA).

animals
Male BALB/c mice, 6 to 8  weeks old, were provided by the 
Experimental Animal Center of Chongqing Medical University. 
The mice were housed in a specific pathogen-free room under a 
12 h dark/light cycle (temperature: 20–25°C, relative humidity: 
50 ± 5%) and acclimatized for 1 week before use. The mice were 
fed with a standard laboratory diet and water ad  libitum. The 
experimental procedures were approved by the Animal Care and 
Use Committee of Chongqing Medical University.

lethal endotoxemia
Lethal endotoxemia was induced in mice with intraperitoneal 
injection of LPS (20 mg/kg). The mice were killed 18 h after LPS 
challenge, and the plasma and lung samples were harvested. To 
evaluate the potential effects of 2-DG, the mice were treated 
with 2-DG (500 mg/kg, dissolved in normal saline, i.p.) 30 min 
before LPS exposure. To investigate the underlying mechanism of 
2-DG, the mice were co-treated with the PKM2 activator ML265 
(50 mg/kg, dissolved in DMSO, i.p.) or STAT3 inhibitor stattic 
(5 mg/kg, dissolved in DMSO). To determine the mortality rate, 
survival of the mice (n = 18 per group) was assessed every 6 h 
for at least 7 days, and the cumulative survival rate was depicted 
using the Kaplan–Meier curve.

histological analysis
The lung samples were fixed in formalin, followed by routine 
dehydration. Then the samples were embedded in paraffin, and 
4-µm sections were prepared. Standard hematoxylin and eosin 
staining were performed for histopathological analysis under a 
light microscope (Olympus, Tokyo, Japan). The histopathological 
abnormalities of the lung sections were blindly scored based on 
the method described previously with slight modifications (21). 
Briefly, the histological alterations were graded on a scale of 0–4 
(0, normal; 1, light; 2, moderate; 3, strong; 4, intense) for the fol-
lowing pathological features: congestion, edema, inflammation, 
and hemorrhage. A cumulative total histology score for all of the 
parameters was calculated.

Determination of evans Blue leakage
Evans blue dye (80  mg/kg) was intravenously injected into the 
mice 1 h before the termination of the experiment to determine the 
degree of pulmonary vascular leakage as previously reported with 
slight modifications (22). At the end of the experiment, the lungs 
were perfused free of blood with PBS (containing 5 mM EDTA) 
via thoracotomy. The lungs were excised, blotted dry, and homog-
enized in PBS. The homogenates were incubated with two volumes 
of formamide at 60°C for 24 h and then centrifuged at 200 g for 
10 min. The supernatants were harvested, and the optical density 
was determined spectrophotometrically at 620 nm. The concentra-
tion of Evans blue was calculated according to the standard curve.

Determination of MPO activity
The enzyme activities of MPO were determined by the MPO 
assay kit according to the manufacturer’s instructions (Cayman 
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Chemical, USA). Briefly, the frozen lung samples were homog-
enized in a cell-based assay buffer. Then the homogenates were 
centrifuged at 200 g for 10 min at room temperature. The super-
natants were mixed with the assay buffer and incubated with the 
MPO substrate 3,3′5,5′-tetramethyl-benzidine (TMB) at 37°C 
for 5 min. The chemical reaction yields a blue color detectable 
by its absorbance at 650 nm. The MPO activities were calculated 
according to the standard curve and normalized by the protein 
concentration of each sample.

Detection of Pro-inflammatory cytokines 
by elisa
The plasma and pulmonary levels of TNF-α and IL-6 were 
determined using the ELISA kits according to the manufacturer’s 
instructions (NeoBioscience). The concentration of TNF-α or 
IL-6 was calculated according to the standard curve. The levels 
of TNF-α and IL-6 in lung homogenates were normalized by the 
protein concentration of each sample.

Western Blot analysis
The total proteins or nuclear proteins were prepared, and the 
protein extracts were fractionated on polyacrylamide–SDS gel 
and then transferred to nitrocellulose membrane. The mem-
brane was blocked with 5% (w/v) non-fat milk in Tris-buffered 
saline containing 0.05% Tween-20, and then the membrane was 
incubated with the primary antibodies against PKM2, phospho-
STAT3, STAT3, or lamin B overnight at 4°C. After washing, the 
membrane was incubated with secondary antibody. Antibody 
binding was visualized with ECL reagents and the ChemiDoc 
Touch Imaging System (Bio-Rad).

statistical analysis
The experimental data were expressed as mean  ±  SD. The 
statistical significance among means was analyzed by one-way 
ANOVA, followed by the Turkey’s post  hoc test. In addition, 
the Kaplan–Meier curve and log-rank test were performed for 
survival analysis. Results were considered statistically significant 
when P < 0.05.

resUlTs

2-Dg alleviated lPs-induced lethal 
inflammation
The potential anti-inflammatory effects of 2-DG were inves-
tigated in mice with lethal endotoxemia. The results showed 
that treatment with 2-DG significantly alleviated LPS-induced 
histological abnormalities, including pulmonary edema and leu-
kocytes infiltration (Figures 1A,B). The evaluation of Evans blue 
leakage and the determination of MPO activities also indicated 
that LPS-induced pulmonary edema and leukocytes infiltration 
were attenuated by 2-DG (Figures 1C,D). In the survival analysis 
(Figure 1E), more than 90% of LPS-exposed mice died within 72 h, 
but the mortality rate dropped to 15% in 2-DG-treated group. We 
next investigated whether the production of pro-inflammatory 
cytokines could be modulated by 2-DG. The data showed that 
pretreatment with 2-DG resulted in reduced induction of TNF-α 

(Figure  2A) and IL-6 (Figure  2B). Consistently, LPS-induced 
elevation of pulmonary TNF-α (Figure 2C) and IL-6 (Figure 2D) 
were also suppressed by 2-DG. These data indicate that the 
treatment with 2-DG might result in beneficial outcomes in LPS-
induced lethal inflammation.

2-Dg suppressed lPs-induced 
Upregulation of nuclear PKM2
Because nuclear PKM2 is crucial for the bridge between metabo-
lism and inflammation, the level of total PKM2 in pulmonary 
homogenates and the level of nuclear PKM2 in nuclear extracts 
have been determined. The data indicate that the total PKM2 level 
remained unchanged after LPS exposure and/or 2-DG treatment 
(Figures  3A,B). However, LPS induced significant elevation of 
PKM2 level in the nuclei, but the treatment with 2-DG reduced 
the nuclear level of PKM2 in LPS-exposed mice (Figures 3C,D). 
These data suggest that the treatment with 2-DG might suppress 
LPS-induced upregulation of nuclear PKM2 in the lung tissue.

inhibition of nuclear accumulation of 
PKM2 attenuated inflammatory injury
In the next step, the potential significance of nuclear PKM2 in 
LPS-induced inflammatory injury was investigated by pharmaco-
logical prevention of PKM2 nuclear accumulation with ML265. 
ML265 is a small molecule that binds with PKM2 and increases 
the metabolic activity of PKM2 in the cytoplasm but prevents 
its nuclear translocation (15). Our data showed that ML265 
decreased the nuclear level of PKM2 in LPS-challenged mice 
(Figures 4A,B). This alteration was associated with suppressed 
induction of TNF-α and IL-6 (Figures 4C,D). In addition, the 
treatment with ML265 also alleviated the LPS-induced histo-
logical abnormalities in the lung tissue (Figures  4E,F). These 
data suggest that nuclear PKM2 might play important roles in 
LPS-induced inflammatory injury in the lung.

sTaT3 contributed to the Pro-inflammatory 
activities of nuclear PKM2
Nuclear PKM2 might act as a protein kinase that phosphoryl-
ates inflammation-related transcription factors such as STAT3 
(15, 17). We then questioned whether STAT3 is involved in 
the  pro-inflammatory activities of nuclear PKM2. The results 
indicate that the level of total STAT3 remained unchanged in 
mice after LPS exposure and/or 2-DG treatment (Figure S1 in 
Supplementary Material). However, treatment with 2-DG sup-
pressed the phosphorylation of nuclear STAT3 and reduced the 
level of nuclear STAT3 (Figures  5A,B). In addition, inhibition 
of PKM2 nuclear accumulation by ML265 also resulted in 
decreased phosphorylation and reduced the level of STAT3 in 
the nuclear extracts (Figures 5C,D). To investigate the roles of 
STAT3 in LPS-induced lethal inflammation, a STAT3 inhibitor 
stattic was administered in the experimental animals. The results 
indicate that treatment with stattic significantly decreased the 
plasma level of TNF-α and IL-6 (Figures  6A,B). Meanwhile, 
LPS-induced histological lesions in the lung tissue was also 
mitigated by stattic (Figures  6C,D). These data suggest that 
the phosphorylation and activation of nuclear STAT3 might be 
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FigUre 1 | 2-Deoxyglucose (2-DG) attenuated lipopolysaccharide (LPS)-induced lung injury and mortality. (a) Mice with LPS-induced lethal inflammation were 
treated with vehicle or 2-DG 30 min before LPS exposure. (a) The lung samples were harvested 18 h after LPS exposure, and the lung sections were stained with 
hematoxylin and eosin for morphological evaluation. The representative lung sections of each group were shown. (B) The histopathological abnormalities of the lung 
sections were blindly scored. (c) The degree of Evans blue leakage was determined. (D) The myeloperoxidase (MPO) activities in lung tissue were determined. Data 
were expressed as mean ± SD, n = 8. (e) Another set of animals were exposed to LPS and treated with vehicle or 2-DG, the mortality of the animals was 
monitored, and the percent survival rate was expressed as a Kaplan–Meier survival curves, n = 18.
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involved in the pro-inflammatory properties of nuclear PKM2, 
and the anti-inflammatory benefits of 2-DG might be associated 
with suppressed PKM2-STAT3 signaling in the nuclei.

Posttreatment with 2-Dg improved the 
survival of lPs-insulted Mice
Since preinsult treatment protocol is impractical under most 
clinical situations, this study also tested the potential benefits of 
2-DG treatment post-LPS exposure. Interestingly, the survival 
analysis showed that treatment with 2-DG 0.5 h post-LPS expo-
sure significantly increased the survival rate of the experimental 
animals (Figure 7). In addition, treatment with 2-DG 4 h post-
LPS exposure also resulted in beneficial outcomes (Figure  7). 
However, treatment with 2-DG 12 or 24  h post-LPS exposure 
has no obvious effects on the survival rate of LPS-exposed mice 
(Figure S2 in Supplementary Material).

DiscUssiOn

Inflammation is a highly reactive response, which requires 
intensive metabolic support (23). Restriction of nutrition supply/
metabolism by CR or pharmacological approaches has significant 

suppressive effects on inflammatory injury (6). In this study, 
treatment with 2-DG, a representative CRM, provided anti-
inflammatory benefits in mice with lethal dose of LPS-induced 
inflammatory injury as evidenced by suppressed production 
of pro-inflammatory cytokines, alleviated lung injury, and 
improved survival rate. These data suggest that the treatment with 
2-DG might become a novel approach to protect against lethal 
inflammation.

Inflammation is usually associated with marked metabolic 
reprogramming, and PKM2 plays crucial roles in driving these 
metabolic alterations and promoting inflammatory response 
(15). It was reported that prevention of PKM2 nuclear trans-
location alleviated LPS-induced production of pro-inflam-
matory cytokines (24, 25). This study also found that nuclear 
PKM2 played crucial roles in LPS-induced inflammatory 
injury because prevention of nuclear accumulation of PKM2 
by ML265 significantly alleviated lung injury. In addition, 
we found that the anti-inflammatory benefits of 2-DG were 
associated with the reduced level of nuclear PKM2, suggest-
ing that treatment with 2-DG might interrupt the association 
between metabolism and inflammation via decreasing the level 
of nuclear PKM2.
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FigUre 2 | 2-Deoxyglucose (2-DG) mitigated lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines. Mice with LPS-induced lethal 
inflammation were treated with vehicle or 2-DG 30 min before LPS exposure. The plasma samples and lung samples were harvested 18 h after LPS exposure. The 
plasma level of (a) tumor necrosis factor alpha (TNF-α) and (B) interleukin 6 (IL-6) as well as the pulmonary level of (c) TNF-α and (D) IL-6 were determined by 
enzyme-linked immunosorbent assay. Data were expressed as mean ± SD, n = 8.

FigUre 3 | 2-Deoxyglucose (2-DG) suppressed lipopolysaccharide (LPS)-induced nuclear accumulation of pyruvate kinase M2 (PKM2). Mice with LPS-induced 
lethal inflammation were treated with vehicle or 2-DG 30 min before LPS exposure. The lung samples were harvested 18 h after LPS administration, and the level of 
total PKM2 (a,B) and nuclear PKM2 (c,D) was detected by western blot analysis. Data were expressed as mean ± SD, n = 4.
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It has been suggested that nuclear translocation of PKM2 
is a critical molecular event in inflammatory response (15). 
However, the mechanism through which inflammatory stimuli 
induce PKM2 translocation remains largely unknown. A recent 

study has suggested that PKM2 is a redox-sensitive molecule, 
and the nuclear translocation of PKM2 could be modulated by 
oxidation and 2-DG suppressed PKM2 nuclear accumulation 
via regulating oxidative stress (19). In addition, posttranslational 
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FigUre 5 | 2-Deoxyglucose (2-DG) and ML265 suppressed lipopolysaccharide (LPS)-induced phosphorylation of nuclear signal transducer and activator of 
transcription 3 (STAT3). (a,B). Mice with LPS-induced lethal inflammation were treated with 2-DG 30 min before LPS exposure. The lung samples were 
harvested 18 h after LPS exposure, and the level of phosphorylated STAT3 and total STAT3 in the nuclear extracts was determined by western blot analysis. 
(c,D) Mice with LPS-induced lethal inflammation were treated with vehicle or ML265 30 min before LPS exposure. The lung samples were harvested 18 h after 
LPS exposure, and the level of phosphorylated STAT3 and total STAT3 in the nuclear extracts was determined by western blot analysis. Data were expressed as 
mean ± SD, n = 4.

FigUre 4 | Prevention of pyruvate kinase M2 (PKM2) nuclear accumulation attenuated lipopolysaccharide (LPS)-induced inflammatory injury. Mice with LPS-
induced lethal inflammation were treated with ML265 30 min before LPS exposure. The lung samples and plasma samples were harvested 18 h after LPS exposure. 
(a,B) The level of nuclear PKM2 was determined by western blot analysis. Data were expressed as mean ± SD, n = 4. The plasma levels of (c) tumor necrosis 
factor alpha (TNF-α) and (D) interleukin 6 (IL-6) were determined by enzyme-linked immunosorbent assay (ELISA). Data were expressed as mean ± SD, n = 8. 
(e) The lung sections were stained with hematoxylin and eosin for morphological evaluation, and the representative lung sections of each group were shown (original 
magnification: 400×). (F) The histopathological abnormalities of the lung sections were blindly scored.
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mediating these modifications under inflammatory conditions 
remain unknown.

Signal transducer and activator of transcription 3 is a pivotal 
regulator with profound regulatory activities in inflamma-
tory response (27). Although conditional deletion of STAT3 
in macrophages, neutrophils, or endothelial cells resulted in 
exacerbated inflammatory injury (28, 29), genetic reduction of 
STAT3 or pharmacological inhibition of STAT3 was associated 
with suppressed inflammation both in vitro and in vivo (30, 31). 
Therefore, STAT3 inhibition in this study might attribute to the 
anti-inflammatory benefits of 2-DG. Similarly, STAT3 inhibi-
tion was suggested to be responsible for the anti-inflammatory 
effects of rapamycin, IL-35, and high-density lipoprotein 
(32–34).

Signal transducer and activator of transcription 3 has been 
confirmed as a major downstream target of nuclear PKM2 (19). 
The nuclear PKM2 functions as a protein kinase that directly 
phosphorylates STAT3 at Tyr705(17). The phosphorylation of 
STAT3 at Tyr705 has been regarded as a critical modification for 
the pro-inflammatory effects of STAT3 (35, 36). Several studies 
have found that STAT3 activation was required for the inflam-
mation regulatory effects of nuclear PKM2 (18, 19). Therefore, 
2-DG-induced STAT3 inhibition might result from the reduced 
level of nuclear PKM2. Recent studies also found that treatment 
with 2-DG abrogated STAT3 activation in leukemic cells and 
fibrosarcoma cells, but the underlying mechanisms were unclear 
(37, 38). Because nuclear accumulation of PKM2 is suggested to 

FigUre 6 | Inhibition of signal transducer and activator of transcription 3 alleviate lipopolysaccharide (LPS)-induced inflammatory injury. Mice with LPS-induced 
lethal inflammation were treated with stattic 30 min before LPS exposure. The plasma samples and lung samples were harvested 18 h after LPS exposure. The 
plasma level of (a) tumor necrosis factor alpha (TNF-α) and (B) interleukin 6 (IL-6) were determined by enzyme-linked immunosorbent assay. Data were expressed 
as mean ± SD, n = 8. (c) The lung sections were stained with hematoxylin and eosin for morphological evaluation, and the representative lung sections of each 
group were shown (original magnification: 400×). (D) The histopathological abnormalities of the lung sections were blindly scored.

FigUre 7 | Posttreatment with 2-deoxyglucose (2-DG) improved the survival 
of lipopolysaccharide (LPS)-insulted mice. Mice with LPS-induced lethal 
inflammation were treated with 2-DG 0.5 or 4 h post-LPS exposure, the 
mortality of the animals was monitored, and the percent survival rate was 
expressed as a Kaplan–Meier survival curves, n = 18.

modifications such as phosphorylation, acetylation, hydroxyla-
tion, and SUMOylation are also involved in the regulation of 
PKM2 nuclear accumulation (26), but the detailed mechanisms 
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be involved in the progression of various tumor (39, 40), it is a 
worthy concern that whether inhibition of PKM2 nuclear accu-
mulation is responsible for the suppressed activation of STAT3 by 
2-DG in tumor cells.

Because preinsult administration of 2-DG is unpractical in 
clinical situation, we also tested the pharmacological significance 
of posttreatment with 2-DG. Interestingly, we found that treat-
ment with 2-DG at the early stage post-LPS exposure could also 
improve the survival rate. However, treatment with 2-DG at the 
late stage post-LPS exposure failed to improve the survival rate. 
These data suggest that the CRM 2-DG might have potential 
value for the early intervention of inflammatory injury.

It has been reported recently that PKM2 is expressed or func-
tions in several inflammation-related cells such as macrophages, 
neutrophils, and endothelial cells (41–44). All of these cells are 
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Taken together, this study found that treatment with 2-DG, 
a representative CRM, provide significant anti-inflammatory 
benefits in mice with LPS-induced lethal inflammation. These 
effects might be associated with suppressed nuclear accumula-
tion of PKM2 and reduced phosphorylation of STAT3. Most 

interestingly, posttreatment with 2-DG at the early stage also 
resulted in beneficial outcomes. Therefore, 2-DG might have 
potential value in the early intervention of lethal inflammatory 
injury.
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