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Interleukin-32 (IL-32) has several immune regulatory properties, which have driven its
investigation in the context of various diseases. IL-32 expression is reported to be induced
in the lesions of patients with American tegumentary leishmaniasis (ATL) by the NewWorld
Leishmania spp. that are responsible for causing ATL and visceral leishmaniasis (VL). IL-
32 expression may elevate the inflammatory process through the induction of pro-
inflammatory cytokines and also via mechanisms directed to kill the parasites. The
genetic variants of IL-32 might be associated with the resistance or susceptibility to
ATL, while different isoforms of IL-32 could be associated with distinct T helper
lymphocyte profiles. IL-32 also determines the transcriptional profile in the bone
marrow progenitor cells to mediate the trained immunity induced by b-glucan and
BCG, thereby contributing to the resistance against Leishmania. IL-32g is essential for
the vitamin D-dependent microbicidal pathway for parasite control. In this context, the
present review report briefly discusses the data retrieved from the studies conducted on
IL-32 in leishmaniasis in humans and mice to highlight the current challenges to
understanding the role of IL-32 in leishmaniasis.
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INTRODUCTION

Interleukin 32 (IL-32) (1), which was previously known as the Natural Killer (NK) cell transcript 4
(NK4), is a cytokine secreted by both immune and non-immune cells. It was previously recognized
as a pro-inflammatory cytokine. However, the existence of different isoforms of IL-32 has revealed
that besides its pro- or anti-inflammatory properties, IL-32 also possesses regulatory properties (2,
3). The role of IL-32 has been, so far, investigated in several inflammatory and infectious diseases
(4–8), including different leishmaniases (9–15).

Leishmaniases refer to a group of diseases that are caused by the Leishmania protozoa, which
comprises various species with different geographic distributions across the world. These different
species may be associated with diverse clinical forms of leishmaniasis, the most frequently detected
ones among which are cutaneous (CL) and mucosal (ML) leishmaniases, also referred to as
tegumentary leishmaniasis, and visceral leishmaniasis (VL) (16). In leishmaniasis, the disease
outcomes depend on several factors, including different mammal reservoirs, vectors, parasite
species, and host status. In regard to the host status, the immune responses are responsible for
parasite control and also immunopathogenesis. In this context, the role of IL-32 was investigated in
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infection with Leishmania sp., which indicated IL-32 as a crucial
player in the immune responses against this parasite.

In the present review, the studies on IL-32 in leishmaniases
are discussed briefly, with a particular focus on the current
challenges encountered in this field, including the high number
of IL-32 isoforms with different properties and interactions, the
lack of a known IL-32 receptor to date, and the difficulties
associated with murine models.
BIOLOGY OF IL-32

IL-32 is considered a pro-inflammatory cytokine, despite there
being no sequence homology to any of the other cytokine
families (1). While IL-32 is mainly reported as a human/
primate-specific gene (17), its expression has been detected in
other mammals as well, although not in rodents (1, 18). The
biological activity of IL-32 is conserved across different species.
Although rodents do not exhibit IL-32 expression, their cells are
able to respond to IL-32 and subsequently produce several pro-
inflammatory cytokines (1, 19).

IL-32 is predominantly intracellular, although it may also be
secreted depending on the isoform, cell type, and context. While
the exact localization of IL-32 inside a cell has not been
determined so far, its co-localization with lysosomes (10),
endoplasmic reticulum (20), Golgi apparatus (21), and
mitochondria are reported (22). The IL32 gene contains eight
exons, and different isoforms are generated through alternative
mRNA splicing. To date, IL-32a, IL-32b, IL-32g, IL-32d, IL-32q,
IL-32ϵ, IL-32z, IL-32h, and IL-32s isoforms have been identified.
IL-32g is considered the most potent isoform, capable of
inducing higher tumor necrosis factor (TNF-a) production
compared to the other isoforms (23). The interaction between
these isoforms results in the functional diversity of IL-32 (24).
For instance, IL-32d interacts with IL-32b and inhibits IL-10
induction through this isoform (25).

IL-32 is produced by immune cells (such as macrophages,
monocytes (26), NK cells (27), and T lymphocytes) (28), as well
as by non-immune cells (epithelial (29), endothelial (20, 30),
mesenchymal stromal cells (31), and fibroblasts) (32). Certain
tumor cell lines express IL-32 constitutively (33–35). Pro-
inflammatory cytokines such as (TNF-a; 19), IL-12 (1), IL-18
(4), and IL-1b (36) induce IL-32 production. IL-32 is also
expressed in viral (37–39), bacterial (40, 41), fungal (42), and
protozoan infections (9). Pathogen-associated molecular
patterns, such as lipopolysaccharide (LPS), muramyl dipeptide
(MDP), RNA analog Poly (I:C), and oxidative stress, also induce
IL-32 (21, 26, 43, 44). In turn, IL-32 induces TNF-a, macrophage
inflammatory protein 2, IL-8, and IL-1b, via NF-kB, AP-1, and
p38-MAPK signaling pathways, in monocytes/macrophages (1,
36), synovial fibroblasts (4, 45), and T cells (1, 19, 46). In
epithelial cells, IL-32g acts synergistically with the NOD1/2
receptors and induces IL-1b secretion (47). In fibroblast-like
synoviocytes, IL-32g upregulates TLR2 and NOD2, thereby
inducing IL-1b in response to the cell wall components of
Streptococcus pyogenes (48). Moreover, IL-32g promotes the
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differentiation of monocytes into macrophages or dendritic
cells (DC) (49, 50).

Proteinase 3 (PR3)–proteinase-activated receptor 2 (PR2) axis
is the main IL-32 receptor candidate. PR3 was reportedly
activated by IL-32g, leading to the activation of the G protein-
coupled receptor PR2, which then induced a cytokine response
via Ras-Raf and TRIF (51, 52). PR3 exhibits affinity to IL-32a
(51) and IL-32g (53) and is expressed mainly in neutrophils. The
tripeptide motif Arg-Gly-Asp (RGD) present in the IL-32
isoforms occurs in different accessibility forms (54) that allow
interaction with the integrin present on the cell surface, adhesion
regulation, migration (55), apoptosis, and angiogenesis (56). IL-
32a, IL-32b, and [to a lesser extent] IL-32g bind to the
extracellular domain of integrin aVb3 (54). The binding
between RGD and integrin activates the intracellular kinases,
such as focal adhesion kinase (FAK) (57), and may activate the
b3-p38MAPK pathway (32). IL-32 also interacts directly with the
focal adhesion protein paxillin (54).

Each IL-32 isoformmay interact with a specific protein kinase
C (PKC) to modulate gene expression. IL-32a interacts with
PKCϵ and STAT3 (58). IL-32b interacts with PKCϵ and C/EBPa,
leading to IL-10 upregulation (59). IL-32b also binds to the
proto-oncogene Src in breast cancer cells to induce glycolysis
(27). IL-32q interacts with PKCd, decreasing CCL5 production
via STAT3 phosphorylation (60). IL-32q inhibits the PKC-d–
mediated pathways responsible for TNF-a and IL-1b production
(1, 61).

IL-32g appeared to protect against in vivo Mycobacterium
tuberculosis (MTB) infection in humans and IL-32 transgenic
mice (6, 41). However, this effect declined at the later stages of
infection, when the mRNA of IL-32g was spliced into IL-32b
mRNA, which increased the levels of IL-10-expressing
macrophages or DCs (41). For its protective effects, besides
apoptosis induction (62), IL-32g also induces the expression of
25-hydroxyvitamin D3 1-alpha-hydroxylase (CYP27B1), which
converts inactive vitamin D (25D) into bioactive 1,25-dihydroxy
vitamin D3, which then binds to VDR (vitamin D receptor) and
increases the production of antimicrobial peptides cathelicidin
and b-defensin (6). IL-32g is reported to protect against other
mycobacterial infections as well (26, 63).

In human IL-32 transgenic murine models, IL32b reportedly
increased the inflammation and worsened sepsis (17), besides
inducing neuroinflammation in the brain (64). The pro-
inflammatory activity of IL32b was also observed in arthritis
and colitis mouse models (19). In contrast, IL-32b exhibited anti-
inflammatory effects by reducing arthritis (65) and tumor growth
in IL32b-transgenic mice (64) or in vivo arthritis model (45) as
well as colitis (66) and protection against tuberculosis in IL-32g-
transgenic mouse models (41).

In HIV infection, IL-32g induced viral production in latently-
infected CD4+ T cells (67). The IL32 single-nucleotide
polymorphism (SNP) rs4349147 has been associated with HIV
susceptibility (68). In a study, the G allele-bearing cells that
exhibited a shift to IL-32 isoforms other than IL-32a, such as IL-
32g or IL-32b, became cells prone to HIV infection (7). In
hepatitis virus (HCV and HBV) infections, IL-32 appears to
March 2022 | Volume 13 | Article 849340
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contribute to inflammation and fibrosis by inducing pro-
inflammatory cytokines (69), apoptosis (70), B7-H6 expression
on hepatocytes (71), and interferon IFN-L1 (72). Intracellular
IL-32 inhibits HBV replication and downregulates the
transcription factors essential for HBV via the ERK1/2
pathway (73).
IL-32 IN DIFFERENT LEISHMANIASES

American Tegumentary Leishmaniasis
(ATL)
IL-32 is highly expressed in lesions in both CL and ML patients
(9). The IL-32 protein and IL-32g mRNA detected in mucosal
lesions were reportedly associated with TNF-a expression,
indicating a role of IL-32 in the immunopathogenesis of ATL.
IL-32 has been detected in the mononuclear cells of the
inflammatory infiltrate and also in non-immune cells such as
epithelial and endothelial cells. Amastigote forms of L.
braziliensis induced IL-32g mRNA in PBMCs from healthy
individuals within 24 h of incubation (9). Therefore, while IL-
32g is produced immediately upon the initial interactions of
immune cells with parasites, it may also be detected during
chronic inflammation. In addition, IL-32 was highly detected in
skin lesions of patients infected with L. amazonensis (12).
Frontiers in Immunology | www.frontiersin.org 3
Upon IL-32g silencing or overexpression in the human
monocytic THP-1 cell line, early expression of IL-32g mRNA
was confirmed for L. braziliensis and L. amazonensis, and it was
dependent on TNF-a. Moreover, the expressions of TNF-a
mRNA and IL-8 mRNA and protein induced by each
Leishmania sp. were dependent on IL-32g. However, TNF-a
was produced at similar levels upon exposure to L. amazonensis
or L. braziliensis in an IL-32g-independent manner. Only
L. braziliensis could induce IL-1b production independent of
IL-32g. The IL-1 receptor antagonist (IL-1Ra) mRNA and
protein levels and IL-10 mRNA levels were higher after
exposure to L. amazonensis compared to L. braziliensis, and
only L. amazonensis-induced IL-1Ra was affected by IL-32g
expression (10). These findings suggested that the effect of IL-
32g expression on cytokine production differs with the
Leishmania species. In the absence of IL-32g, the infection
index increased, which was attributed to the decreased levels of
iNOS/NO (nitric oxide) and antimicrobial peptides (b-defensin-
2 and cathelicidin). Reactive oxygen intermediates (ROS) and
antimicrobial peptides are reported to kill Leishmania (74, 75).
Accordingly, IL-32g overexpression led to better parasite control
together with increased production of microbicidal molecules
(Figure 1A) (10). Therefore, IL-32g expression is crucial for
parasite control against both the Leishmania species.

Dos Santos et al. (14) demonstrated that both L. amazonensis
and L. braziliensis could induce IL-32g mRNA in the PBMCs
B C
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FIGURE 1 | Interleukin-32 in Leishmania infections. (A) Human macrophages derived from the monocyte cell line THP-1 were infected with L. amazonensis (La) or L.
braziliensis (Lb) (MOI 5:1) after IL-32g silencing (siRNA) or overexpression (plasmid) for evaluation of cytokine and antimicrobial molecules. (B, C) PBMCs from healthy
individuals genotyped for three IL32 variants were exposed to La (B) or Lb (C) promastigote lysates for cytokine evaluation (innate - TNF-a, IL-1b, IL-6/24 h;
acquired immunity: IL-22, IL-17, IFN-g/seven days) and association with ATL and its clinical outcome; expression of cytokines and different IL-32 isoforms were
evaluated in lesions of ATL patients and positive correlations were obtained. (D) Human monocyte-derived macrophages were infected with Lb after priming with
recombinant cytokines - IL-15 (inducer of IL-32) and/or IL-32g to evaluate vitamin D-dependent microbicidal pathway and NO and ROS production.
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from healthy individuals within 24 h of incubation, while IL-32b
and IL-32a mRNA were detected only after seven days. This
suggested that isoforms other than IL-32g could be produced
during in vivo infection, which could differentially modulate the
immune responses. The search for the innate receptors
responsible for IL-32 induction revealed that toll-like receptor
4 (TLR4), NOD2, and Dectin-1 recognized Leishmania
molecules for IL-32 induction (14). Lipophosphoglycan (LPG)
from Leishmania activates TLR4 and NOD-like receptors
(NLRP3) to increase cytokine production (76–78). Therefore,
LPG is a suitable candidate parasite-derived molecule for
inducing IL-32 production during Leishmania infection.

The major challenge in the study of the mechanisms and
biological activities of IL-32 in infectious diseases is the lack of a
known receptor for IL-32. Strategies other than those aiming at
the blocking/inhibition of cytokine receptor/signaling are
required to investigate the role of IL-32 in leishmaniases. In
this context, a genomic functional study allows identifying the
genetic variants of IL-32 (79) capable of regulating its production
and influencing the development and disease outcome in
tegumentary leishmaniasis. Three IL32 variants already
evaluated in other diseases (7, 80–82) were investigated in
ATL. A Brazilian cohort of ATL patients and healthy
individuals were evaluated for IL32 SNP rs4786370 (promoter
region), which is associated with protection against ATL. When
PBMCs from healthy individuals (200FG cohort; 79; http://www.
humanfunctionalgenomics.org/site/) were exposed to L.
amazonensis lysate, the CC genotype of IL32 rs478670
exhibited increased IL-32g mRNA expression. Nonetheless, the
production of innate (IL-1b, TNF-a, IL-6) or acquired (IFN g,
IL-17) immunity cytokines remained unaltered. However, IL-22
levels increased in the CC genotype individuals (14).

While intronic IL32 SNP rs1555001 and enhancer IL32 SNP
rs4349147 were not associated with ATL susceptibility or
resistance, a decrease was observed in IL-32g mRNA, TNF-a,
IL-1b, IL-22, and IFN-g expressions in L. amazonensis-or L.
braziliensis-exposed PBMCs with the AA genotype of rs1555001
SNP. Moreover, L. amazonensis exposure led to decreased IL-17
induction. In the AA genotype of IL32 SNP rs4349147, exposure
to both Leishmania species led to decreased IL-32g, IL-1b, and
IL-22 levels, while TNF-a and IL-6 levels decreased only upon L.
amazonenis exposure. The SNPs rs4786370 and rs1555001 were
not associated with clinical outcomes; the IL32 SNP rs4349147
allele G was present at high frequency in CL patients, while allele
A was overrepresented in ML patients (14). These findings,
together with the observations that these cytokines are highly
expressed in ATL lesions and IL-32 isoforms are associated with
innate and acquired cytokines, suggest that increased IL-32g and
IL-22 levels protect against ATL, while decreased levels of these
cytokines represent a risk for ML. In murine models, IL-22 is
considered irrelevant to parasite control (83, 84), although it does
facilitate healing of the lesions, thereby protecting against tissue
damage (84). The three IL32 SNPs evaluated in Dos Santos et al.
(14) affected the expression of IL-22, which is strongly associated
with IL-32g in ATL lesions. Notably, while IL-32g was associated
with IFN-g and IL-17 (Th1/Th17 profile), IL-32b was associated
Frontiers in Immunology | www.frontiersin.org 4
with IL-22 and IL-17, and IL-32a with IL-17 (Th17 profile) (14)
(Figures 1B, C). Therefore, the isoforms could be determinant to
the acquired immune responses against Leishmania.

The role of IL-32 in the clinical outcome of diseases has been
evaluated in human IL-32 transgenic mice. Choi et al. (66) used
the mouse strain C57BL/6 to develop IL-32g transgenic mice (IL-
32gTg), in which the chicken b-actin promoter drives IL-32g
expression in all tissues. In this mouse model, IL-32g promoted
parasite control and lesion healing after infection with L.
braziliensis, and was associated with the increased production
of Th1 cytokines (12). While IL-32g did not contribute to the
healing of lesions caused by L. amazonensis, it decreased parasite
dissemination from the footpad to the liver or spleen (12). This
mouse model was also used to evaluate the role of IL-32 in
trained immunity as an alternative mechanism to enhance
protection against Leishmania. In the study, b-glucan was first
used for training the human monocytes (85), which induced IL-
32g mRNA expression and IL-32 production while also
enhancing the control of L. braziliensis. These results were
mechanistically explained by an increase in the expression of
antimicrobial peptides cathelicidin and b-defensin-2. The
stratification of healthy individuals according to their IL32
SNP rs4786370 genotype (200FG cohort; 79) revealed that the
CC genotype expressed higher levels of IL-32g, IL-1b, IL-6, and
TNF-a in b-glucan-trained macrophages compared to the TT
genotype. The presence of this IL32 variant was also associated
with a decreased infection index. These findings, together with
the genomic functional data, suggested that b-glucan induces IL-
32 and IL-1b, which then mediate trained immunity and
enhance protection against L. braziliensis infection (85).

In IL-32gTg mice, b-glucan training increased resistance
against L. braziliensis infection, which was mechanistically
explained by an increased expression of the genes associated
with cell cycle, myeloid lineages, and regulatory enzymes of the
glycolytic pathway in bone marrow cells. Similar results were
reported for human BCG-vaccinated volunteers genotyped for
IL32 SNP rs4786370, in which the bone marrow myeloid
progenitor cells with CC genotype presented an association of
IL-32 expression with increased metabolic gene expression,
besides inflammation (86). BCG reportedly induces IL-32 (40,
87), while BCG-trained monocytes exhibit enhanced capacity to
kill L. braziliensis, L. amazonensis, and L. infantum through
increased ROS production (86). Moreover, IL-32gTg mice
trained with BCG exhibit resistance to L. braziliensis and L.
infantum, and control of L. amazonensis dissemination. This was
associated with increased inflammation (87). Data indicate that
IL-32 serves as a determinant of gene expression profile at the
level of bone marrow progenitors by mediating the trained
immunity induced by b-glucan or BCG and conferring
protection against leishmaniasis. Dos Santos et al. reported a
review on BCG in leishmaniasis (88).

One of the microbicidal pathways driven by IL-32g is the
vitamin D-dependent production of antimicrobial peptides. L.
braziliensis infection in human monocyte-derived macrophages
was reportedly best controlled when the culture medium
contained IL-32g and a sufficient amount of vitamin D
March 2022 | Volume 13 | Article 849340
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(Figure 1D) (15). However, this pathway appears important in
the control of various microorganisms in human macrophages as
the IL-32–vitamin D axis is also crucial for controlling the
growth of Paracoccidioides brasiliensis, a fungus that causes
paracoccidioidomycosis (42).

Although IL-32gTg mice have been useful in studying the role
of IL-32 in leishmaniases, the differences between humans and
mice render these unsuitable as an optimal model. For instance,
the vitamin D pathway in mice lacks the induction of b-defensin-
2 and cathelicidin (89), consequently limiting the use of this IL-
32-dependent pathway in IL-32gTg mouse in analyses.
Moreover, mice and humans differ in the NO levels generated
after Leishmania infection and their relevance in parasite control
(15, 90, 91). Therefore, the effects of IL-32 on microbicidal
pathways could differ between humans and mice.

Visceral Leishmaniasis (VL)
Leishmania infantum promastigotes may induce high levels of
IL-32g expression and IL-32 production and low levels of IL-32b
in human PBMCs. In IL-32gTg mice, IL-32g expression was
reportedly increased in the liver and spleen, which ultimately
reduced the parasite burden and increased granuloma formation
in the liver, compared to wild-type mice. The protection was
associated with Th1 and Th17 cells, which produced cytokines
that contributed to NO production (13). IL-32g also enhanced
the protective role of neutrophils in VL. IL-32g increased the
number of neutrophils in mouse spleen and liver after L.
infantum infection via IL-17-dependent cell recruitment.
Recombinant IL-32g increased ROS production in both mouse
and human neutrophils (92). Together, data suggest a crucial role
of the IL-32g–Th17–neutrophil axis in the control of
experimental VL. As stated above, IL-32 appears to mediate
the BCG-trained immunity, which confers protection against L.
infantum to human monocytes/macrophages and IL-32gTg mice
(87). However, data on the role of IL-32 in the course of human
VL deserve investigation.
CONCLUSION

Studies have demonstrated that IL-32 plays a crucial role in
leishmaniases. However, studies attempting to unravel the role of
Frontiers in Immunology | www.frontiersin.org 5
IL-32 in leishmaniases and other diseases encounter certain
major challenges, including the high number of IL-32
isoforms, each with distinct biological properties, lack of a
recognized IL-32 receptor, the large sample size required for
genetic studies, few individuals with IL32 variants available for
functional studies, and the differences in the IL-32g-mediated
microbicidal pathways between humans and mice. Future studies
should investigate the presence of other IL-32 isoforms, in vivo,
during microbial infection and attempt to identify IL-32
receptors to unravel the mechanisms through which IL-32
modulates immune responses during infection with different
Leishmania species.
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