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Abstract

Accurate estimation of the instantaneous heart rate (HR) using a reflectance-type photo-

plethysmography (PPG) sensor is challenging because the dominant frequency observed in

the PPG signal corrupted by motion artifacts (MAs) does not usually overlap the true HR,

especially during high-intensity exercise. Recent studies have proposed various MA cancella-

tion and HR estimation algorithms that use simultaneously measured acceleration signals as

noise references for accurate HR estimation. These algorithms provide accurate results with

a mean absolute error (MAE) of approximately 2 beats per minute (bpm). However, some of

their results deviate significantly from the true HRs by more than 5 bpm. To overcome this

problem, the present study modifies the power spectrum of the PPG signal by emphasizing

the power of the frequency corresponding to the true HR. The modified power spectrum is

obtained using a Gaussian kernel function and a previous estimate of the instantaneous HR.

Because the modification is effective only when the previous estimate is accurate, a recently

reported finite state machine framework is used for real-time validation of each instantaneous

HR result. The power spectrum of the PPG signal is modified only when the previous estimate

is validated. Finally, the proposed algorithm is verified by rigorous comparison of its results

with those of existing algorithms using the ISPC dataset (n = 23). Compared to the method

without MA cancellation, the proposed algorithm decreases the MAE value significantly from

6.73 bpm to 1.20 bpm (p < 0.001). Furthermore, the resultant MAE value is lower than that

obtained by any other state-of-the-art method. Significant reduction (from 10.89 bpm to 2.14

bpm, p < 0.001) is also shown in a separate experiment with 24 subjects.

Introduction

In recent years, instantaneous heart rate (HR) estimation has attracted considerable attention

owing to the advent of wearable devices such as wristwatches and bands that can be used to

obtain photoplethysmographs (PPGs). At present, various commercially available reflectance-

type wrist-worn PPG devices, such as Apple Watch, Fitbit Surge, and Samsung Gear, are capa-

ble of producing instantaneous HR estimates. However, the accuracy of most of these devices

is limited to situations in which the wearer is at rest, walking, or performing low-intensity
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exercise. During high-intensity exercise, the measured PPG signals are severely corrupted by

motion artifacts (MAs) that are shaped similarly to pure pulses, which cause the dominant fre-

quency in the PPG signal to deviate from the true HR. In addition, it is challenging to detect

the pure pulse peak for estimating the HR. Here, severe corruption implies that motion arti-

facts with larger amplitude than the pure pulse are coupled with the PPG signal, making it dif-

ficult to distinguish the actual pure pulse [1–3].

Owing to this limitation, there is a need for wearable devices that produce accurate instan-

taneous HR estimates during high-intensity exercise. Such a need is further necessitated by the

fact that, for instance, accurate real-time HR monitoring is required for efficient cardiac reha-

bilitation exercise, which requires the instantaneous HR to be maintained within the pre-

scribed HR range [4, 5]. In addition, several studies have demonstrated the need for

implementing effective HR dynamics during exercise for purposes such as glycemic control in

individuals with type 1 diabetes [6], to not only avoid all-cause mortality and cardiac death [7–

10] but also determine the capability of the autonomic system to respond to stressors [11–13].

Many algorithms have been proposed for achieving accurate HR estimation based on PPG

signals [14–19], such as independent component analysis [14, 15], principle component analy-

sis [16, 17], singular spectrum analysis [18, 19], and empirical mode decomposition [17] algo-

rithms. These algorithms use signal processing techniques to separate uncorrelated signals

from a set of mixed signals and yield accurate HR estimates under a wide range of conditions,

including those of rest, walking, and light-intensity exercise. However, their performances

have not been validated under high-intensity exercise. Furthermore, they adopt signal process-

ing techniques without noise reference identification. Recently, many studies have focused on

the use of simultaneously measured acceleration signals as noise references. This process facili-

tates efficient removal of MAs that corrupt the PPG signal, thereby allowing more accurate HR

estimation during high-intensity exercise [1–3, 20–25]. Nevertheless, some results of these

studies show significant deviation from the true HRs. For instance, in subject 14 of the IEEE

Signal Processing Cup (ISPC) 2015 dataset, the mean absolute errors (MAEs) were 9.59 bpm

[3], 8.07 bpm [1], 7.29 bpm [21], and 6.63 bpm [20]. One reason for such deviation is that the

employed acceleration signals do not always represent the true MAs. For example, when the

subject taps his/her finger, twists his/her wrist, or closes/opens his/her fist, the measured PPG

signal is distorted by the movement whereas the accelerometer may not capture the move-

ment. In addition, high-intensity exercise may cause the MAs to overwhelm the PPG signals,

resulting in a signal-to-noise ratio (SNR) that is too low for the identification of the dominant

frequency corresponding to the true HR. Furthermore, when the dominant frequency deter-

mined from the acceleration signals overlaps the true HR, the HR information may be lost

after MA cancellation. Thus, it is not always possible to achieve accurate HR estimation.

To address the above-mentioned issues, the present study proposes a method that signifi-

cantly reduces inaccurate HR estimations through modification of the power spectrum of the

PPG signals by emphasizing the power of the frequency corresponding to the true HR.

Methods

Ethics statement

This study was approved by the institutional review board of Wonkwang University, Republic

of Korea (WKUIRB 201805-032-01). All the participants provided written informed consent.

Dataset

In this study, we used two datasets, namely the ISPC dataset (n = 23) and the dataset obtained

by our developed wearable device, i.e., the BAMI dataset (n = 24) [26]. Both datasets included
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multichannel PPG signals and multi-axis accelerometer signals simultaneously acquired by

wrist-worn devices during physical exercise. In addition, chest ECG signals were simulta-

neously recorded using wet ECG sensors. The ECG-based HRs were considered to be true val-

ues; they were calculated using 8-s windows with 2-s shifts (6-s overlap), yielding HRs every 2

s. The same window length (8 s) and shift (2 s) were used throughout this study to assess the

performance of the proposed algorithm against that of existing algorithms [1–3, 20–25, 27].

The ISPC dataset comprises two-channel PPG signals and three-axis acceleration signals

sampled at 125 Hz, and it is publicly downloadable [28]. The data correspond to three exercise

types: Type 1 (T1), Type 2 (T2), and Type 3 (T3). The T1 dataset (n = 12) includes the data of

each subject running on a treadmill at varying speeds: 30 s of rest, 1 min at 6–8 km/h, 1 min at

12–15 km/h, 1 min at 6–8 km/h, 1 min at 12–15 km/h, and another 30 s of rest. The T2 dataset

(n = 5) includes the data of each subject performing a variety of actions, including running,

jumping, push-ups, shaking hands, stretching, and pushing. The T3 dataset (n = 6) includes

the data of each subject performing high-intensity arm movements, such as boxing. The true

HR was calculated from the ECG signals by manually identifying the individual R peaks in

each time window. No R-peak detection algorithm was used to avoid any possible detection

error.

The BAMI dataset comprises three-channel PPG signals and three-axis acceleration signals

sampled at 50 Hz. Fig 1(A) shows the BAMI device, which consists of three photosensors

(NJL5310R, NJR Corporation, Japan) for acquiring the PPG signals and an inertial measure-

ment unit (IMU; LSM6DSMUSTR, STMicroelectronics) for acquiring the acceleration signals.

The BAMI dataset is also publicly downloadable [26]. Fig 1(B) and 1(C) show examples of the

measured PPG signals corrupted by low- and high-intensity MAs, respectively. Fig 1(D) and 1

(E) show the corresponding power spectra. It can be seen that the dominant frequency in the

power spectrum corresponds to the true HR in the case of low-intensity MAs. On the other

hand, the dominant frequency may not correspond to the true HR in the case of high-intensity

MAs. The data were collected from 24 healthy subjects (10 male, 14 female; average age: 26.9

±4.8 years) at Wonkwang University, recruited by trained personnel. The exercise protocol

included 1 min of rest, 2 min of walking for warming up, 3 min of running at 6–8 km/h, 2 min

of walking, 3 min of running at 8–12 km/h, and 1 min of walking for cooling down. The entire

process was executed on a treadmill. For the reference true HRs, ECG data were simulta-

neously recorded at a sampling rate of 125 Hz by a 24-h Holter monitor (SEER Light, GE

Healthcare, Milwaukee, WI, USA). Then, we manually identified the R peaks and computed

the average RR intervals in each time window. Note that in the ISPC dataset, the number of

cardiac cycles was manually counted in each 8-s window with 2-s shifts from the measured

ECG signals [28].

Preprocessing

In this study, the instantaneous HR HRest(i) was estimated on the basis of the 8-s segmented

PPG signals Snp(i) and the acceleration signals Am(i) in the ith window, where np = {1, 2,. . .

NP} (NP is the number of photosensors) and m = {1, 2,. . . M} (M is the number of acceleration

axes). HR estimation was performed every 2 s (2-s shift; thus, 6-s overlap). To assess the perfor-

mance of our algorithm, we used the same window length and shift as those used in previous

studies [1–3, 20–25, 27]. A fourth-order Butterworth bandpass filter (BPF) with cutoff fre-

quencies of 0.4 and 4 Hz was applied to the signals Snp(i). The range of approximately 40–200

bpm covers the HRs of subjects of all ages, both at rest and during high-intensity physical

activity [29, 30]. The filtered signals were subsequently normalized to zero mean with unit var-

iance in the ith window. The normalized signals were then averaged and down-sampled to 25

Power spectrum modification for accurate HR estimation
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Fig 1. Wearable BAMI device for acquiring three-channel PPG signals and three-axis acceleration signals. (a) device, (b) example of measured PPG signal

corrupted by low-intensity MAs, (c) example of measured PPG signal corrupted by high-intensity MAs, (d) power spectrum of signal (b) with true HR, and (e)

power spectrum of signal (c) with true HR.

https://doi.org/10.1371/journal.pone.0215014.g001
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Hz to reduce the computational load. The power spectrum was subsequently computed by

2,048-point fast Fourier transformation (FFT) to provide high-frequency resolution (12.5 Hz/

2,048 = 0.0061 Hz; 0.3662 bpm), and the results were normalized to have a minimum value of

zero and maximum value of one, denoted by PS(i). Given a signal with a sampling rate of 125

Hz (without down-sampling), 8,192-point FFT is required to provide a similar frequency reso-

lution (62.5 Hz/8,192 = 0.0076 Hz). The same steps (BPF, down-sampling, and normalization)

were applied to the signals Am(i), and their normalized 2,048-point FFTs were denoted by

PA(i).

HR estimation with MA cancellation

Given the computed power spectra PS(i) and PA(i), the true clean power spectrum PC(i) can be

estimated as

PCðiÞ � PSðiÞ � PAðiÞ ð1Þ

Eq (1) can also be expressed as

PC ið Þ � PS ið Þ � PA ið Þ ¼
PSðiÞ � PAðiÞ

PSðiÞ

� �

PS ið Þ ð2Þ

By substituting PS(i) in the term
PSðiÞ� PAðiÞ

PSðiÞ

� �
in Eq (2) with PC(i)+PA(i), we have

PC ið Þ �
PCðiÞ

PCðiÞ þ PAðiÞ

� �

PS ið Þ ð3Þ

Assuming that the power spectra PC(i−1) and PC(i) in consecutive windows nearly overlap,

PC(i) in the term
PAðiÞ

PCðiÞþPAðiÞ

� �
in Eq (3) can be substituted with PC(i−1) obtained in the (i-1)th

window. Hence, PC(i) can be recursively estimated as

PC ið Þ ¼
PCði � 1Þ

PCði � 1Þ þ PAðiÞ

� �

PS ið Þ ð4Þ

Finally, we determined the dominant frequency in PC(i) for HR values of 0.6–3.3 Hz (approxi-

mately 40–200 bpm) to obtain HRest(i). It is shown that the power spectrum PC(i) is recursively

obtained from the previous power spectrum PC(i−1) in the (i-1)th window. It is important to

consider the previous power spectrum in order to efficiently suppress MAs, because MAs orig-

inate from dynamic frequency changes with higher uncertainties whereas clean PPG signals

change slowly, assuming that the HRs in consecutive windows are close. It can be shown that

the recursive estimation is similar to the Bayesian approach in that it estimates the current HR

density function on the basis of the previous density function. On the other hand, it differs

from the Bayesian approach in that its prediction is not based on the HR transition model.

Fig 2 shows time-frequency spectrum (TFS) of the PPG signals for subject 1 measured by

the BAMI device. In Fig 2(A), the black circles represent the true HRs, and it can be seen that

some frequencies from the measured PPG signals reflect the true HRs. In Fig 2(B), the black

circles represent the dominant frequencies of the PPG signals, and it can be seen that they do

not overlap the true HRs. Hence, if the HR is estimated by directly identifying the dominant

frequency in the power spectrum PS(i), the result would be inaccurate. In Fig 2(C), the black

circles represent the dominant frequencies of the three-axis acceleration signals, and they indi-

cate the detection of MAs by the power spectrum PA(i). In Fig 2(D), the black circles represent

the estimated HRs after MA cancellation using the acceleration signals. The results show that

the use of PC(i) after MA cancellation improves the accuracy of HR estimation.

Power spectrum modification for accurate HR estimation
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For more rigorous comparison and analysis, the performances of the proposed algorithm

with and without MA cancellation were compared for both the ISPC dataset and the BAMI

dataset. The results are summarized in Table 1A and 1B. It can be seen that the use of PC(i) sig-

nificantly decreases the MAE from 13.71 to 6.73 bpm and from 21.27 to 10.89 bpm for the

ISPC dataset and the BAMI data, respectively. The overall MAE from both datasets decreases

from 17.57 bpm to 8.86 bpm, which is summarized in Table 2. However, MA cancellation has

an inherent limitation and does not always work for all data. It is inapplicable under certain

conditions, such as when the MAs are uncorrelated with the acceleration signals, the SNR is

extremely low, and the overlap between the true HR and the MA frequency is extremely small.

For instance, in the cases of subjects 10, 14, 15, 17, and 20 in the ISPC dataset and subjects 5, 6,

9, 11, 16, and 18 in the BAMI dataset, the MAEs were extremely high both with and without

Fig 2. Time-frequency spectrum (TFS) of the PPG signals for subject 1 obtained by the BAMI device. (a) true HRs (black circles) on the TFS, (b) dominant

frequencies of the PPG signals (black circles) on the TFS, (c) dominant frequencies of the three-axis acceleration signals (black circles) on the TFS, and (d)

dominant frequencies of the PPG signals (black circles) on the TFS after MA cancellation using the acceleration signals.

https://doi.org/10.1371/journal.pone.0215014.g002
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MA cancellation. These issues were also observed in other previously reported algorithms [1–

3, 20–25].

Result validation using FSM framework

The FSM framework was used to eliminate inaccurate estimation results and thus overcome

the above-mentioned limitation. Four states are defined in the framework, namely stable,

recovery, alert, and uncertain states. After the estimation of HRest(i) with MA cancellation, the

FSM framework is used to determine the state and validate the estimation result in real time. A

stable state indicates that the estimated HR is highly likely to be accurate and it is thus declared

valid. A recovery state indicates that the estimated HR is somewhat likely to be accurate with

the need to explore possible transition to the stable state. An alert state indicates that the

Table 1. Comparison of the HR estimation results obtained with and without MA cancellation for the ISPC (n = 23) and BAMI (n = 24) datasets. The performance

was evaluated on the basis of the mean absolute error (MAE).

A B

Dataset Subject Without MA cancellation With MA cancellation Dataset Subject Without MA cancellation With MA cancellation

ISPC 1 8.28 3.81 BAMI 1 46.64 11.86

2 24.44 2.88 2 29.46 9.00

3 16.77 1.15 3 17.61 4.86

4 7.27 1.09 4 36.59 17.31

5 2.09 0.79 5 39.88 25.49

6 4.67 1.48 6 39.29 33.06

7 1.36 4.09 7 6.83 3.90

8 3.79 0.65 8 9.75 4.81

9 0.43 0.43 9 20.42 21.30

10 35.70 21.60 10 33.71 10.56

11 10.66 2.73 11 34.01 31.28

12 13.50 1.22 12 17.76 6.58

13 15.68 8.70 13 13.13 3.15

14 19.07 20.47 14 5.94 3.62

15 10.06 15.27 15 13.51 3.30

16 12.86 7.40 16 18.65 14.71

17 27.00 15.48 17 27.29 8.59

18 15.40 2.31 18 27.49 15.55

19 24.91 9.39 19 16.28 3.95

20 24.95 21.21 20 15.72 3.17

21 22.27 8.87 21 4.77 4.17

22 13.50 3.12 22 8.70 2.42

23 0.70 0.70 23 19.67 12.54

24 7.44 6.17

Average 13.71 6.73 Average 21.27 10.89

https://doi.org/10.1371/journal.pone.0215014.t001

Table 2. Comparison summary of the HR estimation results obtained with and without MA cancellation. Each

result was obtained from all datasets (n = 47): ISPC (n = 23) and BAMI (n = 24) datasets. The performance was evalu-

ated on the basis of the mean absolute error (MAE).

All (Nos. 1–47) Without MA cancellation With MA cancellation

17.57 8.86

https://doi.org/10.1371/journal.pone.0215014.t002
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estimated HR is somewhat likely to be inaccurate. An uncertain state indicates that the esti-

mated HR is highly likely to be inaccurate. The FSM framework transits from one state to

another in every window in response to the estimation accuracy indicators, namely the crest

factor (CF) and the HR change between consecutive windows. The CF is the ratio of the domi-

nant frequency power to the root mean square of the total power of PS(i). The higher the CF,

the less corrupted is the PPG signal. Thus, the CF condition CF(i)�THCF indicates that PS(i) is

acceptable for HR estimation, where CF(i) is the CF value in the ith window and THCF is the

CF threshold value. The HR change between consecutive windows is based on the observation

that the absolute HR difference every 2 s is approximately 5 bpm at the 99% level in the ISPC

database. Thus, the HR change condition |HRest(i)−HRest(i−1)|�THHR, where THHR is the HR

change threshold, indicates acceptable estimation of HRest(i) on the basis of HRest(i−1) in the

(i-1)th window. The FSM framework thus determines the state on the basis of the CF and HR

change, and only a stable state result is declared valid. Other state results are declared invalid

and discarded. Accordingly, the FSM automatically validates the estimation results without the

true HR value and ignores inaccurate estimation results caused by extremely low SNRs in the

PPG signals or by MAs uncorrelated with the accelerometer signals. The details of the frame-

work are presented elsewhere [27]. Fig 3 compares the results obtained with and without the

FSM framework for subject 1 in the BAMI dataset. As can be observed from Fig 3(A), MA can-

cellation does not always produce accurate HR estimates, while Fig 3(B) shows that the FSM

framework successfully identifies valid HR estimates.

Gaussian kernel-based power spectrum modification

Fig 4 shows sample HR estimation results without (a) and with (b) MA cancellation for a cer-

tain window with a true HR of 2.1 Hz. Fig 4(A) shows the power spectrum PS(i) obtained from

the measured PPG signals before MA cancellation. The highest frequency peak occurs at 0.8

Hz, followed by 2.1 Hz (the true HR), 1.6 Hz, and 1.4 Hz. Fig 4(B) shows the power spectrum

PA(i) obtained from the simultaneously measured acceleration signals. The power spectrum

PA(i) has two dominant frequencies of 0.8 and 1.6 Hz, which overlap the MA frequencies in

the power spectrum PS(i), indicating that the acceleration signals correctly reflect the MA

Fig 3. Comparison of HR estimation results. (a) with and (b) without the FSM framework for subject 1 in the BAMI dataset.

https://doi.org/10.1371/journal.pone.0215014.g003
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frequencies in the PPG signals. However, even after MA cancellation, the most dominant fre-

quency in the power spectrum PC(i) is 0.8 Hz, as shown in Fig 4(C), whereas the frequency

power at the true HR (2.1 Hz) appears as a slightly weaker peak. Even if the MA frequencies

were correctly identified using the acceleration signals and the corresponding MAs were

removed, the MA frequency power was still greater than any other frequency power. This is

because the MA frequency power in the power spectrum PS(i) overwhelmed the frequency

power of the true HR; thus, the MA frequency power was slightly greater than the frequency

power of the true HR in the power spectrum PC(i). Such inaccurate estimates are often

observed when the SNR is extremely low, with the pure PPG signals overwhelmed by the MAs.

When the FSM framework is applied under these conditions, the estimate may be declared

Fig 4. Sample HR estimation results obtained with MA cancellation. (a) power spectrum PS(i) (blue solid line) and power spectrum PA(i) (yellow dotted

line), (b) power spectrum PC(i) after MA cancellation, (c) Gaussian kernel-based modified power spectrum P̂S ðiÞ, and (d) power spectrum P̂C ðiÞ after MA

cancellation based on P̂S ðiÞ.

https://doi.org/10.1371/journal.pone.0215014.g004
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invalid and ignored, assuming that HRest(i−1) is accurate. This would prevent degradation of

the estimation accuracy, although the valid HR rate (VHR) would decrease.

To overcome the low SNR problem, the power spectrum PS(i) was modified by emphasizing

the power of the frequency corresponding to HRest(i−1), assuming that it is accurate. As expressed

by Eq (5), a modified power spectrum denoted by P̂SðiÞ was then obtained by multiplying the

power spectrum PS(i) with the Gaussian kernel function, which has a mean value of HRest(i−1).

bPS ið Þ≔PS ið Þ � ð2pÞ�
1
2 � exp �

ðHRestði � 1ÞÞ
2

2s2

� �

ð5Þ

where HRest(i−1) is assumed to be accurate. Otherwise, P̂SðiÞ ¼ PSðiÞ. The standard deviation

was set to σ = 1 Hz or 60 bpm and its effect was investigated, as discussed in the “Results” section

below. Fig 4(D) shows the Gaussian kernel-based modified power spectrum P̂SðiÞ. By emphasiz-

ing the power of the frequency corresponding to HRest(i−1), the highest peak of the power spec-

trum P̂SðiÞ occurs at the true HR frequency of 2.1 Hz. Furthermore, after MA cancellation, the

resultant clean power spectrum P̂CðiÞ has a much more dominant peak at the true HR frequency,

as shown in Fig 4(E). The FSM framework validates the HR estimate in real time and the Gaussian

kernel-based modification is only applied when HRest(i−1) is declared valid. In addition, the mod-

ification requires the assumption that the HRs in two consecutive windows are close. This

assumption was satisfied in the present study because the HR estimation was performed within

8-s windows with 2-s shifts (6-s overlap).

The flowchart of the proposed algorithm is shown in Fig 5. In the ith window, the PPG and

acceleration signals (i.e., Sn(i) and Am(i)) are acquired, and the power spectra (PS(i) and PA(i))
are computed in the preprocessing stage. If the FSM framework declares HRest(i−1) to be valid

in the (i-1)th window, PS(i) is modified using the Gaussian kernel function in Eq (5). Otherwise,

P̂SðiÞ ¼ PSðiÞ. The clean power spectrum P̂CðiÞ is subsequently computed with MA cancellation

based on P̂SðiÞ and PA(i). Finally, HRest(i) is obtained by identification of the dominant fre-

quency in P̂CðiÞ over the HR range 0.6–3.3 Hz and validated by the FSM framework.

Evaluation metrics

The performance of the proposed algorithm was evaluated by comparing its results with those

of previously developed algorithms [1–3, 20–25, 27] using the ISPC (n = 23) and BAMI

(n = 24) datasets. It should be noted that N = 2 for the ISPC dataset and N = 3 for the BAMI

dataset. For both datasets, M = 3. Two methods were adopted to evaluate the HR estimation

performance of the proposed algorithm using state-dependent Gaussian kernel-based power

spectrum modification with the FSM framework (FSM-SGPS). The first method involved

direct frequency determination of the dominant frequency (DFDF) in the power spectrum

PC(i) after MA cancellation. The second method involved a combination of the FSM frame-

work and DFDF (FSM-DFDF). The accuracy of the algorithm was further evaluated by calcu-

lating the absolute error (AE) of its estimation:

AEðiÞ ¼ jHRestðiÞ � HRtrueðiÞj; ð6Þ

where HRtrue(i) is the true HR (bpm) in the ith window. The overall evaluation of HR estima-

tion was performed on the basis of the MAE (bpm), average of the relative AEs (ARE) (%), and

valid HR rate (VHR) (%) as the percentage of valid results among all windows:

MAE ¼
PNvalid

i¼1
AEðiÞ

Nvalid
ð7Þ
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ARE ¼

PNvalid
i¼1

AEðiÞ
HRtrueðiÞ

� 100

Nvalid
ð8Þ

Fig 5. Flowchart of the proposed algorithm.

https://doi.org/10.1371/journal.pone.0215014.g005
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VHR ¼
Nvalid � 100

Nwindow
ð9Þ

where Nwindow is the total number of windows used for HR estimation and Nvalid is the number

of windows declared valid by the FSM framework. In accordance with the previous FSM

framework-based study [27], we used THCF = 2.4 and THHR = 5.03 bpm. In addition, for statis-

tical analysis, we performed one-way analysis of variance (ANOVA) using MATLAB (Math-

Works, Natick, MA, USA) to compare the resultant HR means from different algorithms in

order to obtain statistical evidence as to whether the associated means are significantly differ-

ent. A p value below 0.05 was considered significant.

Optimal parameter search

To determine the optimal value of the standard deviation σ in Eq (5), various values between

10 bpm and 80 bpm in increments of 10 bpm were used to apply the proposed FSM-SGPS

algorithm to all the 23 subjects of the ISPC dataset. Fig 6(A) and 6(B) show the estimation

MAEs and VHRs with respect to σ. It can be seen that the MAE drastically decreases as σ
increases from 10 to 30 bpm and then becomes constant as σ further increases to 80 bpm. Sim-

ilarly, VHR drastically decreases as σ increases from 10 to 30 bpm and then becomes constant

as σ further increases to 60 bpm. The optimal value of σ may vary with the subject, exercise

type, and exercise intensity, but the performance is nearly the same for σ values of 30–60 bpm.

Hence, σ = 60 bpm was adopted for further performance analysis.

Results

Results for ISPC data

Fig 7 shows the HR trace comparison for the three HR estimation methods, namely DFDF,

FSM-DFDF, and FSM-SGPS, applied to the PPG data of subjects 2 and 11 of the ISPC dataset.

Fig 6. Variation. (a) MAE and (b) VHR with σ in the Gaussian function given by Eq (5).

https://doi.org/10.1371/journal.pone.0215014.g006
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It can be seen that FSM-SGPS produces more accurate estimates compared with DFDF and

higher VHR results compared with FSM-DFDF.

Table 3 summarizes the overall performance comparison of the three estimation methods.

Applying the FSM-SGPS method to all the subjects of the ISPC dataset yielded an MAE of 1.20

bpm, an ARE of 1.05%, and a VHR of 78.84%. Thus, the MAE was 0.21 bpm higher than that

of FSM-DFDF but 82.17% lower (-5.51 bpm) than that of DFDF. The FSM-SGPS results were

statistically different from the DFDF results (p< 0.001) but not significantly different from the

FSM-DFDF results. However, the VHR of the proposed algorithm was much higher (21.40%

higher) than that of FSM-DFDF. This implies that FSM-SGPS minimizes the invalidity rate of

the HR results by increasing the overall accuracy even under severe MA corruption, while

FSM-DFDF ignores the results as far as possible on the basis of the CF and the HR condition.

For instance, for subjects 10, 13, 14, 15, 17, 18, 19, 20, and 21, the VHRs of FSM-DFDF were

less than 50% (average = 26.9%), indicating that more than 50% of the results were ignored.

For the same subjects, FSM-SGPS increased the average VHR to 60.03% by minimizing the

invalidity rate of the HR results.

Table 4 summarizes the performance comparison of the proposed method and other previ-

ously proposed methods. It should be noted that some of the previous methods were tested for

only the first 12 subjects of the ISPC dataset, while the others considered subjects 14–23. Only

a few methods considered all 23 subjects. For a more accurate comparison, the test results are

shown for subgroups of the study participants (subjects 1–12, subjects 13–23, subjects 14–23, all

subjects except subject 13, and all 23 subjects). The results indicate that the FSM-SGPS algo-

rithm yields more accurate HR estimates than all the other methods.

Fig 7. Estimated HR trace comparison for two subjects of the ISPC dataset, obtained by DFDF (with MA cancellation only), FSM-DFDF (with MA

cancellation and FSM framework), and FSM-SGPS (the proposed algorithm). (a) DFDF results of subject 2, (b) FSM-DFDF results of subject 2, (c)

FSM-SGPS results of subject 2, (d) DFDF results of subject 11, (e) FSM-DFDF results of subject 11, (f) FSM-SGPS results of subject 11.

https://doi.org/10.1371/journal.pone.0215014.g007
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Fig 8(A) shows a Bland–Altman plot, from which the limit of agreement can be seen to lie

between –4.87 bpm and 4.72 bpm (mean of -0.10 bpm and standard deviation of 2.22 bpm).

Fig 8(B) shows the scatter plot of the valid HRs estimated by the FSM-SGPS algorithm and the

true HRs. The Pearson correlation coefficient was determined to be 0.9945 (r2 = 0.9891).

Table 3. Performance comparison of the DFDF, FSM-DFDF, and FSM-SGPS HR estimation methods.

Subject DFDF FSM-DFDF FSM-SGPS

MAE (bpm) ARE (%) MAE (bpm) ARE (%) VHR (%) MAE (bpm) ARE (%) VHR (%)

1 3.81 2.89 0.80 0.68 62.16 0.80 0.68 77.03

2 2.88 2.54 0.79 0.66 59.46 0.94 0.87 83.11

3 1.15 0.87 0.54 0.41 82.14 0.61 0.49 96.43

4 1.09 1.05 0.72 0.58 81.51 0.81 0.68 82.88

5 0.79 0.62 0.59 0.43 86.30 0.78 0.56 96.58

6 1.48 1.25 0.87 0.69 73.33 1.39 1.08 96.67

7 4.09 2.72 0.66 0.52 73.43 0.77 0.58 93.01

8 0.65 0.53 0.63 0.52 87.50 0.62 0.51 96.88

9 0.43 0.35 0.43 0.35 96.64 0.44 0.36 100.00

10 21.60 13.10 1.44 0.98 18.79 1.70 1.06 57.05

11 2.73 1.90 1.12 0.72 78.32 1.17 0.76 96.50

12 1.22 0.85 0.96 0.68 64.38 0.96 0.68 93.15

13 8.70 9.48 2.51 2.85 28.97 2.86 3.28 77.57

14 20.47 26.94 0.60 0.99 5.63 3.93 5.78 14.08

15 15.27 18.87 0.83 1.21 36.50 1.32 1.69 74.45

16 7.40 6.75 1.04 0.82 63.89 1.40 1.19 71.53

17 15.48 9.65 1.67 1.26 17.76 2.87 2.04 46.05

18 2.31 1.92 1.07 0.87 34.65 1.91 1.61 60.40

19 9.39 6.83 0.89 0.67 36.94 1.09 0.81 78.98

20 21.21 22.45 1.35 1.64 30.30 1.49 1.65 70.45

21 8.87 6.14 1.23 0.89 33.10 1.98 1.47 61.27

22 3.12 2.53 1.35 1.07 69.42 1.32 1.04 89.26

23 0.70 0.82 0.70 0.82 100.00 0.70 0.82 100.00

T1 3.49 2.39 0.80 0.60 71.99 0.89 0.67 89.11

T2 13.27 15.71 1.20 1.50 40.28 1.64 1.96 67.31

T3 7.76 5.64 1.20 0.93 42.63 1.65 1.28 67.92

All 6.73 6.13 0.99 0.88 57.44 1.20 1.05 78.84

https://doi.org/10.1371/journal.pone.0215014.t003

Table 4. Comparison of MAEs of various HR estimation methods for the ISPC dataset.

Subject TROIKA

[20]

JOSS

[1]

EEMD

[2]

SpaMa

[21]

IMAT

[22]

Spectrap

[23]

WFPV

[3]

SVD

[24]

PF

[25]

FSM-SGPS

MAE (VHR)

1–12 2.34 1.28 1.02 0.89 1.25 1.50 1.02 0.94 1.17 0.89 (89.11)

13–23 - - - 3.36 - - 3.01 - - 1.64 (67.64)

14–23 3.19 3.05 - 3.35 - 2.13 2.95 - - 1.50 (66.65)

All except subject 13 2.73 2.08 - 2.01 - 1.79 1.90 - - 1.13 (78.90)

All

1–23

- - - 2.07 - - 1.97 - - 1.20 (78.84)

https://doi.org/10.1371/journal.pone.0215014.t004
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Results for BAMI dataset

Table 5 summarizes the HR estimation performance comparison of the three above-men-

tioned methods for the BAMI dataset. For the 24 subjects, FSM-SGPS yielded an MAE of 2.14

bpm, an ARE of 1.73%, and a VHR of 90.48%; DFDF yielded an MAE of 10.89 bpm and an

ARE of 8.32%; and FSM-DFDF yielded an MAE of 3.09 bpm, an ARE of 2.38%, and a VHR of

72.83%. Thus, FSM-SGPS yielded a lower MAE and higher VHR compared with both DFDF

and FSM-DFDF. The FSM-SGPS results were statistically different from the results of both

DFDF and FSM-DFDF (p< 0.001).

The results of subject 6, whose PPG signals were severely corrupted with MAs, are notewor-

thy. DFDF produced an extremely high MAE of 33.06 bpm, and FSM-DFDF did not produce

any significant accuracy enhancement (MAE = 33.88 bpm). Fig 9(A) shows the estimated HR

trace for FSM-DFDF. As can be observed from the figure, the estimated HRs in regions A, B,

and C deviate drastically from the true HRs, indicating that the FSM framework validated the

estimates in these regions because of the absence of large variations in the estimated HR

changes for consecutive windows and consistently high CF values over a long period. Con-

versely, FSM-SGPS increased the overall accuracy through modification of the power spec-

trum PS(i), as reflected by the MAE and VHR values (see also Fig 9(B)). The results indicate

that the estimation results were improved, especially in regions B and C. The incorrect estima-

tion results in region A will be discussed in the next section.

Discussion and conclusions

In the pre-processing stage, we down-sampled the signals to 25 Hz. Regarding the effects of

the sampling rate, it was reported that the HR estimation performance was nearly the same but

the computational time was drastically reduced by down-sampling the signals [20]. Moreover,

in [2], the HR estimation performances were compared at different sampling frequencies of

25, 125, 250, and 500 Hz. The results showed that the HR estimation results were similarly

accurate for the first 12 subjects of the ISPC dataset, i.e., MAEs of 1.02 bpm (25 Hz), 1.06 bpm

(125 Hz), 1.10 bpm (250 Hz), and 1.12 bpm (500 Hz). Our results also showed consistent

trends. Even with a different sampling rate, the HR estimation performance was nearly the

Fig 8. Bland–Altman plot and correlation. (a) Bland–Altman plot of estimated and true HRs and (b) correlation for the proposed FSM-SGPS algorithm.

https://doi.org/10.1371/journal.pone.0215014.g008
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same. The MAE values with a sampling rate of 125 Hz were 1.21 bpm and 2.15 bpm for the

ISPC and BAMI datasets, respectively. Note that the MAE values with a sampling rate of 25 Hz

were 1.20 bpm and 2.14 bpm for the ISPC and BAMI datasets, respectively. As down-sampling

reduces the computational load without accuracy degradation, most existing algorithms

including our method down-sampled the signals to around 25 Hz [1–3, 20–25, 27].

There are numerous MA patterns in PPG signals, all of which are unpredictable. Fig 10

shows some examples of corrupted PPG signals along with the simultaneously measured ECG

signals during high-intensity exercise. Moreover, in the measured PPG signals, the MAs are

shaped similarly to ordinary pulses and are therefore difficult to distinguish. To obtain accu-

rate HR estimation results, considerable research effort has been devoted toward the use of

simultaneously measured acceleration signals as noise references in HR estimation algorithms.

As numerous MAs are combined with real pulse waves in an unpredictable manner, exact

mathematical formulation is difficult. In this study, we simplified the additive relationship

between the two spectra. Furthermore, many such approaches have been proposed. For

instance, in [25], the MA frequency powers were suppressed by dividing a constant value in

the MA frequency range. In [31], the MA frequency power from an acceleration signal was

considered as the probability of the event that the corresponding frequency is not the HR

while the frequency power from the PPG signal was considered as the probability of the event

that the corresponding frequency is the HR. In [21], the frequency peaks in the PPG spectrum

Table 5. Performance comparison of the DFDF, FSM-DFDF, and FSM-SGPS HR estimation methods for the 24 subjects of the BAMI dataset.

Subject DFDF FSM-DFDF FSM-SGPS

MAE (bpm) ARE (%) MAE (bpm) ARE (%) VHR (%) MAE (bpm) ARE (%) VHR (%)

1 11.86 10.41 1.18 0.92 76.60 1.35 1.10 98.08

2 9.00 6.31 1.60 1.35 71.47 1.65 1.33 96.79

3 4.86 4.18 1.35 1.22 79.38 1.57 1.42 94.00

4 17.31 12.86 15.75 11.06 58.65 1.15 0.94 92.63

5 25.49 21.99 3.70 3.07 45.83 2.67 2.20 88.46

6 33.06 22.37 33.88 23.00 48.68 12.35 8.51 77.94

7 3.90 2.90 1.75 1.39 91.13 1.83 1.43 91.13

8 4.81 4.12 1.91 1.66 82.73 2.09 1.81 94.00

9 21.30 16.53 1.40 1.07 44.23 1.75 1.34 83.65

10 10.56 7.01 1.65 1.10 72.12 1.76 1.17 94.23

11 31.28 20.46 1.89 1.45 43.65 1.84 1.31 90.41

12 6.58 5.28 1.56 1.45 79.62 1.77 1.64 90.41

13 3.15 3.17 1.67 1.64 87.05 1.66 1.61 91.37

14 3.62 3.62 1.66 1.76 80.58 1.75 1.84 84.17

15 3.30 3.03 3.08 2.75 91.61 3.08 2.75 91.61

16 14.71 11.48 2.27 1.87 51.08 2.42 1.94 71.70

17 8.59 5.98 1.34 1.00 72.44 1.38 1.00 91.67

18 15.55 9.99 1.51 1.11 65.71 1.59 1.13 86.86

19 3.95 2.93 1.28 1.03 81.77 1.42 1.12 97.60

20 3.17 2.30 1.48 1.13 93.29 1.46 1.11 96.40

21 4.17 2.85 1.71 1.25 93.59 1.74 1.26 95.19

22 2.42 2.23 1.47 1.34 91.37 1.66 1.52 94.00

23 12.54 11.39 1.61 1.41 69.78 1.73 1.54 88.25

24 6.17 6.42 1.41 1.53 75.32 1.48 1.59 91.03

Average 10.89 8.32 3.08 2.38 72.82 2.14 1.73 90.48

https://doi.org/10.1371/journal.pone.0215014.t005
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were compared with the frequency peaks in the accelerometer spectra, and the HR candidates

were eliminated if the peaks were overlapped. We will investigate the relation in future work.

Based on each proposed relationship, the accelerometer-assisted MA cancellation algo-

rithms provided accurate HR estimation results. However, these results were not always accu-

rate. To address this issue, we modified the power spectrum PS(i) by applying a Gaussian

kernel function with a mean value of HRest(i−1) when the state in the ith window was stable. As

a result, the MAE values improved to 1.20 bpm from 6.73 bpm for the ISPC dataset and to 2.14

bpm from 10.89 bpm for the BAMI dataset. On the other hand, when the power spectrum

modifications were performed for all the windows regardless of the state, the MAEs increased

to 1.79 bpm from 1.20 bpm, and to 4.75 bpm from 2.14 bpm, for the ISPC and BAMI datasets,

Fig 9. Comparison of the estimated HR trace obtained. (a) FSM-DFDF and (b) FSM-SGPS methods for one subject: (c) example of the measured 8-s PPG

signal in region A, (d) reconstructed 8-s PPG signal after MA removal followed by inverse FFT, and (e) simultaneously measured 8-s ECG signal.

https://doi.org/10.1371/journal.pone.0215014.g009

Fig 10. Examples of PPG signals corrupted by MAs. (a)–(i) show PPG signals corrupted by different MAs. There are numerous MA patterns in PPG signals.

https://doi.org/10.1371/journal.pone.0215014.g010
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respectively. The AREs also increased to 1.67% from 1.05%, and to 3.55% from 1.73%, for the

ISPC and BAMI datasets, respectively. In addition, we found that the VHRs slightly decreased

to 77.92% from 78.84%, and to 87.82% from 90.48%, for the ISPC and BAMI datasets, respec-

tively. Thus, the power spectrum modification is more effective when the state in the ith win-

dow is stable on the basis of the FSM framework.

Compared with FSM-DFDF for the ISPC dataset, FSM-SGPS slightly increased the MAE

from 0.99 to 1.20 bpm, whereas it increased the VHR considerably from 57.44% to 78.84%.

For the BAMI dataset, the MAE decreased from 3.08 to 2.14 bpm, while the VHR increased

from 72.71% to 90.48%. However, as shown in Fig 9(B), the proposed FSM-SGPS algorithm

still has some limitations for accurate estimation and validation of all HRs. Its deficiency can

be observed when the PPG signal does not reflect the true HR over a long period, even with

MA cancellation. The power spectrum PS(i) cannot be modified under this condition owing to

the unavailability of the estimation result of the previous window. Fig 9(C) and 9(D) show the

8-s segment example of the measured PPG signal and the corresponding reconstructed PPG

signal after MA removal followed by inverse FFT in region A, respectively. Fig 9(E) shows the

simultaneously measured 8-s ECG signal, in which the R peaks do not correspond to the pulse

peaks from the PPG signal. Extremely low SNR causes this condition, which is often encoun-

tered when there is a severe pressure change between the photosensor and the measurement

site (wrist), with the pressure change completely overwhelming the pure PPG signal. Regard-

less of how tightly the device is worn on the wrist to avoid pressure changes, this situation may

occur under certain circumstances, such as during high-intensity exercise. Hence, there is a

need for further investigation of hardware that minimizes pressure changes. Alternatively, a

pressure sensor may be embedded in the wearable device and additional MA cancellation can

be applied on the basis of its signals.
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