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Abstract: In this study, we demonstrate that Raman microscopy combined with computational
analysis is a useful approach to discriminating accurately between brain tumor bio-specimens and
to identifying structural changes in glioblastoma (GBM) bio-signatures after nordihydroguaiaretic
acid (NDGA) administration. NDGA phenolic lignan was selected as a potential therapeutic agent
because of its reported beneficial effects in alleviating and inhibiting the formation of multi-organ
malignant tumors. The current analysis of NDGA’s impact on GBM human cells demonstrates a
reduction in the quantity of altered protein content and of reactive oxygen species (ROS)-damaged
phenylalanine; results that correlate with the ROS scavenger and anti-oxidant properties of NDGA. A
novel outcome presented here is the use of phenylalanine as a biomarker for differentiating between
samples and assessing drug efficacy. Treatment with a low NDGA dose shows a decline in abnormal
lipid-protein metabolism, which is inferred by the formation of lipid droplets and a decrease in
altered protein content. A very high dose results in cell structural and membrane damage that favors
transformed protein overexpression. The information gained through this work is of substantial value
for understanding NDGA’s beneficial as well as detrimental bio-effects as a potential therapeutic
drug for brain cancer.

Keywords: Raman microscopy; optical; statistical analysis; principal component analysis; glioblastoma
cells; nordihydroguaiaretic acid; tumor inhibition; drug assessment; healthcare sensing

1. Introduction

Although the death rate due to cancer has continuously declined in the United States
since 1990 [1], this threat to human health is still significant. One known difficulty for
effective cancer therapy is that the same tumor can exhibit different phenotypes when
growing in different organs, randomly affecting cancer progression and hindering the
prevention of metastases [2–6]. This challenge is further amplified by significant variability
in the metastatic latency period, which can vary from months to years depending on the
affected organ (e.g., breast, liver, lung, bone, and brain) [2–6]. Another significant obstacle
to efficient cancer treatment is therapeutic resistance. It has been suggested that the most
beneficial treatments should mediate multi-organ metastasis, not just target organ-specific
malignant tumors [2,6].

Typically, 85% to 90% of brain tumors form in the central nervous system from neo-
plasm and metastatic cancer cells that travel from other organs through the blood [7].
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Malignant gliomas, which include the intracranial glioblastoma multiforme (GBM) that
is analyzed in this work, occur in more than 70% of the cases [8]. Of all the malignant
gliomas, GBM is the most common and most lethal primary brain tumor, with a high rate
of recurrence [9,10]. While the causes of this intracranial type of brain cancer remain largely
unknown, due to its aggressiveness, patients diagnosed with GBM have a 10% prognosis of
surviving for 5 years [11,12]. Current standard care consists of maximum surgical resection,
followed by radiation and treatment with temozolomide [7–9]. The highly infiltrative
nature of this tumor invariably leaves residual tumor cells that might become resistant to
chemotherapy and make recurrence inevitable. It is also known that recurrent tumors can
be more damaging and therapy-resistant than the original malignancy [13–15]. Despite all
the recent advances in cancer therapeutics, the various pathways and mechanisms of cancer
occurrence, resistance, and recurrence are challenges that remain to be overcome. Conse-
quently, there is still an acute need for new tools and approaches that examine existing
problems from new perspectives, and that provide insights into biochemical mechanisms
at the cellular level.

Another important factor in improving the overall survival (OS) rate is reliable and
early disease detection and diagnosis. The most commonly employed clinical diagnostic
methods for brain tumors are magnetic resonance imaging (MRI), computed tomography
(CT), positron emission tomography (PET), and ultrasound sonography (US). Typically,
such imaging procedures are performed before and after the surgical tumor resection.
Standard histopathology follows to achieve a biochemical and morphological assessment of
the retrieved tissue. Accurate and rapid results can also be obtained using optical technolo-
gies [16–18], which have evolved since 1984 [19]. Their effectiveness as biomedical tools for
in vitro and in vivo cancer assessment and in viewing cellular morphological transitions
during complex biological processes has improved significantly over time [16,18,20–24].
Raman microscopy, an optical technique that not only has all the benefits of optical methods
employed for real-time diagnosis but also has the important advantage of not requiring
fluorescent tagging for detecting molecular signatures, has recently been garnering at-
tention [18]. Particular to the advances in Raman technique is the achievement of brain
cancer cell detection in humans with an accuracy that is beyond the capability of MRI [18].
Computational algorithms have also become important contributors to the overall progress
in health diagnosis.

The current analysis, in addition to discriminating between malignant and benign
biospecimens, which has already been accomplished using Raman spectroscopy [18,20–24],
targets accurate identification of morphological changes occurring in GBM bio-signatures
upon treatment with nordihydroguaiaretic acid (NDGA). From the many natural products
and their chemical extracts traditionally used as remedies by the general public, we con-
sider, in this study, the phenolic lignan NDGA, since it is the main chemical extract from
a plant native to the region encompassing El Paso, Texas. Locally, the plant is known as
la Gobernadora or Creosote bush. The Latin name of the plant is Larrea tridentata. Due to
its widespread use for alleviating a variety of illnesses, which includes cancer, the plant
has been extensively studied [25–42]. The extraction, synthesis, and purification of the
plant’s most beneficial active ingredient, the NDGA [26,27], has opened new research op-
portunities, with abundant literature dedicated to scientifically ascertaining and clarifying
the compound’s potential value and underlying mechanisms of action. Examples consist
of preventing kidney stone formation, diabetes, renal infections, neurological disorders,
viral infections, and a variety of cancer types [28–42]. It has been established that the
NDGA’s antioxidant, anti-viral, and anti-tumorigenic properties are due to the fact that
it is a reactive oxygen species (ROS) scavenger, leading to a decrease in inflammation
and to the inhibition of several metabolic enzymes and receptor tyrosine kinases [28–42].
It has also been reported that excessive consumption of the plant or administration of
the compound at high concentrations can be detrimental and toxic, causing liver dam-
age and kidney dysfunction [29]. The cytotoxic effects of NDGA have been attributed
to the molecule’s auto-oxidation and its structural transformation into semi-quinone or
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ortho-quinone forms (the NDGA molecule contains two catechol rings, which are prone to
oxidation) [30,40]. Although the majority of these studies were preclinical ([30] and refer-
ences therein), NDGA’s known rapid auto-oxidation and complex redox process precluded
support for clinical translation of the compound. Furthermore, distinguishing the various
structural configurations of NDGA by standard fluorescence microscopy is hampered by
the fact that all of their UV emissions overlap closely at about 280 nm.

While NDGA administration in high doses of more than 100 mg/kg for prolonged pe-
riods of time is detrimental [30], it may have some beneficial chemotherapeutic effects when
provided as bolus therapy (a high dose over a short time). The literature reports successful
in vitro use of NDGA for the treatment of lung and breast cancer [30,37,41,42], which are
contributors to malignant brain tumors and metastasis. Since NDGA could be a therapeutic
compound that effectively mediates and inhibits the formation of multi-organ malignant
tumors [30,37,41,42], in this study, we investigate its bio-effects on the intracranial GMB
brain tumor. The analysis of in vitro bio-structural modifications of untreated and NDGA-
treated GMB cells is performed through a combined experimental Raman microscopy and
computational approach. The simultaneous changes experimentally observed for Raman
vibrational signatures of proteins, lipids, and nucleic acids are accurately discriminated
by statistical analysis. The information achieved, which can be correlated with NDGA’s
bio-activity, is of substantial value for decoding the compound’s therapeutic mechanisms
of action and developing and/or screening novel pharmacological applications in brain
cancer treatment.

2. Materials and Methods
2.1. Sample Preparation

The human glioblastoma GBM6 cell line from the Mayo Clinic’s National patient-
derived xenografts repository in Rochester, Minnesota, was used in this study. Short-term
explant culture protocols were previously published [43]. The cells were further plated in
culture flasks (250 mL, Falcon, Corning, NY, USA) for proliferation. Once the confluence of
the cells reached 50%, the cells were washed with phosphate buffer (PBS, 4–5 mL, pH 7.0;
Roche Life Science, Mannheim, Germany) and detached from the flask by incubation in
a trypsin-EDTA solution (37 ◦C, 95% O2/5% CO2) for a couple of minutes. To neutralize
the trypsin, after cell detachment, fetal bovine serum (FBS, 10%, Thermo Fisher Scientific
Inc., Waltham, MA, USA) was also added. A standard culture medium of a mixture of
high glucose Dulbecco’s Modified Eagle’s Medium (DMEM, 500 mL; Gibco, Waltham, MA,
USA), FBS (10%, 50 mL; Gibco, Waltham, MA, USA), and penicillin-streptomycin (1%, 5 mL;
Gibco, Waltham, MA, USA) was prepared and added into the flask. The mixture containing
the isolated GBM cells was then transferred to a 50 mL centrifuge test tube and spun down
at 1200 rpm for 10 min. The supernatant was removed and the cells were resuspended in
1.0 mL DMEM. The cell viability and their numbers were checked using the trypan blue
staining method (0.4%). To clarify the media, the cells were resuspended with additional
DMEM (17 mL) and 3 mL of the suspended cells were plated onto coverslips, which were
autoclaved and coated with poly-L lysine (1:10, final concentration). After cell attachment
to the coverslips, they were returned to the incubator (37 ◦C, 5% CO2). A MycoAlertTM
Mycoplasma Detection Kit (catalog #: LT07-118; Lonza, Rockland, MI, USA) was used to
test cell supernatants for mycoplasma contamination at regular intervals, and the results
were negative. Short tandem repeat analysis was used to ensure cell authenticity in each
experiment when compared with historical controls.

The following protocol was employed for the cell treatment with NDGA. First, 1M
stock solution was made by adding 30 mg of NDGA (Sigma-Aldrich, St. Louis, MO, USA)
into 90 µL dimethylsulfoxide solution (DMSO; Life Technologies, Carlsbad, CA, USA).
Once the NDGA powder was fully dissolved, the final volume was adjusted to 1 mL. For
Raman studies, this solution was further diluted in cell media to 100 µM and 250 µM NDGA
concentrations and used immediately to avoid potential oxidation. The low-dosed GBM6
cells were incubated for 24 h in a 100 µM NDGA concentration and the high-dosed cells
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for 4 h in a 250 µM concentration. After the incubation, the cells were washed five times
with PBS and fixed on plain microscope glass slides with a 4% paraformaldehyde solution
(Beantown Chemical, Hudson, NH, USA) for 15 minutes. Then, the cells were washed
five times with PBS followed by five washes with doubly distilled water and allowed to air
dry at room temperature.

2.2. Instruments

The confocal Raman images of 55 µm × 55 µm scan sizes were acquired with an alpha
300RAS WITec system (WITec GmbH, Ulm, Germany), which consists of a microscope
coupled via an optical fiber of 50 µm core diameter to a triple grating monochroma-
tor/spectrograph and a thermoelectrically cooled Marconi CCD camera. A frequency-
doubled neodymium-doped yttrium–aluminum–garnet (Nd:YAG) laser (λ = 532 nm) and a
50X air objective lens (Nikon, Tokyo, Japan) with a numerical aperture (NA) of 0.75 were
used for the current measurements. To avoid sample photodegradation, the average laser
power was maintained at a low output of about 3 mW. Arrays of 150 × 150 Raman spec-
tra, at an integration time of 500 ms per spectrum, were collected for the surface Raman
mapping images of untreated and NDGA-treated GBM cells. The WITec Control software,
which controls the piezoelectric stage for sample scanning, was employed for acquiring the
confocal microscopic data.

2.3. Computational Analysis

The current statistical analysis was performed using an in-house algorithm devel-
oped in MATLAB® version r2016a. Prior to implementing this algorithm, general linear
background subtraction was applied to the Raman output data in the region of 377 cm−1

to 3500 cm−1. To maintain consistency between measurements of different samples and
eliminate potential slight fluctuations in the laser power during the fast confocal data
recording, normalization to the intensity of the laser line, whose height was derived from a
Gaussian fit, was also implemented in all of the individual spectra. To further improve the
accuracy of the calculations, additional linear background subtractions were also carried
out for the integrated areas under the relevant Raman features. The particular frequency
regions for these second background subtractions are as follows: from 980 to 1040 cm−1 for
the phenylalanine vibrational line centered at 1004 cm−1; from 1190 to 1400 cm−1 for the
amide III convoluted features centered at 1267 cm−1 and 1338 cm−1 (cancerous sample) and
at 1304 cm−1 (non-cancerous sample); from 1400 to 1530 cm−−1 for the band centered at
1461 cm−1 (lipid, protein); from 1530 to 1750 cm−1 for the broadband centered at 1605 cm−1

(phenylalanine, reduced nicotinamide adenine dinucleotide (NADH), tryptophan, mito-
chondria) and the peak at 1667 cm−1 (amide I, β-sheet); and from 2800 to 3040 cm−1 for
the three convoluted features centered at 2854 cm−1 (fatty acids, aliphatic acyl chain of
endogenous lipids), 2888 cm−1 (lipids), and 2935 cm−1 (proteins), respectively. Next, for
each sample, about 1000 spectra corresponding to cells were selected to calculate the ratios
of different parameters related to compositional content changes. Although calculations for
all the potential combinations of these parameter ratios were independently performed for
each spectrum, only the ratios showing defined trends of NDGA’s influence are presented
and discussed in the current work.

3. Results and Discussion

Since pathological cell modification is accompanied by fundamental changes in
cell biochemical structure, in Figure 1 we first present the Raman spectra of normal
(non-cancerous) and malignant (cancerous) control samples, which were acquired from
mouse brain tissue and GBM cancer cells, respectively. Each of these two representa-
tive Raman spectra was obtained by averaging tens of thousands of accumulated spectra
(90,000 spectra for the current measurements). To include all the regions of interest in iden-
tifying differences in the vibrational signatures between the two control samples, a break
between 1800 and 2650 cm−1 was applied. The spectra were also vertically translated for
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easier visualization and comparison. Not only do the spectra in Figure 1 show distinct dif-
ferences in the intensities of some vibrational lines, which allow for accurate discrimination
between normal and malignant samples, but they are also in good agreement with similar
results reported in the literature [16,20]. Recognition of the main vibrational signatures
that contribute to distinguishing between normal and malignant samples is the first step in
facilitating a better understanding of the application of NDGA studies to GBM therapeutics.
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Figure 1. Integrated Raman spectra of normal control sample (black spectrum) and GBM cancer
control sample (red spectrum).

The most significant distinction between these two Raman spectra is observed in
the 2800–3000 cm−1 lipid-protein profile region. Certain spectroscopic features occur-
ring in this region have already been analyzed and reported as the main indicators of
carcinogenesis [16,20]. The noticeable enhancement in strength of the Raman peak at
2935 cm−1 observed for the GBM cancerous sample suggests a higher content of trans-
formed protein. This observation is supported by the slight increase in the intensity of the
vibrational line at 1667 cm−1, which is attributed to amide I (β-sheet, cholesterol esters).
Another biochemical modification in the structure of proteins is associated with the small
intensity decrease of the Raman feature at 1461 cm−1. On the contrary, a dominant lipid
content is indicated by the spectrum of the normal control sample, with a sharp Raman
peak at 2888 cm−1 and a well-defined vibration at 2854 cm−1 (fatty acids, aliphatic acyl
chain of endogenous lipids). These two Raman vibrational lines become only a broad shoul-
der in the lower frequency region of the 2935 cm−1 peak for the GBM sample. Thus, an
abnormal lipid-protein metabolism, which is known to occur in various types of cancer and
to generate a post-translational modification of proteins, could be the underlying reason for
these observed structural changes [44,45]. It has been suggested that this overexpression of
proteins and dysregulation of signaling pathways observed in cancer metabolism originate
predominantly from alteration of the cell membrane, but not exclusively [44,45]. Other
corroborative indications are the obvious differences in the content of the phospholipids,
protein amide III, nucleic acids, and collagen between these two control samples. For
example, the sharp, strong Raman peak at 1304 cm−1 (lipids, phospholipids, collagen,
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protein amide III, and DNA) in the normal control sample splits into two broad and less
intense Raman features at 1267 cm−1 (amide III, fatty acids, and P=O asymmetric stretch
due to nucleic acids) and 1338 cm−1 (protein, DNA/RNA, tryptophan, and mitochondria)
in the spectrum associated with the malignant sample. A broadening and intensity de-
crease is also seen for the vibration at 1091 cm−1 (cell membrane phospholipids and nucleic
acids). Furthermore, with structural changes of the cells towards a malignant configuration,
there is a visible enhancement in the amount of phenylalanine, which is correlated with
the intensity increase of the peak at 1004 cm−1. Thus, besides the observed abnormal
lipid-protein metabolism, overexpression of amide I, and potential transformation of the
α-helix structure into a β-sheet, which were previously reported in the literature for ma-
lignant tumors [16,20,37,44,45], phenylalanine can also be considered as a biomarker of
tumorigenesis. All the Raman vibrational bands observed in the spectra, along with their
assignments and tentative attributions, are summarized in Table 1 below.

Table 1. Raman vibrational bands and their assignments with tentative attributions.

Raman
Wavenumber cm−1 Assignment a,b Tentative Attribution a,b

752 CH2 rocking, symmetric breathing Tryptophan, cytochrome c, mitochondria a

Nucleic acids, tryptophan b

860 CC stretch Tyrosine, proline, glycogen b

1004 Symmetric CC aromatic ring breathing Phenylalanine, collagen IV, I a Phenylalanine b

1091 CC skeletal stretch, PO2 symmetric stretch Protein, phospholipids, glycogen, collagen IV, I a

Phospholipids, nucleic acids b

1267 Amide III, =C–H bend, P=O asymmetric stretch Homo polypeptide a,
Fatty acids b

1304 Amide III, N–H bend, α-helix, C–N stretch, and
CH3 bend, C–H2 twist

Bending and stretching coupled in-phase, collagen
IV, I a

Lipids, phospholipids, collagen, protein, DNA b

1338 CH2 deformation Protein, A and G of DNA/RNA a

Tryptophan b

1461 CH2 or CH3 out-of-phase deformation, CN bend Lipid, protein a

Protein b

1605 Amide I α-helix, CO stretch, C=C bend Protein, phenylalanine, tyrosine a

Unsaturated fatty acids, triglycerides b

1667 Amide I β-sheet, C=O stretch Unordered or random structure, collagen IV, I a

Proteins, cholesterol esters b

2729 CH3 in-phase deformation overtone
2854 CH2 symmetric stretch Fatty acids, triglycerides a,b

2888 CH2 asymmetric stretch Lipids a,b

2935 CH3 symmetric stretch Proteins a,b

3067 CH3–(C=O), C–H aromatic Nucleic acids, proteins b

a,b Refs. [16,20], and all references therein.

Concerning the main intent of this analysis to investigate the influence of NDGA in
alleviating malignant brain tumors, we present, in Figure 2a,c,e, representative surface
confocal Raman mapping images of an untreated (control) GBM sample and two NDGA-
treated GBM samples. Amounts of 100 µM NDGA for 24 h and of 250 µM NDGA for
4 h were used for the two differently treated samples. The corresponding spectroscopic
data for each image (averages over 22,500 independent spectra acquired per image) are
shown in Figure 2b,d,f. The same frequency regions were considered, with a break between
1800 and 2650 cm−1, for easier comparison with the previously discussed Raman bio-
structural signatures presented in Figure 1. Background subtraction and normalization
to the intensity of the 2935 cm−1 vibrational line were also performed. Although direct
identification of NDGA is not expected to be possible at these low compound concentrations,
which are below the threshold of Raman spectroscopy detectability, NDGA administration
is anticipated to induce structural modifications to the cell. Thus, by identifying such
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changes we can probe some of the NDGA treatment’s molecular mechanisms that are
relevant to the possibility of its therapeutic use.
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Comparing the integrated spectrum of the untreated sample (GBM control sample,
Figure 2b) to those of the NDGA-treated samples (Figure 2d,f) and focusing on the protein to
lipid content ratio, which is obtained from the I2935/I2888 intensity ratio of the corresponding
Raman features, reveals a decrease in this ratio. A value of 1.32 ± 0.03 is obtained for the
malignant GBM sample, of 1.20 ± 0.03 for the NDGA-treated GBM sample treated with
100 µM for 24 h, and of 1.26 ± 0.03 for the NDGA-treated GBM sample treated with 250 µM
for 4 h. Since for the normal control sample, a lower value of 0.87 ± 0.03 is estimated
for the I2935/I2888 ratio, this reduction of acetylated protein content implies that NDGA
has a benefic effect. Further supporting evidence of NDGA’s action on the cell’s lipid-
protein metabolism is the presence of the lipid droplets that are marked by white arrows in
Figure 2c and that correspond spectroscopically to the very weak feature at about 2854 cm−1

for the sample treated with 100 µM NDGA (see Figure 2d). However, for a higher dose of
NDGA over a shorter time (comparable to bolus therapy), in Figure 2f there is a lipid peak
at 2888 cm−1 that is slightly more prominent than it is in the Raman spectrum of the GBM
sample (Figure 2b). This increase in the protein to lipid ratio suggests a less benefic effect.
A closer look at the image and the Raman spectrum presented in Figure 2e,f, respectively,
besides revealing less evidence of lipid droplets, shows an increase in fatty acid content
(see the slightly higher intensity of the 1267 cm−1 line), which is also a characteristic of
altered metabolism in cancer [20]. Thus, a higher dosage is less recommended and toxic. It
was stipulated that this de novo fatty-acid synthesis results from the Otto Warburg effect.
Enhanced glucose catabolism induces an increase in pyruvate as a byproduct, which is
further converted to lactate and acetyl coenzyme A (acetyl-CoA) [20]. The latter is a known
component in biochemical reactions involving lipid-protein metabolism and carbohydrates.
Higher NDGA dosage also induces differentiation and inhibition of self-renewal of glioma
stem cells, cell membrane damage, and apoptosis [30].

Another structural modification is related to the overexpression of amide I and the
transformation of an α-helix structure into a β-sheet [37]. By considering the I1667/I1605
intensity ratio of the associated Raman bands, values of 1.35 ± 0.03 for the normal control
sample, 1.49 ± 0.03 for the GBM tumorigenic sample, 1.45 ± 0.03 for the NDGA-treated
GBM sample treated with 100 µM for 24 h, and 1.47 ± 0.03 for the NDGA-treated GBM
sample treated with 250 µM for 4 h are estimated here. These values suggest that NDGA
addition does not make a significant contribution to reversing this unwanted structural
transformation associated with the tumorigenic samples. On the other hand, investigation
of changes in the intensity of the phenylalanine vibrational line shows a decrease from
the untreated GBM sample to the NDGA-treated samples. Values of 38.2 ± 0.02 for the
GBM tumorigenic sample, 37.5 ± 0.02 for the NDGA-treated sample treated with 100 µM
for 24 h, 29.7 ± 0.03 for the NDGA-treated GBM sample treated with 250 µM for 4 h, and
28.5 ± 0.02 for the normal control sample were obtained.

An essential amino acid, phenylalanine, is usually taken from food and metabolically
transformed into tyrosine. Unfortunately, in malignant tumors, ROS-damaged phenylala-
nine also occurs [46]; this statement corroborates the visible increase of the 1004 cm−1

vibration line in Figure 1 for the cancerous sample. The specific pathways by which such
ROS-damaged amino acids incorporate into and modify the structure of proteins remain
unknown. However, they could contribute to the increase of the 2935 cm−1 peak in Figure 1.
Thus, based on the observed results, we consider that NDGA, which is a ROS scavenger
and an antioxidant phenolic lignan, impairs and potentially reverses such ROS-damaged
phenylalanine production.

A more compact and informal visualization of the potentially beneficial influence of
NDGA in reducing some of the contents that are directly associated with cell malignancy
is presented in Figures 3 and 4. The solid circles in the 1-sigma ellipsoid statistical repre-
sentations correspond to the averages of the compound content over all the spectra. This
type of representation also allows for detecting anticipated differences between different
samples of the same type. The integrated areas under the peaks are considered instead
of their intensities, in order to minimize the calculation errors arising from the inhomo-
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geneity of sample roughness and to avoid the influence of polarization-sensitive effects for
some of the constituents. The protein to lipid content ratio, A2935/A2888, as a function of
the A1667/A1605 of protein, amide I β-sheet, phenylalanine, and tyrosine are presented in
Figure 3.
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Figure 3. Statistical representation using 1-sigma ellipsoids of the content ratio associated with the
protein to lipid contents (i.e., ratios of 2935 cm−1 to 2888 cm−1) and that of the protein, amide I
β-sheet, phenylalanine, and tyrosine (i.e., ratios of 1667 cm−1 to 1605 cm−1). The solid circle defines
the average over 22,500 spectra for each biomarker. A red color code was used for the malign GBM
sample, blue for the NDGA-treated GBM sample treated with 100 µM for 24 h, and green for the
NDGA-treated GBM sample treated with 250 µM for 4 h.

Besides being in good agreement with our previous remark that administration of
NDGA has a constructive effect in reducing the amount of modified protein content, inter-
sample variance can also be observed. In this context, the increase in the cell fluorescence
with NDGA incorporation, which is first identified through a signal to noise (S/N) ratio
increase in the spectra presented in Figure 2d,f, affects the measurements by adding to the
errors in discriminating between the samples. However, based on the current results, a
smaller NDGA amount of 100 µM NDGA for 24 h is recommended, not only because it
has potentially lower toxicity, but it enables better discrimination between the samples
(comparison between 1-sigma ellipsoid blue color plots and those of red color). Another
contributing factor that is worth mentioning is the expected auto-oxidation of NDGA itself
and its transformation into semi-quinone or ortho-quinone forms, which exhibit vibrational
frequencies in the 1600 cm−1 region [30,40]. Since a larger amount of NDGA incorporation
would produce a larger amount of such oxidized species, less discrimination between the
samples is expected and observed for A1667/A1605 (comparison of 1-sigma ellipsoids along
the horizontal axis).

Statistical plots of the ratio of phenylalanine content to the combined protein and lipid
content, A1004/A2935+2888, versus the ratio associated with modifications in the lipid and
protein biostructures, A2888/A2935+1461, are presented in Figure 4. Lipid-lowering and anti-
lipid per-oxidation treatments have been investigated for other anti-cancer drugs, with even
higher toxicological effects than NDGA. Thus, the analysis of Figure 4 can provide specific
insights into NDGA’s influence on the molecular mechanism relating lipid metabolism to
cancer, as well as into the inhibition of ROS-damaged phenylalanine formation. While a
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reduction in the ROS-damaged phenylalanine is observed from the trend along the vertical
axis for both NDGA concentrations, the trend along the horizontal axis demonstrates
that NDGA administration at a higher dose induces less lipid development. This latter
remark supports our previous observation of more lipid droplet development for cell
treatment with 100 µM NDGA for 24 h (see Figure 2c), with less at a higher dose. The
likely structural cell damage driven by NDGA’s cytotoxicity at higher dosage should also
be taken into account.
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Figure 4. Statistical representation, using 1-sigma ellipsoids, of ratios of phenylalanine content
to combined protein and lipid content (i.e., ratios of peak areas at 1004 cm−1 to corresponding
sums obtained by adding peak areas at the 2935 cm−1 and 2888 cm−1) and corresponding ratios
of lipid to overall protein content (i.e., ratios of peak areas at 2888 cm−1 to corresponding sums
obtained by adding peak areas at 2935 cm−1 and 1461 cm−1). The solid circle defines the average
over 22,500 spectra for each biomarker. A red color code was used for the malign GBM sample, blue
for the NDGA-treated GBM sample treated with 100 µM for 24 h, and green for the NDGA-treated
GBM sample treated with 250 µM for 4 h.

To further evaluate the experiments’ capability of differentiating between the untreated
and NDGA-treated cells we performed principal component analysis (PCA). All of the ob-
served Raman vibrational lines and their ratios were considered as variables in performing
the PCA. An advantage of employing PCA is that it avoids introducing a bias related to
a priori knowledge since PCA does not take into account the known classification of the
spectra. A reduction in the dimensionality of the system was implemented to improve
the visualization of the results, which are presented in Figure 5. The first two principal
components contain about 78% of the total variance of all the samples. In addition, for
consistency with the data of previous figures, an identical color-code was used, with red
representing GBM samples, blue denoting the NDGA-treated GBM samples treated with
100 µM for 24 h, and green for the NDGA-treated GBM sample treated with 250 µM for 4 h.
The main observation derived from this figure is that the clusters of data points of the three
types of samples are separated, with some overlapping between those of the untreated
GBM and NDGA-treated-with-100 µM samples. Linear discriminant analysis (LDA) was
used for sample classification.
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Figure 5. Principal component analysis (PCA) showing a clear separation between the clusters of
data points of the samples. For consistency, the same color codes of red, blue, and green were used
for the malign GBM sample, the NDGA-treated GBM sample treated with 100 µM for 24 h, and the
NDGA-treated GBM sample treated with 250 µM for 4 h, respectively.

Since a dosage higher than 100 µM NDGA is reported as toxic [30], besides not
recommending it, we performed additional assessment using machine-learning techniques
to build a fully automated framework that makes decisions directly from Raman spectra
given in input. To discriminate better between the cell samples, we employed all the ratios
as variables of the input training for various statistical learning algorithms, such as Support
Vector Machines (SVM), k-Nearest Neighbor (kNN), Decision Tree Learning (DTL), and
Naïve Bayes Classifiers (NBC), using five-fold cross-validation. Classification accuracy of
about 80% resulted from all these statistical learning algorithms. The confusion matrix for
the Linear Support Vector Machine (LSVM) is presented in Table 2 below.

Table 2. Classification accuracy using 5-fold cross validation LSVM.

True

Predicted

Untreated GBM 100 µM NDGA-Treated 250 µM NDGA-Treated

Untreated GBM 68.2% 31.8% 0%

100 µM NDGA-treated 16.8% 81.2% 2.0%

250 µM NDGA-treated 0 % 4.8% 95.2%

This table reveals that the algorithm’s capability to classify a single spectrum (true
positive) is 68.2% for untreated GBM samples, 81.2% for samples treated with 100 µM
NDGA, and 95.2% for samples treated with 250 µM NDGA. It also shows a 31.8% mis-
classification of the untreated GBM samples as those treated with 100 µM NDGA. Among
the samples treated with 100 µM NDGA, 16.8% are misclassified as untreated GBM and
2.0% as treated with 250 µM NDGA. The 250 µM NDGA-treated samples are separated
much more clearly, with no such misclassification as untreated; only 4.8% are misclassified
as treated with 100 µM NDGA. These results corroborate those shown in Figure 5. They
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also confirm that more than a single spectrum is necessary to have accurate discrimination
between the samples.

One of the advantages of Raman microscopy is the simultaneous recording of multiple
spectra from the same sample, which, from the perspective of statistics, can be inter-
preted as independent sampling (each spectrum is recorded at a slightly different position).
Assuming that p is the true positive rate and (1 − p) the false-negative rate, the probability
of misclassification is provided by [47]:

Q(N) = 1 −
k< N

2

∑
k=0

(
N
k

)
(p)N−k(1 − p)k (1)

where N is the number of independent spectra measured from the same sample and k is
the number of spectra not associated with a category (0 < k < N/2).

These probabilities for sample misclassification after N Raman recordings are provided
in Figure 6. For easier visualization of the set of measurements sufficient to accurately
classify the samples, we include in this figure two horizontal lines representing error
probabilities of p = 0.05 and of p = 0.01. About 21 spectra will be enough to classify
the samples with an accuracy of 95% and 41 spectra are needed for an accuracy of 99%.
These numbers are very small compared to the capability of confocal Raman microscopy to
provide on the order of 10,000 independent spectra per sample. Not only is the classification
accuracy of this method extremely good, but, more importantly, the Raman technique has
the potential for future in vivo applications.
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4. Conclusions

The purpose of this study has been to demonstrate the capability of Raman microscopy
for detecting structural differences in GBM cells before and after treatment with NDGA,
which contributes to understanding the compound’s potential in alleviating brain tumors.
Besides experimental Raman analysis, the computational approach employed helps to
discriminate between malignant and benign brain tumor biospecimens and to identify



Sensors 2022, 22, 2643 13 of 15

minute structural changes in GBM’s bio-signatures upon NDGA administration. A prior
examination of the main vibrational signatures that contribute to distinguishing between
normal and malignant samples was considered necessary for a comprehensive understand-
ing of NDGA’s contribution to GBM therapeutics. The current results show benefic effects
of NDGA in reducing the amounts of altered protein content and ROS-damaged phenylala-
nine. It is worth emphasizing here that phenylalanine, in addition to other known cancer
biomarkers, can be used for sample classification and for assessing NDGA’s efficacy. Provid-
ing repetitive, smaller dosages of NDGA over a longer time, similar to a quasi-metronomic
type of therapy, has been demonstrated to be a better therapeutic approach.

Another important observation relates to the abnormal lipid-protein metabolism
associated with various types of cancer and the formation of lipid droplets. Again, treatment
with a lower NDGA dosage is recommended, as very high doses of NDGA, similar to
a quasi-chemotherapy approach, induce membrane and other structural cell damage.
However, the known detrimental cytotoxicity of NDGA in high doses for prolonged
periods of time might have some beneficial chemotherapeutic effects if employed as a
bolus therapy. Further work needs to be done to investigate this assumption, as well as to
analyze the efficiency of other possible NDGA chemical derivatives for such therapeutic
applications. In the future, we plan to perform a double-blind analysis on such samples,
by independently using our algorithm and Raman method and complementary standard
bioanalysis, to investigate how the results derived from both approaches compare. To get
a step closer to potential in vivo implementation of our spectroscopic method and our
statistical algorithm in assessing GBM as a disease, fast acquisition of random Raman
spectra numbering on the order of a hundred are planned for evaluation of the number of
instances in which the NDGA-treated and untreated samples would be found statistically
significantly different (at the p = 0.05 level).

This work is in itself of substantial value since it creates the needed foundation and
awareness of NDGA’s beneficial and detrimental mechanisms of action with a view towards
brain cancer therapy. By correlating our results with future in vivo studies of NDGA’s bio-
activity, we anticipate that continuous and accelerated progress for new drug development
can be accomplished.
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