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Stochastic modelling of gene regulatory networks provides an indispensable

tool for understanding how random events at the molecular level influence cel-

lular functions. A common challenge of stochastic models is to calibrate a large

number of model parameters against the experimental data. Another difficulty

is to study how the behaviour of a stochastic model depends on its parameters,

i.e. whether a change in model parameters can lead to a significant qualitative

change in model behaviour (bifurcation). In this paper, tensor-structured

parametric analysis (TPA) is developed to address these computational chal-

lenges. It is based on recently proposed low-parametric tensor-structured

representations of classical matrices and vectors. This approach enables simul-

taneous computation of the model properties for all parameter values within

a parameter space. The TPA is illustrated by studying the parameter estimation,

robustness, sensitivity and bifurcation structure in stochastic models of

biochemical networks. A Matlab implementation of the TPA is available at

http://www.stobifan.org.
1. Introduction
Many cellular processes are influenced by stochastic fluctuations at the molecu-

lar level, which are often modelled using stochastic simulation algorithms

(SSAs) for chemical reaction networks [1,2]. For example, cell metabolism,

signal transduction and cell cycle can be described by network structures of

functionally separated modules of gene expression [3], the so-called gene

regulatory networks (GRNs).

Typical GRN models can have tens of variables and parameters. Tradition-

ally, GRNs have been described using continuous deterministic models written

as systems of ordinary differential equations (ODEs). Several methodologies for

studying parametric properties of ODE systems, such as identifiability and

bifurcation, have been developed in the literature [4–8]. Recently, experimental

evidence has highlighted the significance of intrinsic randomness in GRNs, and

stochastic models have been increasingly used [1,9]. They are usually simulated

using the Gillespie SSA [10], or its equivalent formulations [11,12]. However,

methods for parametric analysis of ODEs cannot be directly applied to stochas-

tic models. In this paper, we present a tensor-structured parametric analysis (TPA)

which can be used to understand how molecular-level fluctuations influence

the system-level behaviour of GRNs and its dependence on model parameters.

We illustrate major application areas of the TPA by studying several biological

models with increasing level of complexity.

The parametric analysis of GRN models is computationally intensive

because both state space and parameter space are high-dimensional. The

dimension of the state space, Vx, is equal to the number of reacting molecular

species, denoted by N. When an algorithm, previously working with determi-

nistic steady states, is extended to stochastic setting, its computational

complexity is typically taken to the power N. Moreover, the exploration of
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the parameter space, Vk, introduces another multiplica-

tive exponential complexity. Given a system that involves K
parameters, the ‘amount’ of parameter combinations to be

characterized scales equally with the volume of Vk, i.e. it is

taken to the power K [13].

The TPA framework avoids the high computational cost

of working in high-dimensional Vx and Vk. The central

idea is based on generalizing the concept of separation of

variables to parametric probability distributions [14]. The

TPA framework can be divided into two main steps: a

tensor-structured computation and a tensor-based analysis.

First, the steady-state distributions of stochastic models are

simultaneously computed for all possible parameter combi-

nations within a parameter space and stored in a tensor

format, with smaller computational and memory require-

ments than in traditional approaches. The resulting tensor

data are then analysed using algebraic operations with com-

putational complexity which scales linearly with dimension

(i.e. linearly with N and K ).

The rest of this paper is organized as follows. In §2, we dis-

cuss how the parametric steady-state probability distribution

can be presented and computed in tensor formats. We illustrate

the data storage savings using tensor-structured simulations of

four biological systems. The stored tensor data are then used as

the input for the tensor-based analysis presented in the sub-

sequent sections. In §3, we show that the existing procedures

for parameter inference for deterministic models can be directly

extended to the stochastic models using the computed tensor

data. In §4, a direct visualization of stochastic bifurcations in

a high-dimensional state space is presented. The TPA of the

robustness of the network to extrinsic noise is illustrated in

§5. We conclude with a brief discussion in §6.
2. Tensor-structured computations
Considering a well-mixed chemically reacting system of N
distinct molecular species Xi, i ¼ 1, 2, . . . , N, inside a reactor

(e.g. cell) of volume V, we denote its state vector by

x ¼ (x1, x2, . . . , xN)T , where xi is the number of molecules

of the ith chemical species Xi. In general, the volume V can

be time dependent (for example, in cell cycle models which

explicitly take into account cell growth), but we will focus

in this paper on models with constant values of V. We

assume that molecules interact through M reaction channelsXN

i¼1

n�j,iXi �
kj!
XN

i¼1

nþj,iXi, j ¼ 1, 2, . . . , M, (2:1)

where nþj,i and n�j,i are the stoichiometric coefficients. The kin-

etic rate parameters, k ¼ (k1, k2, . . . , kM)T , characterize the

rate of the corresponding chemical reactions. We will treat

k as auxiliary variables, and, in other words, the parametric

problem of (2.1) involves considering both x [ Vx and

k [ Vk. In this paper, we study problems where the dimen-

sion of the parameter space K is equal to M. We also consider

cases where some rate constants are not varied in the par-

ameter analysis, i.e. K , M. In this case, notation k will be

used to denote K-dimensional vector of rate constants,

k ¼ (k1, k2, . . . , kK)T , which are considered during the TPA.

The values of the remaining (M 2 K) rate constants are

fixed. In principle, the TPA could also be used to study

models where K . M, i.e. when we consider additional

parameters (e.g. system volume V ).
Let p(xjk) be the steady-state probability distribution that

the state vector is x (if the system is observed for sufficiently

long time) given the parameter values k. The main idea of the

TPA is to split p(xjk) in terms of coordinates as

p(xjk) ¼
PR
‘¼1

f ‘1(x1) � � � f ‘N(xN)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Vx

g‘1(k1) � � � g‘K(kK)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Vk

, (2:2)

where {f ‘i (xi)}i¼1,...,N and {g‘j (kj)} j¼1,...,K are univariate functions

that vary solely with a single state variable and parameter,

respectively. The number of summands R, the so-called

separation rank, controls the accuracy of the decomposi-

tion (2.2). By increasing R, the separated expansion could

theoretically achieve arbitrary accuracy.

The value of the separation rank R can be analytically

computed for simple systems. For example, there are analyti-

cal formulae for the stationary distributions of first-order

stochastic reaction networks [15]. They are given in the

form (2.2) with R ¼ 1. Considering second-order stochastic

reaction networks, there are no general analytical formulae

for steady-state distributions. They have to be approximated

using computational methods. The main assumption of the

TPA approach is that the parametric steady-state distribution

has a sufficiently accurate low-rank representation (2.2). In

this paper, we show that this assumption is satisfied for rea-

listic biological systems by applying the TPA to them and

presenting computed (converged) results. The main conse-

quence of low-rank representation (2.2) is that mathematical

operations on the probability distribution p(xjk) in N þ K
dimensions can be performed using combinations of one-

dimensional operations, and the storage cost is bounded by

(N þ K )R. The rank R may also depend on N þ K and the

size of the univariate functions in (2.2). Numerical exper-

iments have shown a linear growth of R with respect to

N þ K and a logarithmic growth with respect to the size of

the univariate functions in the representation (2.2) [16,17].

To find the representation (2.2), we solve the chemical

Fokker–Planck equation (CFPE), as a (fully) continuous

approximation to a (continuous time) discrete space

Markov chain described by the corresponding chemical

master equation (CME) [18,19]. Specifically, we keep all the

objects in the separated form of (2.2) during the compu-

tations, such that exponential scaling in complexity does

not apply during any step of the TPA.

We refer to the representation (2.2) as tensor-structured,

because computations are performed on p(xjk) as multi-

dimensional arrays of real numbers, which we call tensors

[20]. The (canonical) tensor decomposition [21], as a discrete

counterpart of (2.2), then allows a multi-dimensional array to

be approximated as a sum of tensor products of one-dimen-

sional vectors. Within such a format, we can define standard

algebraic operations similar to standard matrix operations

such that the resulting tensor calculus enables efficient com-

putation. The tensor-structured parametric steady-state

distribution (2.2) is approximated as the eigenfunction corre-

sponding to the smallest eigenvalue of the parametric

Fokker–Planck operator. The operator is constructed in a

tensor separated representation as a sum of tensor products

of one-dimensional operators. The eigenfunction is computed

by the adaptive shifted inverse power method, using the

minimum alternating energy method as the linear solver.

We leave further discussion of technical computational



Table 1. Comparison of the matrix-based and tensor-structured methodologies.

biochemical system

dimensionality matrix-baseda tensor-structuredb

N K N 1 K MemCME MemCFPE MemA Memp TA (s) Ttot (min)

Schlögl 1 4 5 2.68 � 1013 2.74 � 1011 4.01 � 103 2.07 � 105 1.2 30

cell cycle 6 1 7 6.68 � 1017 7.04 � 1013 2.96 � 104 1.00 � 107 1.1 6433

FitzHugh – Nagumo 2 4 6 6.38 � 1014 1.75 � 1013 7.65 � 104 4.02 � 105 0.7 37

reaction chain 20 0 20 1.20 � 1044 1.53 � 1054 9.26 � 104 7.28 � 105 15.6 283
aEstimated as the product of the number of discrete states and the number of parameter values.
bMemA is the storage requirement for the discrete Fokker – Planck operator in tensor structure. It can be avoided by computing all matrix – vector products on
the fly.

Table 2. Parameter estimation for ODEs.

(a1)

(a2)

Generate a candidate parameter vector k�eVk.

Compute model prediction x* using the parameter vector k*.
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details of the underlying methods to electronic supplemen-

tary material, appendix S1. The TPA has been implemented

in Matlab and is part of the Stochastic Bifurcation Analyzer

toolbox available at http://www.stobifan.org. The source

code relies on the Tensor Train Toolbox [22].

(a3)

(a4)

Compare the simulated data x* with the experimental

evidence bx, using distance function d(bx, x�) and

tolerance 1. If d(bx, x�) , 1, then accept k*, otherwise

reject it.

The tolerance 1 . 0 is the desired level of agreement

between bx and x*.

Return to step (a1)
2.1. Applications of the tensor-structured parametric
analysis to biological systems

We demonstrate the capabilities of the TPA framework by

investigating four examples of stochastic reaction networks:

a bistable switch in the five-dimensional Schlögl model [23],

oscillations in the seven-dimensional cell cycle model [24],

neurons excitability in the six-dimensional FitzHugh–

Nagumo system [4] and a 20-dimensional reaction chain [25]

(see electronic supplementary material, appendix S2, for more

details of these models). Table 1 compares computational

performance of the TPA with the traditional matrix-based

methods for the computation of the parametric steady-state

distribution p(xjk). The minimum memory requirements of

solving the CME and the CFPE using matrix-based methods,

MemCME and MemCFPE, are estimated as products of numbers

of discrete states times the total number of parameter

combinations. They vary in ranges 1013–1044 and 1011–1054,

respectively, which are beyond the limits of the available hard-

ware. In contrast, the TPA maintains affordable computational

and memory requirements for all four problems considered, as

we show in table 1. The major memory requirements of the

TPA are MemA and Memp to store the discretized Fokker–

Planck operator and the steady-state distribution p(xjk),

respectively (see electronic supplementary material, appendix

S1, for detailed definitions). Similarly, TA is the computa-

tional time to assemble the operator and Ttot is the total

computational time.

Table 1 shows that the TPA can outperform standard

matrix-based methods. It can also be less computationally

intensive than stochastic simulations in some cases. For

example, the total computational time is around 30 min for

the TPA to simulate 644 different parameter combinations

within the four-dimensional parameter space of the Schlögl

chemical system (table 1). If we wanted to compute the

same result using the Gillespie SSA, we would have to run

644 different stochastic simulations. If they had to be all per-

formed on one processor in 30 min, then we would only have

1.07 � 1024 s per one stochastic simulation and it would not

be possible to estimate the results with the same level of
accuracy. In addition, the TPA directly provides the steady-

state distribution p(xjk), which would be computationally

intensive to obtain by stochastic simulations (with the same

level of accuracy) for larger values of N þ K.
3. Parameter estimation
Small uncertainties in the reaction rate values of stochastic

reaction networks (2.1) are common in applications. Some

model parameters are difficult to measure directly, and

instead are estimated by fitting to time-course data. If

GRNs are modelled using deterministic ODEs, there is a

wide variety of tools available for parameter estimation.

Many simple approaches are non-statistical [26], and the pro-

cedure usually, although not necessarily [27], follows the

algorithm presented in table 2. This approach seeks the set

of those parameters that minimize the distance measure

d(bx, x�), while the rules to generate candidate parameters k*

in step (a1) and the definition of distance function along

with stopping criteria in step (a3) may vary in different

methods. In optimization-based methods, k* may follow

the gradient on the surface of the distance function [26]. In

statistical methods, such distance measure is provided in

the concept of likelihood, L(k�jbx) ¼ p(bxjk�) [28]. In Bayesian

methods, the candidate parameters k* are generated from

some prior information regarding uncertain parameters,

p(k), and form a posterior distribution rather than a single

point estimate [29].

Extending the algorithm in table 2 from deterministic

ODEs to stochastic models requires substantial modifica-

tions [29]. One main obstacle is the step (a2) which requires

repeatedly generating the likelihood function L(k�jx̂), as the

http://www.stobifan.org
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Figure 1. (a) A short segment of the time-series data and the histogram for the Schlögl reaction system generated by a long-time stochastic simulation. The dashed
line corresponds to the threshold 230 which is used to separate the two macroscopic states of this bistable system. (b) The triples of parameters [k1, k2, k3] for which
the splitting probability (3.4) is equal to Ŝ ¼ 47:61% + 5% form a plane with a very thin thickness (in blue) within the three-dimensional parameter space. The
value of k4 is fixed at its true value, and the true value of [k1, k2, k3] is marked with the red dot. (Online version in colour.)

Table 3. An algorithm for the tensor-structured parameter estimation.

(b0)

(b1)

(b2)

(b3)

(b4)

Compute the stationary distribution p(xjk) for all

considered combinations of xeVx and keVk; and

store p(xjk) in tensor data.

Generate a candidate parameter vector k�eVk.

Extract the stationary distribution p(xjk�) from the tensor-

structured data p(xjk) and compute the summary

statistics S* ¼ S*( p).

Compare the model prediction S* with the statistics Ŝ

obtained from experimental data, using distance

function J (̂S, S�) and tolerance 1. If J (̂S, S�) , 1,

then accept k*, otherwise reject it.

The tolerance 1 . 0 is the desired level of agreement

between Ŝ and S*.

Return to step (b1).
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outcome of stochastic models. In this case, a modeller must

either apply statistical analysis to approximate the likeli-

hood [30], or use the Gillespie SSA to estimate it [31].

Consequently, the algorithms are computationally intensive

and do not scale well to problems of realistic size and

complexity. To avoid this problem, the TPA uses the tensor

formalism to separate the simulation part from the parameter

inference. The parameter estimation is performed on the

tensor data obtained by methods described above (table 1).

The algorithm used for the TPA parameter estimation is

given in table 3. The distance function d(x̂, x�) is replaced

with a distance between summary statistics, Ŝ and S*,

which describe the average behaviour and the characteristics

of the system noise. The steps (b1), (b3) and (b4) are similar to

steps (a1), (a3) and (a4) under the ODE settings, and a variety

of existing methods can be extended directly to stochastic set-

tings. The newly introduced step (b0) is executed only once

during the parameter estimation. Steps (b1)–(b4) are then

repeated until convergence. Step (b2) only requires manipu-

lation of tensor data, of which the computational overhead is

comparable to solving an ODE.

3.1. An example of parameter estimation
We consider that the distance measure J(Ŝ, S�) in table 3 is

defined using a moment-matching procedure [32,33]:

J(Ŝ, S�) ¼
XL

i1,...,iN¼1

bi1,...,iN

m̂ [i1,...,iN ] � m[i1,...,iN ](k
�)

m̂ [i1,...,iN ]

 !2

, (3:1)

where m̂[i1,...,iN ] is the (i1,. . .,iN)th order empirical raw moment,

m[i1,...,iN ](k
�) is the corresponding moment derived from

p(xjk�) and L denotes the upper bound for the moment

order. The weights, bi1,...,iN , can be chosen by modellers to

attribute different relative importances to moments. Empiri-

cal moments are estimated from samples x̂d,‘, d ¼ 1,2,. . .,N,

‘ ¼ 1, 2, . . . , nm̂ , by

m̂[i1,...,iN ] ¼
1

nm̂

Xnm̂

‘¼1

x̂i1
1,‘ � � � x̂

iN
N,‘, (3:2)

where nm̂ is the number of samples. Moments of the model

output are computed as

m[i1,...,iN ](k
�) ¼

ð
Vx

xi1
1 � � � x

iN
N p(xjk�)dx: (3:3)
We show, in electronic supplementary material, appendix

S1.4, that it is possible to directly compute different orders

of moments, m[i1,...,iN ](k
�), using the representation (2.2) with

O(N ) complexity.

We illustrate the tensor-structured parameter estimation

using the Schlögl chemical system [23], which is written for

N ¼ 1 molecular species and has M ¼ 4 reaction rate constants

ki, i ¼ 1, 2, 3, 4. A detailed description of this system is pro-

vided in electronic supplementary material, appendix S2.1.

We prescribe true parameter values as k1 ¼ 2.5 � 1024, k2 ¼

0.18, k3 ¼ 2250 and k4 ¼ 37.5, and use a long-time stochastic

simulation to generate a time series as pseudo-experimental

data (for a short segment, see figure 1a). These pseudo-exper-

imental data are then used for estimating the first three

empirical moments m̂i, i ¼ 1, 2, 3, using (3.2). While the

moments of the model output, mi(k), i ¼ 1, 2, 3, are derived

from the tensor-structured data p(xjk), computed using (2.2).

Moment matching is sensitive to the choice of weights [33].

However, for the sake of simplicity, we choose the weights

bi, i ¼ 1, 2, 3, in a way that the contributions of the different

orders of moments are of similar magnitude within the par-

ameter space. Having the stationary distribution stored in
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Figure 2. Circular representation [34] of estimated parameter combinations for the Schlögl model. Each spoke represents the corresponding parameter range listed in
electronic supplementary material, table S3. The true parameter values are specified by the intersection points between the spokes and the dashed circle. Each
triangle (or polygon in general) of a fixed colour corresponds to one admissible parameter set with 1 ¼ 0.25%. Each panel (a – d ) shows the situation with one
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the tensor format (2.2), we can then efficiently iterate steps

(b1)–(b4) in table 3 to search for parameter values that produce

adequate fit to the samples using the measure given in equa-

tion (3.1). We consider 1 ¼ 0.25% and visualize in figure 2 the

admissible parameter values satisfying J(Ŝ, S�) , 1.

The summary statistics Ŝ are not restricted to lower order

moments. The TPA can efficiently evaluate different choices

of the summary statistics, because of the simplicity and gen-

erality of separable representation (2.2). For example, if one

can experimentally measure the probability that the system

stays in each of the two states of the bistable system, then dis-

tance measure J(Ŝ, S�) can be based on the probability of

finding the system within a particular part of the state

space Vx. We show, in electronic supplementary material,

appendix S1.4, that such quantity can also be estimated in

the tensor format efficiently with O(N ) complexity. Consider-

ing the Schlögl model, we estimate the probability that the

system stays in the state with less molecules by

S ¼ P(x � 230), (3:4)

where P denotes the probability and the threshold 230 separ-

ates the two macroscopic states of the Schlögl system, see the

dashed line in figure 1a. The splitting probability (3.4) can be

estimated using long-time simulation of the Schlögl system as

the fraction of states which are less or equal than 230 and is

equal to Ŝ ¼ 47:61% for our true parameter values. Figure 1b
shows the set of admissible parameters within the parameter
space Vk whose values provide desired agreement on the

splitting probability (3.4) with tolerance 1¼ 5%, i.e. we use

J(Ŝ, S�) ¼ jŜ� S�j

in the algorithm given in table 3, where S* is computed using

(2.2) and (3.4).
3.2. Identifiability
One challenge of mathematical modelling of GRNs is

whether unique parameter values can be determined from

available data. This is known as the problem of identifiability.

Inappropriate choice of the distance measure may yield

ranges of parameter values with equally good fit, i.e. the par-

ameters being not identifiable [35]. Here, we illustrate the

tensor-structured identifiability analysis of the deterministic

and stochastic models of the Schlögl chemical system. We

plot the distance function against two parameter pairs, rate

constants k1–k3 and k2–k4, in figure 3. From the colour

map, we see that the distance function (3.1) possesses a

well distinguishable global minimum at the true values

(k1 ¼ 2.5 � 1024, k2 ¼ 0.18, k3 ¼ 2250 and k4 ¼ 37.5). This

indicates that the stochastic model is identifiable in both

cases. In the deterministic scenario, the Schlögl system loses

its identifiability. When the distance function (3.1) only fits

the mean concentration, the minimal values are attained on

a curve in the two-dimensional parameter space (the distance
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function is indicated by blue contour lines in figure 3).

Stochastic models are advantageous in model identifiability,

because they can be parametrized using a wider class of

statistical properties (typically, K quantities are needed to

estimate K reaction rate constants for mass–action reaction

systems). The TPA enables efficient and direct evaluation of

J(Ŝ, S�) all over the parameter space in a single computation

by using the representation (2.2).

Figure 3 also reveals the differences between the model

responses to parameter perturbations. The green contour

lines show the landscape of J(Ŝ, S�) for the stochastic model

using only the mean values, i.e. L ¼ 1 in (3.1). The minimum

is attained on a straight line, representing another non-

identifiable situation. This line (green) has a different direc-

tion than the line obtained for the deterministic model

(blue). In particular, this example illustrates that the par-

ameter values estimated from deterministic models do not

give good approximation of both average behaviour and

the noise level when they are used in stochastic models [36].
4. Bifurcation analysis
Bifurcation is defined as a qualitative transformation in the

behaviour of the system as a result of the continuous

change in model parameters. Bifurcation analysis of ODE

systems has been used to understand the properties of deter-

ministic models of biological systems, including models of

cell cycle [37] and circadian rhythms [38]. Software packages,

implementing numerical bifurcation methods for ODE sys-

tems, have also been presented in the literature [39,40], but

computational methods for bifurcation analysis of corre-

sponding stochastic models are still in development [19].

Here, we use the tensor-structured data p(xjk) given by

(2.2) for a model of fission yeast cell cycle control developed

by Tyson [24], and perform the tensor-structured bifurcation

analysis on the tensor data. The interaction of cyclin–cdc2 in

the Tyson model is illustrated in figure 4a. Reactions and par-

ameter values are given in electronic supplementary material,

appendix S2.2.

The parameter k1, indicating the breakdown of the active

M-phase-promoting factor (MPF), is chosen as the bifurcation

parameter. The analysis of the corresponding ODE model
reveals that the system displays a stable steady state when

k1 is at its low values, which describes the metaphase arrest

of unfertilized eggs [41]. On the other hand, the ODE

model is driven into rapid cell cycling exhibiting oscillations

when k1 increases [24]. The ODE cell cycle model has a bifur-

cation point at k1 ¼ 0.2694, where a limit cycle appears [24].

In our TPA computations, we study the behaviour of the

stochastic model for the values of k1 which are close to

the deterministic bifurcation point. We observe that the

steady-state distribution changes from a unimodal shape

(figure 4b) to a probability distribution with a ‘doughnut-

shaped’ region of high probability (figure 4c) at k1 ¼ 0.3032.

In particular, the stochastic bifurcation appears for higher

values of k1 than the deterministic bifurcation.

In figure 5, we use the computed tensor-structured para-

metric probability distribution to visualize the stochastic

bifurcation structure of the cell cycle model. As the bifurcation

parameter k1 increases, the expected oscillation tube is formed

and amplified in the marginalized YP-pM-M state space

(figure 5a–d). In figure 5e–h, the marginal distribution in the

Y-CP-pM subspace is plotted. We see that it changes from a

unimodal (figure 5e) to a bimodal distribution (figure 5f).
Cell cycle models have been studied in the deterministic

context either as oscillatory [24] or bistable [42,43] systems.

In figure 5, we see that the presented stochastic cell cycle

model can appear to have both oscillations and bimodality,

when different subsets of observables are considered.
5. Robustness analysis
GRNs are subject to extrinsic noise which is manifested by

fluctuations of parameter values [44]. This extrinsic noise

originates from interactions of the modelled system with

other stochastic processes in the cell or its surrounding

environment. We can naturally include extrinsic fluctuations

under the tensor-structured framework. For a GRN as in (2.1),

we consider the copy numbers X1, X2, . . . , XN as intrinsic

variables and reaction rates k1, k2,. . . , kM as extrinsic vari-

ables. Total stochasticity is quantified by the stationary

distribution of the intrinsic variables, p(x). We assume that

the invariant probability density of extrinsic variables, q(k),

does not depend on the values of intrinsic variables x. Then
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the law of total probability implies that the stationary

probability distribution of intrinsic variables is given by

p(x) ¼
ð
Vk

p(xjk)q(k)dk, (3:5)

where Vk is the parameter space and p(xjk) represents the

invariant density of intrinsic variables conditioned on con-

stant values of kinetic parameters, see the definition below

equation (2.1). If distributions q(k) of extrinsic variables can

be determined from high-quality experimental data, then

the stationary density can be computed directly by (3.5).

If not, the TPA framework enables to test the behaviour

of GRNs for different hypothesis about the distribution of

the extrinsic variables. The advantage of the TPA is that it

efficiently computes the high-dimensional integrals in (3.5)

(see electronic supplementary material, appendix S1.4).
5.1. Extrinsic noise in FitzHugh – Nagumo model
We consider the effect of extrinsic fluctuations on an activa-

tor-inhibitor oscillator with simple negative feedback loop:

the FitzHugh–Nagumo neuron model which is presented

in figure 6a. Self-autocatalytic positive feedback loop acti-

vates the X1 molecules, which are further triggered by the

external signal. The species X2 is enhanced by the feed-

forward connection and it acts as an inhibitor that turns off

the signalling [4]. We perform robustness analysis based on

the simulated tensor data in §2.1 (summarized on the third

line of table 1). In our computational examples, we assume

that q(k) ¼ q1(k1)q2(k1) . . . qM(kM), i.e. the invariant distri-

butions of rate constants k1, k2, . . . , kM are independent.

Then (3.5) reads as follows:

p(x) ¼
ð
Vk

p(xjk)q1(k1) � � � qM(kM)dk: (3:6)

Extrinsic variability in the FitzHugh–Nagumo system is

studied in four prototypical cases of qi, i ¼ 1, 2, . . . , M:

(i) Dirac delta, (ii) normal, (iii) uniform, and (iv) bimodal distri-

butions, as shown in figure 6b. As these distributions have zero
mean, the extrinsic noise is not biased. We can then use this

information about extrinsic noise to simulate the stationary

probability distribution of intrinsic variables by (3.6).

When the extrinsic noise is omitted, the inhibited and

excited states are linked by a volcano-shaped oscillatory prob-

ability distribution (figure 6c). At the inhibited state, X1

molecules first get activated from the positive feedback

loop, and then excite X2 molecules by feed-forward control.

The delay between the excitability of the two molecular

species gives rise to the path (solid line) describing switching

from the inhibited state to the excited state (figure 6c). If the

normal or uniform noise are introduced to the extrinsic vari-

ables, then the path becomes straighter (figure 6d,e). This

suggests that, once X1 molecules get excited or inhibited, X2

molecules require less time to response.

GRNs with stronger negative feedback regulation gain

higher potential to reduce the stochasticity. This argument

has been both theoretically analysed [45,46], and experimen-

tally tested for a plasmid-borne system [47]. We have shown

that the extrinsic noise reduces the delay caused by the feed-

back loop (figure 6d ). If we further increase the variability of

the extrinsic noise, then the delay caused by the feedback

loop is further reduced (figure 6e). In the case of the bimodal

distribution of extrinsic fluctuations, the most-likely path

linking the inhibited and excited states even shrinks into an

almost straight line (figure 6f ). This means that, for the

same level of the inhibitor X2, the number of the activator

X1 is lower, i.e. the presented robustness analysis shows

that the behaviour of stochastic GRNs with negative feedback

regulation can benefit from the extrinsic noise.
6. Discussion
We have presented the TPA of stochastic reaction networks

and illustrated that the TPA can (i) calculate and store the

parametric steady-state distributions; (ii) infer and analyse

stochastic models of GRNs. To explore high-dimensional

state space Vx and parameter space Vk, the TPA uses a

recently proposed low-parametric tensor-structured data
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format, as presented in equation (2.2). Tensor methods have

been recently used to address the computational intensity

of solving the CME [16,48]. In this paper, we have extended

these tensor-based approaches from solving the underlying

equations to automated parametric analysis of the stochastic

reaction networks. One notable advantage of the tensor

approach lies in its ability to capture all probabilistic infor-

mation of stochastic models all over the parameter space

into one single tensor-formatted solution, in a way that

allows linear scaling of basic operations with respect to the

number of dimensions. Consequently, the existing algorithms

commonly used in the deterministic framework can be

directly used in stochastic models via the TPA. In this

way, we can improve our understanding of parameters in

stochastic models.

To overcome technical (numerical) challenges, we have

introduced two main approaches for successful computation

of the steady-state distribution. First, we compute it using the

CFPE approximation which provides additional flexibility in

discretizing the state space Vx. The CFPE admits larger grid

sizes for numerical simulations than the unit grid size of

the CME. In this way, the resulting discrete operator is

better conditioned. We illustrate this using a 20-dimensional

problem introduced in the last line of table 1 and in electro-

nic supplementary material, appendix S2.4. To compute

the stationary distribution, a multi-level approach is

implemented, where the steady-state distribution is first

approximated on a coarse grid, and then interpolated to a

finer grid as the initial guess (see electronic supplementary

material, appendix S1.3, for more details). The results are

plotted in figure 7. Second, we introduce the adaptive inverse

power iteration scheme tailored to current tensor solvers of

linear systems, see electronic supplementary material,
appendix S1.3, for technical details. As tensor linear solvers

are less robust especially for ill-conditioned problems, it is

necessary to carefully adapt the shift value during the inverse

power iterations in order to balance the conditioning and suf-

ficient speed of the convergence. We would like to emphasize

the importance of these improvements, because the TPA is

mainly limited by the efficiency of computing steady-state

distributions, rather than by the problem dimension, N þ K.

Both the computational efficiency and the separation rank R
are negatively correlated with the relaxation time of the

reaction network. Reaction networks exhibiting bistable or

oscillating behaviours usually have larger relaxation times.

This explains some counterintuitive results in table 1,

namely the smaller memory requirements and shorter com-

putational times of the 20-dimensional reaction chain in

comparison with the seven-dimensional cell cycle model. In

particular, the TPA can be applied to systems with dimen-

sionality N þ K greater than 20, provided that they have

small relaxation times.

Techniques for the parameter inference and bifurcation

analysis of stochastic models have been less studied in the lit-

erature than the corresponding methods for the ODE models.

One of the reasons for this is that the solution of the CME is

more difficult to obtain than solutions of mean-field ODEs.

This has been partially solved by the widely used Monte

Carlo methods, such as the Gillespie SSA, which can be

used to estimate the required quantities [29]. Advantages of

Monte Carlo methods are especially their relative simplicity

and easy parallelization. The TPA provides an alternative

approach. The TPA uses more complex data structures and

algorithms than the Gillespie SSA, but it enables to compute

the whole probability distribution for all combinations of

parameter values at once. The TPA stores this information
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in the tensor format. If the state and parameter spaces have a

higher number of dimensions, then the Monte Carlo methods

would have problems with storing computed stationary dis-

tributions. Another advantage of the TPA is that it produces

smooth data, see e.g. figure 3 for the data over the parameter

space and figure 5 for the data in the state space. This is

important for a stable convergence in the gradient-based

optimization algorithms [49] and for reliable analysis of

stochastic bifurcations. Monte Carlo methods provide necess-

arily noisy and hence non-smooth data that may cause

problems for these methods.

Parameter inference of stochastic models can make use of

various statistical measures, such as the variance and corre-

lations. Monte Carlo approaches are widely used to

compute these quantities, but they may be computationally

expensive. The TPA provides an alternative approach. Once

we compute the stationary distribution for the desired

ranges of parameter values and store it in the tensor

format, we can use the tensor operation techniques (see elec-

tronic supplementary material, appendix S1.4) to efficiently

compute many different statistical measures from the same

stationary distribution. If the results of the used statistical

measure and chosen method are not satisfactory, we can

modify or completely change both and try to infer the par-

ameters again. As the stationary distribution is stored, the

modifications and changes can be done with low compu-

tational load. Namely, no stochastic simulations are needed.

In addition, as the stationary distribution contains complete

information about the stochastic steady state, it can be used

to compute practically any quantity for comparison with

experimental data. We have illustrated several different para-

metric studies in figures 1b, 2 and 3. All these results are

based on a single tensor solution presented in §2.1 (table 1).
We would like to note that the presented inference is

based solely on the steady-state distributions, and not on

the time-dependent trajectories. Consequently, parameter

estimation of the Schlögl system needs to be performed

with at least one model parameter fixed at its true value.

Nevertheless, the time evolution can be incorporated into

the TPA framework. We can consider the time t as an

additional dimension in the tensor data [50], i.e. we can com-

pute p(xjk; t), where t ¼ (t1, t2, . . . , tL)T is a vector of

temporal samples. Adding a temporal dimension to the

separated tensor data increases the storage requirements

and computational complexity from order O(N þ K) to

order O(N þ K þ 1). Then, the existing trajectory-based infer-

ence methods [51] can be applied to the computed tensor

data p(xjk; t). Let us also note that it is relatively straight-

forward to use the TPA framework to study the parameter

sensitivity of stochastic systems (i.e. to quantify the depen-

dence of certain quantities of interest on continuous changes

in model parameters). A systematic way for conducting

the sensitivity analysis is illustrated in electronic supple-

mentary material, appendix S1.5, using the fission yeast cell

cycle model.
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