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Abstract: A cooperative flame-retardant system based on natural intumescent-grafted bamboo
charcoal (BC) and chitosan (CS) was developed for polylactic acid (PLA) with improved flame
retardancy and minimal decline in strength properties. Chitosan (CS) as an adhesion promoter
improved the interfacial compatibility between graft-modified bamboo charcoal (BC-m) and PLA
leading to enhanced tensile properties by 11.11% and 8.42%, respectively for tensile strength and
modulus. At 3 wt.% CS and 30 wt.% BC-m, the crystallinity of the composite increased to 38.92%, or
43 times that of pure PLA (0.9%). CS promotes the reorganization of the internal crystal structure.
Thermogravimetric analysis showed significantly improved material retention of PLA composites
in nitrogen and air atmosphere. Residue rate for 5 wt.% CS and 30 wt.% BC-m was 29.42% which
is 55.1% higher than the theoretical value of 18.97%. Flammability tests (limiting oxygen index-
LOI and UL-94) indicated significantly improved flame retardancy and evidence of cooperation
between CS and BC-m, with calculated cooperative effectiveness index(Ce) >1. From CONE tests,
the peak heat release rate (pHRR) and total heat release (THR) were reduced by 26.9% and 30.5%,
respectively, for 3% CS + 20% BC-m in PLA compared with adding 20% BC-m alone. Analysis
of carbon residue morphology, chemical elements and structure suggest CS and BC-m form a
more stable char containing pyrophosphate. This char provides heat insulation to inhibit complete
polymer pyrolysis, resulting in improved flame retardancy of PLA composites. Optimal mix may be
recommended at 20% BC-m + 3% CS to balance compatibility, composite strength properties and
flame retardance.

Keywords: bamboo charcoal; chitosan; polylactic acid; flame retardant; cooperative system

1. Introduction

Universal dependence on petroleum-based plastics has created enormous land and sea
pollution problems prompting research and development of new bio-based and biodegrad-
able polymers [1,2]. Polylactic acid (PLA) is an example, with excellent mechanical proper-
ties, high processability, and potential for regeneration and biodegradability [3,4], and is
today widely used in packaging, the medical industry, and 3D printing [5–8]. However, its
inherent biodegradability and fermented biomass-derived carbon-hydrogen composition
give PLA low heat and melt resistance when burned [9–11], causing flame spread due to
melting and dripping [12]. For this reason, PLA does not meet the UL-94 V-1 rating or
higher required to mitigate fire hazard, limiting its applications [13].
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Various strategies have been proposed to improve the flame retardancy of PLA [14,15].
Previous work by authors include modification with aluminum hypophosphite (AHP) [16,17]
and bamboo charcoal (BC) [18]. The flame-retardant performance was improved, but
mechanical properties decreased and combustion produced toxic phosphene gas (PH3).
While BC+AHP was effective in PLA, it is not commercially viable as a “green” packaging
material. Renewable, bio-based, non- or low-toxic and low-smoke intumescent flame
retardants (IFR) are being developed [7,19]. Biomass materials, such as starch, lignin,
chitosan (CS), and sodium alginate [20,21], have been investigated as flame-retardant
charring agents in polymers. A new bio-based flame retardant (defined as LHP) containing
hydroxyapatite and lignocellulose in a ratio of LHP to APP of 1:3 at 10 wt.% addition is
effective [14]. The peak heat release value in cone calorimeter combustion (CONE) tests
decreased from 365 kW/m2 to 250 kW/m2. Beta-cyclodextrin (β–CD) and poly (propylene
glycol) (PPG) have been used to improve the flame retardancy of PLA with ammonium
polyphosphate (APP) and melamine (MA) [22]. A limiting oxygen index (LOI) of 34 vol%
and a UL-94 V-0 vertical flame test rating were both achieved. Besides, the addition
of 1–5 wt.% starch was also used to further increase the LOI to 30.6% and improve the
anti-dripping properties of PLA-based foams [23]. However, these additives require a
high loading for efficacy which significantly reduces the mechanical properties of the
materials [24,25].

Chitosan (CS), the fully or partially deacetylated form of chitin, is one of the very
few natural polymers that has a primary amino group along its main chain [26]. It has
excellent biocompatibility, film-forming properties, and different viscosity states, and is
therefore used as the reinforcing phase in polymer composites [27–29]. CS on its own has
little flame retardancy with a carbohydrate structure that does not promote carbonization;
however, its matrix can be modified with inorganic nanofillers to give unique properties.
For example, adding halloysite can significantly raise the ignition temperature to around
150 ◦C, although a large number of active layers are needed [30,31]. Though the flame
retardancy of CS can be increased by the formation of a carbon layer in the presence of
phosphoric acid [21,32,33], phosphorylated chitosan (CS-P) often displays poor thermal
stability, which limits its application in many polymers [34]. However CS in different
states may be used to form a cooperative system with a char-forming intumescent graft-
modified BC, developed by Zhang et al. (2021) [18]. BC has a very high specific surface
area and a rich, irregular pore structure that is effectively graft modified with phosphorous
and nitrogen compounds to produce an effective flame retardant that mixes well with
PLA. The objective of this work was to develop and test a non-toxic, more effective, and
biodegradable flame-retardant system based on combining BC-m with CS with minimal
negative impacts on the mechanical properties of polylactic acid.

2. Materials and Methods
2.1. Materials

PLA resin was purchased from Cargill Dow Inc (4032D, Nature Works Co. Ltd., Blair,
NE, USA) with a density of 1.24 g/cm3 and melting point of 160 ◦C. The glass transition
temperature and the crystallization peak temperature of the polymer are 57.8 ◦C and
150–170 ◦C, respectively. BC was supplied by Zhejiang Anji Huasen Bamboo Charcoal
Products Co., Ltd. (Zhejiang, China). The product was carbonized at 700 to 800 ◦C and
ground to 100 to 250 mesh particle size. CS was supplied by Macklin Biochemical Co., Ltd.,
(Shanghai, China), with viscosity of 200–400 mPa.s.

Chemical reagents used for graft modification of BC were: hydrogen peroxide (H2O2)
at 30% conc. (Yonghua Chemical Reagent Co., Ltd., Jiangsu, China), phosphoric acid (PA)
at 85% conc. and urea at 99% purity (both from Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China), and ammonium hydroxide solution at 3% conc. and 0.91 g/mL density
at 20 ◦C (Macklin Biochemical Co., Ltd., Shanghai, China).
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2.2. Preparation
2.2.1. Grafting Modification of BC

As described in previous work [18], two batches of 30% conc. aqueous H2O2 solution
were used to treat BC (which was thoroughly washed and dried) in succession. Using a BC
to H2O2 of 1:3, the BC was treated for 8 h. After filtration, H2O2 was added again, followed
by 1 h of microwave irradiation at 200 W, and oven drying at 90 ◦C overnight to produce a
treated BC intermediate termed “BC-o”.

The BC-o powder was reacted with PA at 85% conc. using a 1:1 ratio to BC-o and
stirring at 80 ◦C for 30 min, then gradually heated further to 100 ◦C and maintained for
1 h. Urea dispersed in deionized water was added for a PA:urea ratio of 1:1.8, with 3%
ammonia used to adjust the pH of the mixture to between 8 and 10. The mixture was
heated slowly to 120 ◦C for 30 min and then gradually increased to 160 ◦C, which was then
cured in an oven at 200 ◦C for 6 h. The hardened foam, termed “BC-m”, was ground to
150–250 mesh and washed several times with a hot ethanol solution and dried at 90 ◦C
for 2 h.

2.2.2. Preparation of Flame-Retardant PLA Composites

PLA, CS, and BC-m powders were dried at 80 ◦C overnight. A twin-roll mixing mill
(XK-160, Wuhan, China) was used to compound them together at 180 ◦C. The screw was
run at 30 rpm. Different mix ratios of PLA, CS, and BC-m (shown in Table 1) were prepared.

Table 1. Formulations for PLA and its blends.

Scheme 100
Composition (wt.%)

PLA BC-m CS

PLA 100 0 0
FPLA-C3 97 0 3
FPLA-C5 95 0 5
FPLA-B1 90 10 0
FPLA-B2 80 20 0
FPLA-B3 70 30 0

FPLA-C31 87 10 3
FPLA-C32 77 20 3
FPLA-C33 67 30 3
FPLA-C51 85 10 5
FPLA-C52 75 20 5
FPLA-C53 65 30 5

The compounded, extruded mixes were cut into pellets and re-mixed in the mill
until a visually good dispersion was achieved. The compounded pellets were hot-pressed
(180 ◦C) into sheets with under 10 MPa pressure for 10 min for combustion performance
tests. Pellets were also injection molded into splines at 175 ◦C and 6 MPa pressure, which
were used for mechanical tests of tensile and flexural properties. A schematic diagram of
the preparation and testing processes is shown in Figure 1.

2.3. Measurement and Characterization
2.3.1. Characterization of PLA Composites

The fracture surface morphology of PLA and the blends with BC-m and CS were ob-
served by a scanning electron microscope (SEM; TM3030, Hitachi, Japan) at an accelerating
voltage of 15 kV. Samples were conductive coated by gold sputter coating for 90 s at a
current of 15 mA to get a conductive layer.
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Figure 1. Schematic diagram of composite preparation and testing.

An X-ray diffractometer (XRD6000, Shimadzu Co., Ltd., Kyoto, Japan) was used to
detect changes in the crystal structure. The profiles were analyzed by Cu Kα (0.15406 nm)
radiation under a tube voltage of 40 kV. The tube current was set at 30 mA, and the scanning
range was 3◦–40◦ (2θ) at a rate of 2◦/min.

Differential scanning calorimetry (DSC) tests were conducted using DSC-500B (YAN-
JIN Scientific Instrument Co., Ltd., Shanghai, China) under nitrogen at a flow rate of
50 mL/min. Samples of 5 mg were weighed and sealed in a tared aluminum pan with an
empty pan used as the reference. Samples were first heated from 25 to 220 ◦C at a rate of
10 ◦C/min−1, kept for 5 min to eliminate the thermal history, then cooled down to 25 ◦C at
a rate of 10 ◦C/min. The second heating curve was recorded at a heating rate of 10 ◦C/min,
showing the melting process. Crystallinity (Xc) was estimated according to Equation (1),

Xc(%) =
4HC

4H0·XPLA
× 100% (1)

where4HC refers to the crystallization enthalpy;4H0 refers to the enthalpy value during
100% crystallization of PLA, which is 93.6 J/g [35]; XPLA refers to the weight ratio of PLA
in the FPLA composite blends.

2.3.2. Mechanical Properties

The mechanical properties (tensile strength and modulus, MOR, MOE) of the com-
posites were tested using a microcomputer-controlled electronic universal testing machine
(CMT610, MTS Industrial System (China) Co., Ltd., Shanghai, China) according to the
Chinese National Testing Standard GB/T 1040-2006 (for tensile properties) and GB/T
9341-2008 (for flexural properties). For the tensile test, the width and thickness of the
narrow stress zone in specimens were 5 and 2 mm, respectively. The gauge length was set
to 60 mm and loading speed was 2 mm/min. The flexural test specimen dimensions were
80 × 10 × 4 mm3 with load span of 60 mm and loading speed of 2 mm/min.

2.3.3. Thermal Behavior

Thermal gravimetric analysis (TGA) was carried out using a thermo-gravimetric
analyzer (F1, NETZSCH Co., Ltd., Selbu, Germany) under nitrogen and air atmosphere.
Approximately 5–10 mg of material was weighed and assayed in an aluminum crucible
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and tested over a temperature range of 50 to 700 ◦C with a heating rate of 10 ◦C/min under
a gas flow of 20 mL/min. An empty crucible was used as a reference.

2.3.4. Combustion Properties Tests

The limiting oxygen index (LOI), expressed as vol.% minimum concentration of
oxygen required to initiate combustion, was measured using a JF-3 oxygen index meter
(Jiangning Analysis Instrument Company, Nanjing, Jiangsu, China) according to ISO
4589-2:2017 [36]. The dimensions of the test specimens were 100 ×10 × 4 mm3.

The Underwriters Laboratory (UL-94) vertical flame test was carried out using a 5402-
type vertical burn test instrument (Suzhou Yangyi Woerqi Detection Technology Co., Ltd.,
Nanjing, Jiangsu, China) with specimens measuring 130×13× 3 mm3. The test parameters
and ratings are defined in ATSM D3801-10 [37].

Cone calorimeter combustion (CONE) tests were carried out using a cone calorimeter
(FTT0007, Fire Testing Technology Co., Ltd., East Grinstead, UK) according to ISO 5660-
1 [38]. The specimen measuring 100 × 100 × 4 mm3 was placed horizontally in a bed of
aluminum foil and was heated under the combustion hood in which the predetermined
test height was 25 cm. Using an external heat flux of 35 kW/m2, the material was ignited
and the relevant combustion performance indices recorded until combustion was complete.
Combustion indices are the average of 3 test specimens per group.

2.3.5. Residue Analysis

All remaining carbonized residues from the CONE tests were collected and imaged to
further analyze the surface morphology using a scanning electron microscope (SEM) at an
accelerating voltage of 15 kV. Specimens were sputter coated with 24 ct gold for 90 s at a
current of 15 mA.

Fourier transform infrared spectroscopy (FTIR) was used to detect the changes in
chemical groups and structure of the residues using a Nicolet 6700FT-IR spectrophotometer
with KBr slice. The transmission mode was used and the wave number range was set from
400 cm−1 to 4000 cm−1.

X-ray photoelectron spectroscopy (XPS) was used to investigate the residual element
contents of samples. This was carried out using a Thermo ScientificTM K-AlphaTM+ spec-
trometer (Thermo Fisher, Scientific Inc, Waltham, MA, USA) equipped with a monochro-
matic Al Kα X-ray source (1486.6 eV) operating at 100 W. Samples were analyzed under
vacuum (p < 10−8 mbar) with a pass energy of 150 eV (survey scans) or 25 eV (high-
resolution scans). All peaks were calibrated with C1s peak binding energy at 284.8 eV for
adventitious carbon. The experimental peaks were fitted using Avantage software.

3. Results
3.1. Characterization of PLA and FPLA Composites
3.1.1. Micromorphology and Dispersibility

The surface morphology of BC and BC-m are shown in Figure 2. The original pore
structure of the bamboo tissue can be clearly seen on the surface of BC particles (Figure 2a),
while the surface of BC-m became amorphous (Figure 2b). There was little difference
in particle size of BC before and after modification, which was mainly between 50 and
100 µm.

To investigate the dispersion in PLA, observation under SEM at low magnification
(120×) was performed and the corresponding images are shown in Figure 3. Figure 3a1–3a3
show the fracture surface morphology with different BC-m addition levels indicating
uniform distribution of BC-m in the polymer. At higher levels of BC-m (30%), the localized
agglomeration of particles was evident (Figure 3a2) leading to a weak polymer-filler
interface. The typical particle size of BC-m at the fracture surface was also analyzed, with
results shown in Figure 4. A smaller particle size (mostly 20–26 µm) was observed due to
cyclic extrusion of the screw during the melt compounding process.



Polymers 2021, 13, 2167 6 of 20
Polymers 2021, 13, x FOR PEER REVIEW 6 of 20 
 

 
 

Figure 2. SEM images of surface morphology: (a) BC and (b) BC-m. 

To investigate the dispersion in PLA, observation under SEM at low magnification 
(120×) was performed and the corresponding images are shown in Figure 3. Figure 3a1–
3a3 show the fracture surface morphology with different BC-m addition levels indicating 
uniform distribution of BC-m in the polymer. At higher levels of BC-m (30%), the localized 
agglomeration of particles was evident (Figure 3a2) leading to a weak polymer-filler inter-
face. The typical particle size of BC-m at the fracture surface was also analyzed, with re-
sults shown in Figure 4. A smaller particle size (mostly 20–26 μm) was observed due to 
cyclic extrusion of the screw during the melt compounding process. 

Figure 3. SEM images of fracture surface morphology: (a1) FPLA-B1, (a2) FPLA-B2, (a3) FPLA-B3, (b1) FPLA-C31, (b2) FPLA-
C32, (b3) FPLA-C33, (c1) FPLA-C51, (c2) FPLA-C52, and (c3) FPLA-C53. 

Figure 2. SEM images of surface morphology: (a) BC and (b) BC-m.

Polymers 2021, 13, x FOR PEER REVIEW 6 of 20 
 

 
 

Figure 2. SEM images of surface morphology: (a) BC and (b) BC-m. 

To investigate the dispersion in PLA, observation under SEM at low magnification 
(120×) was performed and the corresponding images are shown in Figure 3. Figure 3a1–
3a3 show the fracture surface morphology with different BC-m addition levels indicating 
uniform distribution of BC-m in the polymer. At higher levels of BC-m (30%), the localized 
agglomeration of particles was evident (Figure 3a2) leading to a weak polymer-filler inter-
face. The typical particle size of BC-m at the fracture surface was also analyzed, with re-
sults shown in Figure 4. A smaller particle size (mostly 20–26 μm) was observed due to 
cyclic extrusion of the screw during the melt compounding process. 

Figure 3. SEM images of fracture surface morphology: (a1) FPLA-B1, (a2) FPLA-B2, (a3) FPLA-B3, (b1) FPLA-C31, (b2) FPLA-
C32, (b3) FPLA-C33, (c1) FPLA-C51, (c2) FPLA-C52, and (c3) FPLA-C53. 
Figure 3. SEM images of fracture surface morphology: (a1) FPLA-B1, (a2) FPLA-B2, (a3) FPLA-B3, (b1) FPLA-C31,
(b2) FPLA-C32, (b3) FPLA-C33, (c1) FPLA-C51, (c2) FPLA-C52, and (c3) FPLA-C53.



Polymers 2021, 13, 2167 7 of 20

Polymers 2021, 13, x FOR PEER REVIEW 7 of 20 
 

The addition of CS (Figure 3b1,b2) improved the interfacial bonding, whereby no ob-
vious delamination could be observed compared to if BC-m was added on its own. CS 
appears to facilitate BC-m dispersal and bonding with the PLA by acting as an interfacial 
adhesive. 

 
Figure 4. Typical particle size distribution of BC-m particles on fracture surface. 

3.1.2. Thermal Properties 
To investigate the thermodynamic properties of PLA and its blends, differential scan-

ning calorimetry (DSC) was carried out with heat flow curves shown in Figure 5. Key 
data, such as glass transition temperature (Tg), cold crystallization temperature (Tcc), crys-
tallization enthalpy (ΔHc), melting temperature (Tm), and melting enthalpy (ΔHm) are 
summarized in Table 2.  

Figure 5. Heat flow curves of PLA and its blends. 

From Table 2, the Tg values decreased with the addition of BC and CS, likely caused 
by increased plasticization of the polymer [35,39]. At a particular level of BC-m (e.g., 20% 
as bold highlighted) Tg values were minimally affected by CS level but Xc increased. 
Higher molecular mobility also means that more energy is needed to achieve crystalliza-
tion while weakening the capacity for non-isothermal crystallization [30,39], leading to an 
increase in Tcc by 15.1 °C at most. The nucleation by the fillers contributed greatly to the 
improvement of Xc. With the increasing addition of BC and CS, the Xc of composites in-
creased from 0.9% to over 29%, the highest being FPLA-C33 with Xc = 38.92%, or 43 times 
that of pure PLA. The improvement of crystallization behavior also means that the ther-

18 20 22 24 26 28 30 32 34 36
0

5

10

15

20

25

30

D
is

tr
ib

ut
ed

 p
ro

po
rt

io
n 

(%
)

Particle size (μm) 

40 80 120 160 200

FPLA−C53
FPLA−C52

FPLA−C51

FPLA−C33
FPLA−C32
FPLA−C31

FPLA−B3
FPLA−B2
FPLA−B1

EX
O

Temperature (°C)

PLA

Double crystal melting 

Figure 4. Typical particle size distribution of BC-m particles on fracture surface.

The addition of CS (Figure 3b1,b2) improved the interfacial bonding, whereby no
obvious delamination could be observed compared to if BC-m was added on its own.
CS appears to facilitate BC-m dispersal and bonding with the PLA by acting as an
interfacial adhesive.

3.1.2. Thermal Properties

To investigate the thermodynamic properties of PLA and its blends, differential
scanning calorimetry (DSC) was carried out with heat flow curves shown in Figure 5.
Key data, such as glass transition temperature (Tg), cold crystallization temperature (Tcc),
crystallization enthalpy (∆Hc), melting temperature (Tm), and melting enthalpy (∆Hm) are
summarized in Table 2.
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Table 2. DSC indices for PLA and FPLA composites.

Sample Tg (◦C) Tcc (◦C) Tm1 (◦C) Tm2 (◦C) ∆Hc (J/g) ∆Hm (J/g) Xc (%)

PLA 59.1 108.1 150.8 - 0.84 4.06 0.90
FPLA-B1 58.1 119.8 149.2 - 27.39 27.77 32.51
FPLA-B2 58.4 123.2 150.1 - 22.27 22.87 29.74
FPLA-B3 58.7 121.6 149.7 - 21.26 20.71 32.45

FPLA-C31 56.9 110.8 148.2 154.2 27.19 20.98 33.39
FPLA-C32 57.1 118.4 149.0 - 25.63 24.44 35.56
FPLA-C33 58.1 121.1 149.3 - 24.41 23.36 38.92
FPLA-C51 57.1 114.0 147.2 152.9 30.43 28.8 38.25
FPLA-C52 57.2 120.4 148.7 154.0 25.91 25.18 36.91
FPLA-C53 57.6 112.1 145.1 152.6 18.99 18.16 31.21

From Table 2, the Tg values decreased with the addition of BC and CS, likely caused by
increased plasticization of the polymer [35,39]. At a particular level of BC-m (e.g., 20% as
bold highlighted) Tg values were minimally affected by CS level but Xc increased. Higher
molecular mobility also means that more energy is needed to achieve crystallization while
weakening the capacity for non-isothermal crystallization [30,39], leading to an increase in
Tcc by 15.1 ◦C at most. The nucleation by the fillers contributed greatly to the improvement
of Xc. With the increasing addition of BC and CS, the Xc of composites increased from
0.9% to over 29%, the highest being FPLA-C33 with Xc = 38.92%, or 43 times that of pure
PLA. The improvement of crystallization behavior also means that the thermal stability
of the composite may be enhanced. Double melt crystallization peaks appeared with the
addition of CS (Figure 5), especially at 3 wt.%, which may be attributed to incomplete
cold crystallization at low temperatures resulting in the melting and recrystallization of α
phase [17]. Equally, a slight decrease in Tm was observed with increase of CS content, as
melting involves the same molecular movement condition [39]. The crystallization results
suggest CS may play an important bridging role between BC-m and PLA by reducing the
thickness and volume of the crystalline polymer interface [17].

3.1.3. X-ray Diffraction Analysis

X-ray diffraction was used to detect the differences in crystalline structure between
PLA and FPLA composites (Figure 6). Only a broad diffraction peak for crystallinity in
pure PLA at 16.7◦ was recorded, assigned to the α-phase crystallite [40,41]. Generally,
the crystallization of pure PLA occurs too slowly to register any significant crystallinity,
especially under the non-isothermal conditions encountered during extrusion and injection
molding [41]. In contrast, a sharp crystallization peak at 16.7◦ appeared in FPLA-CS, con-
sistent with DSC results. With the addition of BC-m and chitosan in different ratios, several
new diffraction peaks at 2θ = 18.3◦, 20.9◦, 23.6◦, 24.5◦, and 28.8◦ appeared in the XRD
curve. As reported previously, the peak at 2θ = 20.9◦ belongs to the graphitized structure of
BC [17], and the 2θ = 24.5◦ and 28.8◦corresponds to the β-form crystal structure [42]. The
peak values of all FPLA materials increased and became sharp at 16.7◦, which indicates
the crystallinity index of PLA increased [43]. New peaks at 2θ = 18.3◦ and 23.6◦ suggest
reorganization of the crystal structure [44].

3.2. Mechanical Properties

Figure 7 shows the tensile and flexural properties of the composites with different
BC-m and CS addition levels, while the detailed data are listed in Table 3.
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Figure 7. Average mechanical properties of FPLA-B and FPLA-C composites: (a) tensile strength, (b) tensile modulus,
(c) flexural strength, and (d) flexural modulus; as well as typical tensile stress-strain curves of a selected sample: (e) FPLA-B
composites and (f) FPLA-C composites.

Table 3. Mechanical properties of the FPLA-B and FPLA-C composites.

Sample Tensile Strength (MPa) Tensile Modulus (MPa) Flexural Strength (MPa) Flexural Modulus (GPa)
a PLA 58.12 ± 1.76 774.24 ± 33.43 95.76 ± 0.80 3.73 ± 0.17

a FPLA-B1 55.91 ± 2.23 917.06 ± 77.74 84.15 ± 2.18 3.75 ± 0.08
a FPLA-B2 51.94 ± 1.77 941.15 ±141.33 87.01 ± 1.90 3.81 ± 0.32
a FPLA-B3 49.71 ± 0.88 995.70 ± 112.20 81.77 ± 1.65 4.28 ± 0.34
FPLA-C31 57.40 ± 1.83 955.02 ± 56.03 85.95 ± 2.84 3.78 ± 0.21
FPLA-C32 55.84 ± 0.67 985.16 ± 42.75 87.70 ± 2.94 4.10 ± 0.19
FPLA-C33 53.56 ± 1.02 1026.41 ± 27.41 89.37 ± 3.94 3.94 ± 0.12
FPLA-C51 58.00 ± 1.61 976.00 ± 47.30 89.40 ± 2.68 3.81 ± 0.19
FPLA-C52 57.71 ± 1.57 1020.43 ± 41.14 87.55 ± 3.90 3.96 ± 0.38
FPLA-C53 53.54 ± 1.77 999.86 ± 32.44 90.12 ± 3.87 3.95 ± 0.14

Notes: a Reprinted with permission from ref [18]. Copyright 2021 American Chemical Society. Copyright Liang Zhang, Weisheng Chai,
Wenzhu Li, Kate Semple, Ningning Yin, Wenbiao Zhang, Chunping Dai.
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As noted in previous work [18], the tensile strength of FPLA-B composites decreases
with increased BC-m addition, with a 11.09% decrease at 30 wt.% BC-m. Adding CS
significantly improved the tensile properties as seen in Figure 7a,b and in Table 3 bold
values of FPLA-B composites. CS at 5 wt.% produced the largest increases: 11.11% in
tensile strength and 8.42% in tensile modulus. Flexural properties were less changed by
CS addition (Figure 7c,d, Table 3). Typical stress-strain curves for CS-added FPLA-Cs are
shown in Figure 7e,f. Note the elongation at break is more sensitive to the compatibilization
effect in multicomponent blends compared with other mechanical properties [45]. Adding
20 wt.% BC-m and 3 wt.% or 5 wt.% CS produced a more ductile composite with elongation
at the break reaching 6.94% and 7.08%, respectively, which is 2.20% and 8.59% higher than
that of 10% BC-m added with same content of CS.

CS particles with medium viscosity are dispersed in advance forming a flexible mem-
brane locally under the action of pressure and temperature and effectively promoting
the interfacial bonding between the filler and matrix, as indicated through observation
of fracture morphology and higher composite strength and the modulus results. The en-
hancement is limited to low doses of CS as it is strongly hydrophilic due to –OH and –NH2
groups along the chain [46], whereas PLA is strongly hydrophobic [47,48]. As CS loading
increases, the extent of interfacial zones with different affinities leads to a weakening in
interfacial adhesion and interaction [28].

3.3. Thermal Degradation Behavior
3.3.1. TG in N2

Selected TG and DTG curves of PLA, PLA/20BC-m, PLA/20BC-m/3CS, and PLA/20BC-
m/5CS in nitrogen atmosphere are shown in Figure 8, and corresponding data for all mixes
are shown in Table 4. The onset degradation temperature of samples is defined as the
temperature at 5% weight loss (T−5%), and Tmax. is the temperature at the maximum rate
of rate of mass loss.
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Figure 8. Typical TGA (a,c) and DTG (b,d) curves of CS, BC; BC-m, PLA, and FPLA composites in N2.
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Table 4. TGA data of PLA and FPLA composites in N2.

Samples T-5% (◦C) Rpeak/Tmax (%·min−1/◦C)
Residue Mass (%)

700 (◦C)

BC 484 0.32/295 93.39
BC-m 373 2.66/382 82.47

CS 103 1.92/255 40.60
PLA 343 5.72/382 0.60

a FPLA-B1 334 25.33/385 8.64
a FPLA-B2 331 20.94/383 21.81
a FPLA-B3 331 19.52/380 29.83
FPLA-C31 316 22.24/365 8.97
FPLA-C32 314 21.14/362 24.92
FPLA-C33 311 18.81/359 29.56
FPLA-C51 312 23.46/365 9.64
FPLA-C52 306 19.55/360 29.42
FPLA-C53 304 18.65/356 32.74

Notes: a Reprinted with permission from ref [18]. Copyright 2021 American Chemical Society. Copyright Liang Zhang, Weisheng Chai,
Wenzhu Li, Kate Semple, Ningning Yin, Wenbiao Zhang, Chunping Dai.

Typical TG and DTG spectra for the constituents CS, BC, and BC-m under nitrogen
(N2) atmosphere are shown in Figure 8a,b. CS started to thermally decompose at 103 ◦C.
Rpeak occurred at 255 ◦C and the final carbon residue at 700 ◦C was 40.60%. In contrast, BC
showed excellent thermal stability with almost no significant mass loss during pyrolysis.
Rpeak was 0.32% at 295 ◦C and the final carbon residue was 93.39%. BC-m underwent rapid
mass loss of its graft products at 382 ◦C and with a final carbon residue of 82.47%. The
grafted phosphorous and nitrogen compounds on BC-m reduced the relative mass of pure
BC in the filler by 10.94%.

Data for FPLA composites are shown in Figure 8c,d and Table 3, with notable contrasts
for 20%BC-m with or without CS in bold highlight. FPLA composites were characterized
by one Tmax and T-5% values were lower than for pure PLA, especially with CS addition.
This is related to the early thermal decomposition of BC-m graft products in keeping with
thermal degradation of IFRs [49,50] and contributing to its flame retardancy. The residue
mass (RM) values of all FPLA were higher than pure PLA (0.60%) at 700 ◦C. The RM values
of CS-added materials at the same level of BC-m content were higher again, suggesting a
cooperative effect. This is evidenced by the RM being higher than the theoretical value for
BC-m composites above 20% BC-m. The RM of FPLA-C52 (20%BC-m+5%CS) for example,
was 29.42%, i.e., 55.1% higher than its theoretical value of 18.97%. BC-m decomposition
produces phosphoric acid (PA) which accelerates the degradation of PLA in cooperation
with higher content of CS further reducing T-5% and earlier char formation, potentially
providing enhanced combustion resistance [21,33,34]. Note the increase in RM is limited at
low (3%) CS addition level.

3.3.2. TG in Air

TG results in air are given in Figure 9 and Table 5.
Compared with nitrogen atmosphere, T-5% values increased that with 5 wt.% CS and

T-5% values of FPLA-C51, FPLA-C52, and FPLA-C53 increased by 12 ◦C, 7 ◦C, and 3 ◦C,
respectively. All values for Rpeak of the FPLA composites rose as well, while corresponding
Tmax values decreased. Oxygen promotes the pyrolysis process of PLA by oxidizing the
molecular chains [10], intensifying the pyrolysis reaction and promoting the formation of
the carbonized char layer, resulting in earlier inhibition of mass loss. TGA results in air still
indicate adding BC-m and CS as a cooperative system is effective in promoting the early
formation of char residue but note here the much smaller difference between CS levels
when added to a base level of 20%BC-m (bold in Table 5).
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Figure 9. TGA (a) and DTG (b) curves of FPLA composites in air.

Table 5. TGA data of FPLA composites under air condition.

Samples T-5% (◦C) Rpeak/Tmax (%·min−1/◦C)
Residue Mass (%)

700 (◦C)

FPLA-C31 317 38.48/363 3.01
FPLA-C32 314 36.57/362 6.99
FPLA-C33 311 25.30/358 10.48
FPLA-C51 324 39.14/360 4.30
FPLA-C52 313 37.76/360 8.10
FPLA-C53 307 22.90/355 10.70

3.4. Combustion Characterization
3.4.1. LOI and UL-94

Flammability indices for PLA and FPLA composites (LOI and UL-94 tests) are sum-
marized in Table 6 with contrasts for CS level with 20%BC-m in bold. Images of PLA and
FPLA-C composites after the LOI tests are shown in Figure 10.

Table 6. LOI and UL-94 results of PLA and FPLA composites.

Samples LOI ± 0.2 (vol%)
UL-94

Cea t1 (s)/t2 (s) Dripping Rating

PLA 20.7 b TB Yes c NR -
FPLA-C3 21.5 TB Yes NR -
FPLA-C5 21.7 TB Yes NR -

d FPLA-B1 28.0 5.6/2.3 Yes V-2 -
d FPLA-B2 29.2 2.1/1.1 No V-0 -
d FPLA-B3 32.1 1.2/1.4 No V-0 -
FPLA-C31 29.0 4.7/2.0 No V-1 1.02
FPLA-C32 31.3 1.9/1.1 No V-0 1.14
FPLA-C33 33.0 1.2/1.3 No V-0 1.01
FPLA-C51 29.2 4.6/2.1 No V-1 1.02
FPLA-C52 32.4 1.8/1.2 No V-0 1.23
FPLA-C53 33.6 1.0/1.0 No V-0 1.04

a average combustion times after the first and second applications of the flame; b TB = totally burnt down to clamp;
c No rating; d Reprinted with permission from ref [18]. Copyright 2021 American Chemical Society. Copyright
Liang Zhang, Weisheng Chai, Wenzhu Li, Kate Semple, Ningning Yin, Wenbiao Zhang, Chunping Dai.
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Figure 10. Digital images of PLA and FPLA composites after LOI tests: (a) pure PLA; (b) 3CS/10BC-m/87PLA; (c) 3CS/20BC-
m/77PLA; (d) 3CS/30BC-m/67PLA; (e) 5CS/10BC-m/85PLA; (f) 5CS/20BC-m/75PLA; (g) 5CS/30BC-m/65PLA.

Pure PLA burns very easily and exhibited obvious melt dripping (Figure 10a) with a
LOI of 20.7 vol%. CS has little flame retardancy if added alone; LOI values were increased
slightly to 21.5 vol% and 21.7 vol%, respectively. Our previous findings [18] showed
that with 20 and 30 wt.% addition of BC-m, LOI increased to 29.2 vol% and 32.1 vol%,
respectively, and melt dripping was completely suppressed, achieving a UL-94 V-0 rating.
However, 10 wt.% BC-m was insufficient to prevent melting [18]. With co- addition
of CS, the expansion phenomenon at the burning tip became more obvious, as seen in
Figure 10d,g. CS addition further increased the LOI of 20% BC-m from 29.2% vol% to
31.3 vol% and 32.4 vol% for the 3% and 5% CS addition, respectively.

The possible cooperative effect of adding BC-m and CS in combination was further
explored using the Lewin and Weil concept of cooperative effectiveness (Ce) [51], calculated
as follows [52]:

Ce = {(Fp)[fr+s] − (Fp)P}/{(Fp)fr − Fp)P) + ((Fp)s − (Fp)P} (2)

where (Fp)P is the flame-retardant property of the polymer alone, (Fp)fr is the polymer
containing BC-m, (Fp)s is the polymer with CS, and (Fp)[fr+s] is the polymer with coopera-
tive filler system (BC-m+CS). Cooperative behavior of the additives is considered to occur
with the combination of BC-m and CS if Ce > 1. Since the LOI values are usually used to
evaluate combustion intensity and directly correspond with UL-94 and cone calorimetry
indices, LOI values were used for Fp in Equation (2) [16,52]. Ce values were above 1 for
BC-m+CS composites (Table 6) suggesting a cooperative effect. Overall, 20 wt.% BC-m
with 5% CS was the most effective, in accord with the TGA results under N2 atmosphere.

3.4.2. Cone Calorimeter (CONE) Results

The appearance of char residues aids interpretation of CONE data [53]. Examples
of chars from PLA and FPLA-C composites (at baseline 20% BC-m addition) after CONE
tests are shown in Figure 11. With CS addition, the ‘puffiness’ of the char increased, as
seen in Figure 11c2,d2. Key parameters include the heat release rate (HRR), total heat
release (THR), total smoke release (TSR), residue mass (RM), and average effective heat of
combustion (aEHC); with data for all samples given in Table 7. Selected curves for PLA,
PLA+20%BC-m and this baseline with CS addition are shown for easier visual comparison
in Figure 12.
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Figure 11. Images of carbon residues of PLA and FPLA composites after CONE tests: (a1,a2) PLA, (b1,b2) FPLA-B2, (c1,c2)
FPLA-C32, and (d1,d2) FPLA-C52.
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Table 7. a Cone calorimeter results for each sample at 35 kW/m2.

Samples TTI (s) pHRR (kW/m2) THR (MJ/m2) pMLR (g/s) aEHC (MJ/kg) RM (%)

PLA 56 435.58 86.06 0.60 16.37 2.29
b FPLA-B1 34 418.11 68.64 0.51 16.15 6.45
b FPLA-B2 33 201.02 53.48 0.48 15.08 18.99
b FPLA-B3 31 181.61 41.10 0.35 14.52 47.71
FPLA-C31 37 216.33 54.19 0.67 12.28 8.36
FPLA-C32 35 146.97 37.17 0.61 12.04 23.17
FPLA-C33 34 123.38 29.00 0.37 11.01 35.99
FPLA-C51 36 268.56 42.04 0.52 12.68 8.22
FPLA-C52 37 156.85 38.79 0.74 11.67 26.26
FPLA-C53 34 125.49 25.65 0.53 10.66 38.18

Notes: a TTI, time to ignition, ±2 s; pHRR, peak heat release rate, ±15 kW/m2; pMLR, peak mass loss rate, ±0.05 g/s; aEHC, average
effective heat of combustion within 180 s, ±2 MJ/kg; b Reprinted with permission from ref [18]. Copyright 2021 American Chemical Society.
Copyright Liang Zhang, Weisheng Chai, Wenzhu Li, Kate Semple, Ningning Yin, Wenbiao Zhang, Chunping Dai.
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Figure 12. Typical CONE test results of PLA and FPLA composites: (a) HRR, (b) THR, (c) TSR, and (d) mass.

HRR curves of selected samples are shown in Figure 12a, which a main factor indi-
cating fire spread risk [54]. Contrasted CONE indices for PLA, PLA+20%BC-m and this
baseline plus 3 or 5% CS addition are in bold in Table 7. The heat release of all specimens
mainly occurred between 100 and 300 s. Peak heat release rate (pHRR) of pure PLA reached
435.58 kW/m2 and was reduced by just 4.01% when 10 wt.% BC-m was added [18]. Even
at low BC-m addition, CS can be effective. From Table 7, co-adding 3 wt.% CS to this
mix reduced pHRR to 216.33 kW/m2, a decrease of 50.34%. Adding 5 wt.% CS did not
further limit heat release; in fact, for PLA/20%BC-m, adding 5 wt.% CS increased pHRR to
156.45 kW/m2 from 146.97 kW/m2 for 3% CS. CS addition significantly reduced THR and
aEHC indices compared with PLA and PLA/20%BC-m (Figure 12b).
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From Table 7 and Figure 12a,b pHRR and THR for the baseline PLA+20%BC-m were
further reduced by CS addition, particularly 3%. For example pHRR was reduced by
almost 27% by adding 3%CS to the baseline PLA+20% BC-m. Note from Figure 12c CS
addition curtailed TSR after about 250s compared with adding BC-m on its own. It seems
likely that the cooperation of CS and BC-m accelerates the development of expanded char
and greater amounts of non-flammable gases with heating, producing a greater peak mass
loss rate (pMLR) and TSR. The char barrier is effective and works by blocking heat and
oxygen, as shown in the reductions in pHRR and THR [55] when CS was added to all levels
of BC-m addition.

3.5. Residue Analysis
3.5.1. Morphology of Residue Surfaces and Inner Layers

The char residue on the outer and inner surface of FPLA-B and FPLA-C composites
after CONE tests was analyzed by SEM, and the results are shown in Figure 13. When
CS was not added, there was a dense char on the surface of the residue but with cavities
(Figure 13a1), allowing heat and oxygen through. Adding CS helped produce a more
continuous layer of char, as reflecting in the improved CONE test indices. Images of
the internal char layer revealed changed morphology of the char layer. From previous
work [18], PLA/BC-m, especially at 30% addition formed a distinct filled-pore structure
shown in Figure 13a2. With CS addition the char was denser and well consolidated without
bubbles, as shown in Figure 13b2,c2. An enhanced barrier role appears to be achieved
through the cooperative effect of CS and incombustible gases and acids produced by the
thermal decomposition of BC-m. Adding BC-m to PLA causes pyrophosphate products to
fill the pores in the char produced by gases generated during the thermal degradation of
BC-m graft products [18]. As combustion progresses, flame suppression transitions to the
condensed phase protective mechanism.
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3.5.2. Structure and Composition

In order to elucidate differences in the char residue structure, the residues of PLA,
FPLA-B3, FPLA-C33, and FPLA-C53 (maximum level of BC-m addition) were analyzed
by FTIR, with results shown in Figure 14a. The typical characteristic peaks of PLA at
1630 cm−1, 1760 cm−1, 2846 cm−1, and 2920 cm−1 were identified, corresponding to C=C,
C=O, and symmetrical and asymmetrical stretching of –CH2– groups, respectively [56,57].
Adding BC-m and CS together produced significantly different spectra compared with PLA,
with new absorption peaks at 996 cm−1, 1080 cm−1, and 1168 cm−1 in FPLA-C33 and FPLA-
C53. These correspond to the stretching vibration of P=O, P–O–C, and P–O–P [56,58] from
the graft products on BC-m, indicating pyrophosphates that contribute to the formation of
char residue [56].
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Figure 14. (a) FTIR curves and (b) XPS spectra of the residue char for PLA, FPLA-B3, FPLA-C33, and FPLA-53.

To further investigate the chemical element components of the char residues after
CONE testing, XPS was performed with the corresponding spectra shown in Figure 14b. C
and O contents exceeded 35%, making up the majority of the residue. C content increased
with greater CS addition.

Specific spectra are shown in Figure 15 for elements on the surface of the carbon
residue of FPLA-C53. From Figure 15a, the binding energy (BE) at 284.1 eV and 286.8 eV
for C 1s peaks was assigned to C–C or C=C groups in aliphatic and aromatic fragments, or
C–O in P–O–C groups, respectively, while the signal at 533.1 eV in Figure 15b corresponds
to –O– in P–O–C [59]. The peak at 134.7 eV of the P 2p spectra in Figure 15c and 401.2 eV
of N 1s spectra in Figure 15d correspond to the P–O–P bond and the C–N or C=N in the
triazine structures, respectively [16,59,60]. Theoretically, the content of elemental C in
FPLA-C33 and FPLA-C53 should be increased by 3% and 5% above that of the 30%BC-m
addition, whereas the actual C values in the residue of these composites were 41.62% and
44.02%, respectively. A higher percentage of elemental C means that more organic matter
in the composite remained after combustion testing. The results add further evidence that
CS behaves cooperatively with BC-m dispersed in the PLA matrix leading to the formation
of a denser and more stable expanded char layer structure containing P and N reflected in
the detection of C–O–P, P–O–P, and C–N.
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4. Conclusions

(1) Co-adding 3 or 5 wt.% CS with BC-m to PLA enhanced tensile properties of PLA. CS is
an interfacial adhesion promoter which improves the interfacial compatibility between
BC-m and PLA. Adding 3 wt.% CS and 30 wt.% BC-m increased the crystallinity
to 38.92% or 43 times that of pure PLA (0.9%). The internal crystal structure was
reorganized by CS addition and the crystallinity index was increased.

(2) TGA showed early thermal degradation of CS-added PLA/BC-m composites and
enhanced residue mass. In nitrogen atmosphere co-adding 5 wt.% CS and 20 wt.%
BC-m, the corresponding residue (29.4%) was 55.1% higher than the theoretical
value (18.97%).

(3) Co-adding 5 wt.% CS and 30 wt.% BC-m, increased LOI to 33.6 vol%; 4.7% higher
than adding BC-m alone. UL-94 V-0 rating at low BC-m addition (10 wt.%) was
improved correspondingly. Cooperative effectiveness analysis (Ce) on LOI results
suggest that active cooperation between CS and BC-m improves the flame retardancy
of PLA/BC-m composites.

(4) CONE results showed very effective further combustion suppression with just 3%
CS co-addition to the effective baseline of 20% or more BC-m addition. For example
peak heat release rate (pHRR) was reduced by almost 27% for 3% CS + 20% BC-m,
and total heat release (THR) was reduced by 30.5%. Analysis of char morphology,
chemical elements, and structure reveals that CS and BC-m form a denser, more stable
carbonized layer that is effective in heat and oxygen insulation, resulting in improved
flame retardancy of PLA composites.

(5) A mix of just 20 wt.% BC-m + 3 wt.% CS may be a viable flame-retardant sys-
tem that meets the requirements for a non-toxic, strong and biodegradable PLA
packaging product.
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