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Abstract

Stable isotope-assisted metabolic flux analysis (MFA) is a powerful method to estimate car-

bon flow and partitioning in metabolic networks. At its core, MFA is a parameter estimation

problem wherein the fluxes and metabolite pool sizes are model parameters that are esti-

mated, via optimization, to account for measurements of steady-state or isotopically-nonsta-

tionary isotope labeling patterns. As MFA problems advance in scale, they require efficient

computational methods for fast and robust convergence. The structure of the MFA problem

enables it to be cast as an equality-constrained nonlinear program (NLP), where the equality

constraints are constructed from the MFA model equations, and the objective function is

defined as the sum of squared residuals (SSR) between the model predictions and a set of

labeling measurements. This NLP can be solved by using an algebraic modeling language

(AML) that offers state-of-the-art optimization solvers for robust parameter estimation and

superior scalability to large networks. When implemented in this manner, the optimization is

performed with no distinction between state variables and model parameters. During each

iteration of such an optimization, the system state is updated instead of being calculated

explicitly from scratch, and this occurs concurrently with improvement in the model parame-

ter estimates. This optimization approach starkly contrasts with traditional “shooting” meth-

ods where the state variables and model parameters are kept distinct and the system state

is computed afresh during each iteration of a stepwise optimization. Our NLP formulation

uses the MFA modeling framework of Wiechert et al. [1], which is amenable to incorporation

of the model equations into an NLP. The NLP constraints consist of balances on either ele-

mentary metabolite units (EMUs) or cumomers. In this formulation, both the steady-state

and isotopically-nonstationary MFA (inst-MFA) problems may be solved as an NLP. For the

inst-MFA case, the ordinary differential equation (ODE) system describing the labeling

dynamics is transcribed into a system of algebraic constraints for the NLP using collocation.

This large-scale NLP may be solved efficiently using an NLP solver implemented on an

AML. In our implementation, we used the reduced gradient solver CONOPT, implemented

in the General Algebraic Modeling System (GAMS). The NLP framework is particularly

advantageous for inst-MFA, scaling well to large networks with many free parameters, and

having more robust convergence properties compared to the shooting methods that
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compute the system state and sensitivities at each iteration. Additionally, this NLP approach

supports the use of tandem-MS data for both steady-state and inst-MFA when the cumomer

framework is used. We assembled a software, eiFlux, written in Python and GAMS that

uses the NLP approach and supports both steady-state and inst-MFA. We demonstrate the

effectiveness of the NLP formulation on several examples, including a genome-scale inst-

MFA model, to highlight the scalability and robustness of this approach. In addition to typical

inst-MFA applications, we expect that this framework and our associated software, eiFlux,

will be particularly useful for applying inst-MFA to complex MFA models, such as those

developed for eukaryotes (e.g. algae) and co-cultures with multiple cell types.

Author summary

Isotope-assisted metabolic flux analysis (MFA) is a computationally intensive parameter

estimation problem. Isotopically nonstationary MFA (inst-MFA) represents the most

computationally burdensome MFA application. We present the formulation of the

steady-state and inst-MFA problems as equality-constrained nonlinear programs (NLPs),

solved by a state-of-the-art solver implemented in an algebraic modeling language. We

show that this formulation leads to robust convergence properties compared to traditional

approaches, particularly for inst-MFA. We developed a software, eiFlux that uses the NLP

formulation to perform both steady-state and inst-MFA. We demonstrate the application

of eiFlux on several examples, including a genome-scale inst-MFA model, and show that

it has robust optimal convergence even when started from a very poor initial guess for the

parameters. eiFlux is implemented using the Python programming language and the Gen-

eral Algebraic Modeling System (GAMS), using the CONOPT solver. eiFlux is available

upon request, pending institutional approval, and is free for academic use.

This is a PLOS Computational BiologyMethods paper.

Introduction

Stable isotope-assisted metabolic flux analysis (MFA) is a powerful methodology used for

experimentally quantifying in-vivometabolic fluxes [2–4]. This methodology involves two

parts—experimental data collection and computational flux estimation. Experimentally, an

isotopically labeled substrate is fed to a cell culture. Labeling measurements of intracellular

metabolites, which depend on the fluxes are then measured, typically by using mass spectrom-

etry (MS). A metabolic network model of carbon atom rearrangements is then fit to the mea-

sured labeling patterns, called mass isotopomer distributions (MIDs), to estimate the flux

distribution that best accounts for these measurements. The labeling measurements can be col-

lected under either steady-state labeling conditions or unsteady-state (isotopically nonstation-

ary) labeling conditions in which time-series measurements are gathered on the approach to

steady state. In the steady-state case, an algebraic model, in which the fluxes are unknown

parameters, is fit to the labeling data. In the isotopically nonstationary case, the model consists

of a system of ordinary differential equations (ODEs) in which the fluxes and metabolite pool

sizes are the unknown parameters. This is a computationally intensive parameter estimation

problem that requires the use of specialized software.
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the problem), so that the results are fully verifiable.

Additionally, the GAMS scripts used by eiFlux are

available in the folder GAMS_Model in S1 File.

These scripts contain the general NLPs for the

steady-state and inst-MFA problems. These scripts

are provided for information only; the compiled

Python eiFlux_Limited.pyc uses these scripts in the

background. Finally, the authors are working with

their institution to license the full version of eiFlux

that enables users to define their own models. This

full version will be available free of charge to

academic and nonprofit researchers after the

licensing process is complete. The following

GitHub repository will indicate the status of the

licensing process and list the instructions for using

eiFlux: https://github.com/SriramLabUMD
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Several modeling formulations, especially those involving cumomers [1] and elementary

metabolite units (EMUs) [5], have been applied to ease the computational burden by casting

the model equations in a way that they can be solved in a piecewise linear form. Other formu-

lations that seek to reduce computational burden by expressing the state variables in an alter-

native form include bondomers [6,7], (which are useful for a specific type of MFA involving a

single, uniformly labeled carbon source) and fluxomers [8]. Formulations such as these have

resulted in the steady-state MFA problem becoming efficiently solvable. The extension of the

EMU method to isotopically nonstationary MFA (inst-MFA) has made the unsteady-state

problem computationally tractable [9].

MFA applications estimate fluxes by solving a parameter estimation problem that mini-

mizes the sum of squared residuals (SSR) between the experimentally measured and model-

predicted labeling state (or dynamic labeling state [DLS] in case of inst-MFA). This minimiza-

tion requires an optimization algorithm to estimate the optimal fluxes (and metabolite pool

sizes for inst-MFA) that best account for the experimental DLS. To our knowledge, all available

inst-MFA software employ the “shooting method” for determining the optimum. In this

method, parameter estimation is performed via a sequential algorithm, in which a set of model

parameters are chosen and the DLS is subsequently evaluated by using a numerical integration

scheme for that set of parameter values. The parameter estimates are refined at each iteration

using a Gauss-Newton method (e.g. Levenberg-Marquardt) or a derivative-free method such

as simulated annealing [10,11], and the DLS is recalculated and compared to the measure-

ments. These steps are repeated until an optimum is reached.

A desirable quality of a parameter estimation process such as MFA is robustness. A robust

estimation would be accurate (converging in the neighborhood of the global optimum) and

reliable (converging to the same optimum from arbitrary starting points) [12]. The shooting

method, which re-computes the DLS at each iteration, is not robust because it suffers from a

small region of convergence [13], particularly for problems with a large number of free param-

eters. This is typically due to the presence of many local optima, often far from the globally

optimal solution. In this case, for a general network, robust convergence to the global or a

near-global optimum typically requires a very good initial guess for the model parameters.

However, in inst-MFA the pool sizes and fluxes are generally difficult to estimate a priori,
and a good initial guess is usually not available for the large number of free parameters in this

problem. Therefore, the optimization must typically be restarted many times from various

points in the feasible parameter space to increase the chance of finding the globally optimal

solution.

To address these limitations, we present the formulation of the MFA problem as an equality-

constrained nonlinear program (NLP). In the NLP formulation, the EMU or cumomer balances

constitute a system of equality constraints whose feasibility must be maintained while minimizing

the error between the measurements and the model predictions. For inst-MFA, we use collocation

[14] to discretize the system of ordinary differential equations (ODEs) to a form amenable to

state-of-the-art NLP solvers. This discretization is commonly referred to as transcription [14]. In

the NLP approach, the parameter estimation and state prediction occur simultaneously during

optimization, contrasting with traditional methods that compute the state from scratch using the

parameter values at each iteration. The NLP problem is solved efficiently using the NLP solver

CONOPT [15,16] implemented in the General Algebraic Modeling System (GAMS) [17], an alge-

braic modeling language (AML). We employ the cumomer modeling formulation presented by

Wiechert et al. [1], which is ideally suited for incorporating the model equations into an NLP

framework. Further, we also use this modeling formulation to develop the EMU balance equa-

tions. In this formulation, the EMU fractional abundances are the state variables rather than the

EMU vectors as has traditionally been the case [5,9]. Solving the NLP using a solver implemented
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on an AML such as GAMS results in efficient and robust solution of the MFA and inst-MFA

problems. AMLs have capabilities such as automatic differentiation and efficient use of sparse lin-

ear algebra. They therefore efficiently integrate state-of-the-art optimization algorithms and ren-

der them amenable for use on large-scale problems.

We show that the NLP formulation is particularly beneficial for inst-MFA, where collocation

is used to transcribe the ODE system, resulting in robust convergence and relatively few local

optima even for large network models. This contrasts with traditional methods which use the

shooting method for inst-MFA parameter estimation and tend to suffer from a small region of

convergence. The NLP formulation also scales well to problems with a large number of indepen-

dent parameters [10], providing a computationally effective framework for flux estimation on

large network models with many independent fluxes and pool sizes, such as those encountered in

models of eukaryotic systems (e.g. algae), co-culture conditions, or those of genome-scale. Addi-

tionally, because isotopomers and cumomers are easily mapped to tandem MS measurements

[18], this formulation supports the use of tandem MS data for both steady-state and inst-MFA.

We have developed a software, eiFlux (equality-constrained nonlinear programming for

isotope-assisted metabolic flux analysis), that uses the NLP formulation and supports both

steady-state and inst-MFA (Fig 1). Using the GAMS Python API, eiFlux assembles the matri-

ces and vectors for the model equations of a given metabolic network using the Python

Fig 1. Several factors make eiFlux unique among currently available MFA software. eiFlux uses equality-constrained nonlinear programming

to solve both the steady-state and inst-MFA problems. Treating the ODE system using collocation in an NLP formulation results in robust

convergence properties. eiFlux, which supports the cumomer modeling approach, may directly fit tandem MS data.

https://doi.org/10.1371/journal.pcbi.1009831.g001
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programming language, then solves the MFA problem in GAMS using the NLP solver CON-

OPT, enforcing the model equations as equality constraints. The metabolic network and car-

bon atom rearrangements are specified in a user-friendly manner similar to other software,

making models easily transferable between eiFlux and existing software.

Methods

Steady-state MFA as an equality-constrained nonlinear program

To perform steady-state MFA on an arbitrary metabolic network, the cumomer or EMU bal-

ances, the measurement mapping matrix, and SSR objective function should be assembled

into a general model structure. We first present how this model structure is developed for the

cumomer balances, and then we discuss how the EMU framework also fits this structure. We

employed the systematic procedure developed by Wiechert et al. [1], which enables a metabolic

network and its associated carbon atom rearrangements to be efficiently translated into a sys-

tem of cumomer balances. Möllney et al. [19] describe how isotopomer and cumomer distri-

butions are mapped to experimental data sets using a mapping matrix. The NLP for the

steady-state MFA problem, based on this formulation, is shown in (Eq 1).

min z ¼
X

n

ðhmeasn mmeas
n � mnÞ

s2
n

2

þ
X

r

ðvmeasr � vrÞ
2

s2
v;r

cumomer or EMU balances

s:t:
X

r

vr
1

2

X

i;j

Qrkijxixj þ
X

j

Prkjxj þ
X

j

Pinprkj x
inp
j

 !

¼ 0 8k

Qrkijxixj : bimolecular reactions producing x
k

Prkjxj : unimolecular production and consumption of x
k

Pinprkj x
inp
j : input of fed isotopically labeled compoundðsÞ

into the network
X

r

Sqrvr ¼ 0 8q fluxes are stoichiometrically constrained

X

r

Rwrvr � bw 8w linear inequality constraints on fluxes

X

c

Unch
frag
c ¼ h

meas
n 8n

constrains measurement scaling factors to

equal fragment scaling factors

mn ¼
X

j

Mnjxj 8n cumomer or EMU mapping to measurements

xu ¼ 1 8u all zero� order cumomers � 1 ðonly for cumomer frameworkÞ

vlbr � vr � v
ub
r 8r flux lower and upper bounds

ð1Þ

The objective function of the NLP (Eq 1) consists of (i) a term for the residuals between the

measured isotope labeling data and the simulated data, for which n is the measurement index;

and (ii) a term for the residuals between any measured fluxes and the computed fluxes, in

which r is the flux index. Here, σn and σv,r are the standard deviations for the isotope labeling

measurements and the flux measurements, respectively. The equality constraints are (i) the

cumomer or EMU balances, where i, j, and k are cumomer or EMU indices, and Qrkij, Prkj, and
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Pinprkj are arrays defining the balances for the network’s carbon atom rearrangements, as devel-

oped by Wiechert et al. [1]; (ii) the stoichiometric flux balances, Sqr is the stoichiometric

matrix; (iii) constraints on the (optional) measurement scaling factors [19] to equal their cor-

responding fragment scaling factors; (iv) the mapping of the cumomers or EMUs to the mea-

surements; and (v) definition of zero-order cumomers if the cumomer framework is used. The

inequality constraints include (i) any linear inequality constraints on the fluxes including

bounds on the net fluxes of reversible reactions; and (ii) upper and lower bounds on fluxes. All

flux values must be nonnegative, therefore for reversible reactions the forward reaction and

the reverse reaction must each be considered as separate.

If the user is fitting complete and normalized MIDs, then these scaling factors should be

fixed to equal 1. The elements of the matrix Unc in this constraint are defined in (Eq 2).

Unc ¼
1 if measurement n corresponds to measured fragment c

0 otherwise
ð2Þ

(

This NLP may also be defined using the EMU framework. In this case, the EMU fractional

abundances are the state variables rather than the cumomer fractions. Following the EMU

decomposition presented by Antoniewicz et al. [5], the model arrays, Prkj, P
inp
rkj , andMnj may be

similarly defined. Storing the EMUs in the composite vector x (formed by concatenating the

EMU vectors), the array Q is defined:

Qrkij ¼

s if i 6¼ j and EMU fractions i and j combine to form EMU fraction k in reaction r

2s if i ¼ j and EMU fractions i and j combine to form EMU fraction k in reaction r

0 otherwise

ð3Þ

8
>><

>>:

Here s is the stoichiometric coefficient of the metabolite corresponding to the EMU fraction

with index k in reaction with index r. The array Prkj may similarly be defined as:

Prkj ¼

s if EMU fraction j produces EMU fraction k in reaction r

� s if k ¼ j and EMU fraction k is a reactant in reaction r

0 otherwise

ð4Þ

8
>><

>>:

The array Pinprkj , whose elements are nonzero for reactions in which a metabolite enters the

network, is defined as follows:

Pinprkj ¼
s if k ¼ j and EMU fraction k enters the network in reaction r

0 otherwise
ð5Þ

(

The measurement mapping matrix Mnj is defined as:

Mnj ¼
1 if EMU fraction j corresponds to measured EMU fraction n

0 otherwise
ð6Þ

(

Last, xinp is defined as the input composite EMU vector. For the fed isotopically labeled

compound, the corresponding EMU elements are defined based on the pattern of isotope

enrichment. The remaining EMU elements are defined based on natural isotope abundance.

In our implementation, this NLP is solved using the CONOPT reduced gradient algorithm,

implemented in GAMS [15,16,20]. The CONOPT algorithm works well for optimization prob-

lems in which the total number of equality constraints is similar to the total number of
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variables. In each iteration of a reduced gradient algorithm, the variables are partitioned into

two sets—basic and nonbasic. This partitioning is performed automatically by the solver with-

out distinguishing between parameters and state variables. At each iteration of the algorithm,

the nonbasic variables are propagated to a better point (one that improves the objective func-

tion), and the basic variables are propagated to the new point such that they satisfy the equality

constraints [16,20]. Importantly, the number of basic variables is the same as the number of

equality constraints. Therefore, the values of the basic variables are determined by these con-

straints, and any constraint violation is corrected for using iterations of Newton’s method

within a given CONOPT solver iteration. There are approximately the same number of nonba-

sic variables as there are free parameters (fluxes, pool sizes, and scaling factors if used), so

there are typically only O(100) nonbasic variables in a typical MFA problem formulated in this

way. In CONOPT, second derivative information in the form of a reduced Hessian is com-

puted only for the nonbasic variables for the optimization.

Therefore, for nonlinear programs in which the number of equality constraints is similar to

the number of variables, there are fewer nonbasic variables, and the algorithm behaves more

efficiently. A reduced gradient algorithm is well-suited for the MFA problem, in which a typi-

cal network has hundreds-to-thousands of cumomers or EMU fractional abundances, with

each contributing an equality constraint. For a simple step-by-step example employing a

generic reduced gradient algorithm to a simple example, see S1 Text. Importantly, a general

NLP solver, such as CONOPT, does not distinguish model parameters (i.e. fluxes) from model

variables (i.e. cumomers and simulated measurements) and views both as optimization

variables.

Consequently, the cumomer or EMU balances are not solved from scratch at each iteration

and are not solved in the previously mentioned piecewise-linear way. The algorithm is initial-

ized at a random or user-input feasible flux distribution. From here, the algorithm moves from

point to point in a direction such that the constraints, of which the cumomer or EMU balances

are a large subset, remain statistically feasible (to a small tolerance). As the iterations proceed,

the variable values are updated to maintain constraint feasibility. We illustrate this approach

with an example NLP, where the iteration trajectory to the optimum can be easily visualized

(Fig 2). S1 Text provides details on the NLP solved in this example. Here, g1(x) and g2(x) are

nonlinear constraints. The algorithm begins at an initial feasible point, x0. From here, it pro-

ceeds through successive candidate points in a manner such that the constraints g1(x) and

g2(x) remain feasible and the objective function is improved until the optimum is reached. The

optimum is a minimal value of the objective function in which these constraints are satisfied,

which is typically different from the unconstrained minimum.

CONOPT is able to effectively handle nonlinear constraints during each iteration of the

optimization while taking reasonably large step sizes. This is because as a reduced gradient

solver, CONOPT uses the equality constraints to reduce the effective problem size signifi-

cantly. Recall that the equality constraints result from the EMU or cumomer balances, and the

number of parameters is O(102) for a typical model. The total number of variables in the NLP

is therefore only a few hundred more than the total number of equality constraints. The CON-

OPT solver chooses a set of O(102) variables (nonbasic) with the remaining variables (basic)

being exactly determined based on the equality constraints. This effectively reduces the prob-

lem to one in only the nonbasic variables, of which there are only O(102). The values of the

basic variables, which number the same as the constraints, are updated using Newton itera-

tions involving the inverse of the constraint Jacobian at each iteration until the equality con-

straints are satisfied within a tolerance. The default values of the maximum and minimum

feasibility tolerances in CONOPT are 1x10-7 and 4x10-10 respectively. Models solved in eiFlux

use these default values. In this way, the CONOPT solver is able to maintain feasibility for a
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large number of equality constraints during each iteration of the optimization problem with

an effective size of O(102) variables. In practice, MFA models solved using CONOPT very

rarely lose feasibility during the optimization iterations. In iterations where feasibility is lost,

the infeasibility is usually very small, and CONOPT is able to quickly regain feasibility by mov-

ing to a nearby feasible point. For mathematical details on CONOPT’s method of maintaining

constraint feasibility, see S2 Text.

Inst-MFA as an equality-constrained nonlinear program

In inst-MFA, metabolic fluxes are estimated using time-series measurements of isotope label-

ing in intracellular metabolites. In this case, the system is not at isotope labeling steady state,

and the flux information is extracted from the time-dependent labeling dynamics [3,4]. This

differs from steady-state MFA, in which flux estimates are extracted from steady-state labeling

data. While the goal is the same—to accurately estimate intracellular fluxes using isotope label-

ing data—inst-MFA requires fitting a system of ODEs to data, rather than algebraic equations

as is done in the steady-state case. This poses an added computational burden. Additionally,

both fluxes and metabolite pool sizes are model parameters in inst-MFA. This contrasts with

steady-state MFA, which is insensitive to pool sizes.

Fig 2. The first six iterations of a generic reduced gradient algorithm are shown for a simple illustrative example (see S1

Text for details). At each iteration of a reduced gradient algorithm, the variables are propagated to an improved point in which

the constraints remain feasible. In this example, the feasible region (shaded in blue) lies above constraint g1 and below constraint

g2. In this case, the iterations proceed along the g1 nonlinear constraint boundary.

https://doi.org/10.1371/journal.pcbi.1009831.g002
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Inst-MFA may be preferred over steady-state MFA in a variety of situations. For a steady-

state labeling experiment, the cell doubling time may be considered a lower bound for the time

required to reach steady-state labeling in intracellular metabolites [4]. When the doubling time

is long, as is common notably for mammalian cells, maintaining metabolic steady state in this

time interval may be difficult. Because inst-MFA only requires the system to maintain meta-

bolic steady state, the time length of the experiment may be considerably shorter, surmounting

some experimental difficulties [3].

Photoautotrophic metabolism is an important situation where inst-MFA is not only pre-

ferred over steady-state MFA but is required. In this case, steady-state labeling profiles provide

no information on metabolic fluxes [3,4]. All the flux information is contained within the

labeling transient between the time when the cell culture is first provided the 13C-labeled car-

bon source and the time when it reaches isotope labeling steady state. Successfully implement-

ing inst-MFA on these systems can provide vital engineering insights on photosynthetic

organisms, such as algae.

The first mathematical treatment of inst-MFA [21,22] presented a method for simulating

the DLS experiment and parameter sensitivities by using the cumomer framework. Subsequent

work [23] demonstrated that these calculations can be accelerated by employing the adjoint

approach to compute the gradient of the measurement residuals. Currently, two software are

capable of performing inst-MFA—INCA [24] and OpenMebius [25]. All of these approaches

simulate the DLS at every iteration of an optimization routine. For example, INCA uses the

isotopically nonstationary EMU method [9,24] for DLS simulation within a Levenberg-Mar-

quardt algorithm for parameter estimation. Casting the inst-MFA problem as an equality-con-

strained NLP would offer many benefits including robustness and scalability. However, this

requires that the system of ODEs in inst-MFA be converted to algebraic equations.

Toward developing such a formulation, we constructed a framework that uses collocation

[14] to transcribe any inst-MFA problem into a set of algebraic constraints for incorporation

into a general NLP framework. As described by Shin et al. [10], there are several important

benefits of this approach for large-scale parameter estimation problems with dynamic systems.

Specifically, this approach allows large-scale models to be efficiently handled by an AML, such

as GAMS, which employs automatic differentiation schemes for computing derivatives, and

sparse linear algebra algorithms that efficiently handle the structured system of algebraic equa-

tions obtained by transcription of the ODEs [10]. Also, this approach scales well to problems

with a large number of free parameters [10]. Because both pool sizes and free fluxes are model

parameters in inst-MFA, the total number of parameters can easily exceed 100 when consider-

ing compartmented eukaryotic systems such as algae or genome-scale models. Approaches

based on the traditional shooting method involving simulation of the sensitivity equations do

not scale efficiently to problems with a large number of free parameters, impeding their usabil-

ity for problems of this type [10,26]. In this context, the NLP framework provides a distinct

advantage.

In addition to these considerations, the shooting method using a Gauss-Newton type (e.g.

Levenberg-Marquardt) optimization algorithm does not have robust convergence when pro-

vided a poor initial guess for the parameter values [13]. In this situation, this method will often

converge to poor local optima far from the global optimum. In inst-MFA, a good initial guess

is typically not available for most or all of the fluxes and pool sizes in a model. This method

can also have slow convergence in situations where the measurement residuals are large [27].

While local optima must be considered when using any convex optimization scheme on a non-

convex optimization problem (such as inst-MFA), the NLP framework using collocation has

comparatively robust convergence properties [14], even when provided a poor initial guess for

the parameters. To search for the global optimum, the optimization is typically restarted from
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a number of (random) initial starting points. This robust convergence means the user will

need to perform fewer random restarts to find a global (or near-global) optimum compared to

the shooting method. Alternatives such as derivative-free search methods, which among others

include simulated annealing and genetic algorithms, can avoid local optima, but do not scale

well to parameter estimation problems with a large number of free parameters [10], hindering

their applicability to large MFA models.

The system of ODEs that describes the cumomer or EMU dynamics is shown in (Eq 7).

This is analogous to the first constraint in (Eq 1) which is composed of the balances at steady

state. The dynamics of each cumomer or EMU fraction, with index k, is described by an ODE.

In this equation, pk is the pool size of the metabolite corresponding to cumomer or EMU frac-

tion xk. Together, the set of all balances constitute a system of coupled nonlinear ODEs.

pk
dxk
dt
¼
X

r

vr
1

2

X

i;j

QrkijxiðtÞxjðtÞ þ
X

j

PrkjxjðtÞ þ
X

j

Pinprkj x
inp
j

 !

8k ð7Þ

In the NLP formulation, collocation is used to transcribe the ODEs [14]. Using collocation

methods, the time domain is divided, and a polynomial approximates the ODE solution within

each time interval. Transcribing the ODEs using collocation into a system of algebraic equations

allows the parameter estimation problem to be solved using a general NLP solver (e.g. CONOPT).

In eiFlux, we chose to use the Radau IIA orthogonal collocation method due to its stiff-stability

properties [28,29]. Collocation methods also have corresponding fully implicit Runge-Kutta meth-

ods [28,29]. For a derivation of collocation methods and a detailed explanation of their connection

to Runge-Kutta methods, see Huynh [29]. A simple example using the 5th-order Radau IIA colloca-

tion method is provided in S3 Text. For an ODE system of the form (Eq 8), the corresponding fully

implicit Runge-Kutta Method requires solving (Eq 9) and (Eq 10) in each time interval.

dx
dt
¼ f ðx; tÞ ð8Þ

ki ¼ f ðxðtkÞ þ h
Xs

j¼1

aijkj; tk þ cihÞ 8i ð9Þ

xðtk þ hÞ ¼ xðtkÞ þ h
Xs

j¼1

bjkj ð10Þ

In (Eq 9) and (Eq 10), aij refers to the elements of the Runge-Kutta matrix, each of which may

be nonzero for a fully implicit method such as a Radau IIA method. The values of ci are the colloca-

tion nodes on the interval [0,1], and bj are the weights. The value of s is the number of stages in the

method. The set indices used in transcribing the inst-MFA problem are summarized in Table 1.

Choosing a set of time nodes t0 < t1 < . . . tg < tgþ1 < . . . < tgmax , the general Runge-Kutta

scheme that discretizes the entire time domain is shown in (Eq 11) and (Eq 12). Here, hγ =

tγ−tγ−1.

kagi ¼ f ðxg� 1;i þ hg
X

b

aabkbgi; tg� 1 þ cahgÞ 8a; g; i ð11Þ

xgi ¼ xg� 1;i þ hg
X

a

bakagi 8g; i ð12Þ
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Equation (Eq 11) can be split into two equations by introducing the variable Kαγi.

Kagi ¼ xg� 1;i þ hg
X

b

aabkbgi 8a; g; i ð13Þ

kagi ¼ f ðKagi; tg� 1 þ cahgÞ 8a; g; i ð14Þ

Applying (Eq 12), (Eq 13), and (Eq 14) to the instationary balances in (Eq 7) gives the fol-

lowing system of algebraic constraints for the transcribed ODE system:

Kagi ¼ xg� 1;i þ hg
X

b

aabkbgi 8a; g; i

pkkagk ¼
X

r

vr
1

2

X

i;j

QrkijKagiKagj þ
X

j

PrkjKagj þ
X

j

Pinprkj x
inp
j

 !

8a; g; k

xgi ¼ xg� 1;i þ hg
X

a

bakagi 8g; i

ð15Þ

To approximate the cumomer or EMU fraction values, xμi, at a time point tμ where a mea-

surement was taken within the time interval γ, the polynomial basis functions Bα(τ) defined in

(Eq 16) for the collocation method, are used to develop (Eq 17). These basis functions are

found by integrating the Lagrange polynomials, ‘aðtÞ. For Radau collocation methods, these

Lagrange polynomials are constructed from the zeros of the corresponding Radau polynomial,

c1. . .cs [28,29]. See S3 Text for an example using Radau collocation to approximate the solu-

tion to an ODE system. Equation S2.7 in S3 Text lists the basis functions Bα(τ) explicitly for a

3-stage method.

BaðtÞ ¼
Zt

0

‘aðt
0Þdt0 ¼

Zt

0

Ys

b¼1;a6¼b

t0 � cb
ca � cb

 !

dt0 ð16Þ

xmi ¼ xg� 1;i þ hg
X

a

BaðtmÞkagi; tm ¼
tm � tg� 1

hg
; tg� 1 < tm � tg 8m; i ð17Þ

Together, (Eq 15) and (Eq 17) are used to generate an NLP with a transcribed ODE system

(Eq 18). For reference, all indexed sets used in developing the NLP are defined in Table 1. For

Table 1. The indexed sets used in developing the NLP of the inst-MFA problem. The Greek letters are indices used

in discretizing the ODE system.

Index Set

i,j,k Cumomer index

u 0-order cumomer index (subset of cumomers)

r Flux index

n Mass isotopomer distribution measurement index

m Metabolite index

q Row index of stoichiometric matrix

w Flux inequality constraint index

c Measured fragment index

α,β Runge-Kutta stage index

γ Time node index. Also the index for time interval (tγ−1,tγ].

μ Measured time index

https://doi.org/10.1371/journal.pcbi.1009831.t001
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clarity, the sets used in transcribing the ODE system are represented using Greek letters.

min z ¼
X

n;m

ðhmeasnm m
meas
nm � mnmÞ

s2
nm

2

þ
X

r

ðvmeasr � vrÞ
2

s2
v;r

þ
X

m

ðpmet;measm � pmetm Þ
2

s2
p;m

s:t: Kagi ¼ xg� 1;i þ hg
X

b

aabkbgi 8a; g; i Runge� Kutta term 1 ðeqn: 14Þ

pkkagk ¼
X

r

vr
1

2

X

i;j

QrkijKagiKagj þ
X

j

PrkjKagj þ
X

j

Pinprkj x
inp
j

 !

8a; g; k Runge� Kutta term 2 ðeqn: 14Þ

xgi ¼ xg� 1;i þ hg
X

a

bakagi 8g; i Runge� Kutta term 3 ðeqn: 14Þ

pk ¼
X

m

Dkmp
met
m 8k

cumomer=EMU fraction pool sizes ¼

metabolite pool sizes
X

r

Sqrvr ¼ 0 8q fluxes are stoichiometrically constrained

X

r

Rwrvr � bw 8w linear inequality constraints on fluxes

X

c

Unch
frag
cm ¼ h

meas
nm 8n;m

constrains measurement scaling factors to

equal fragment scaling factors

xmi ¼ xg� 1;i þ hg
X

a

BaðtmÞkagi; tm ¼
tm � tg� 1

hg
; tg� 1 < tm � tg 8m; i

cumomer values at

measurement times ðEq: 16Þ

mnm ¼
X

j

Mnjxmj 8n;m
map cumomers to

measurements

xgu ¼ 1 8g; u all zero� order cumomers � 1 ðonly for cumomer frameworkÞ

x0i ¼ x
inp
i 8i define initial conditions

vlbr � vr � v
ub
r 8r flux bounds

pmet;lbm � pmetm � pmet;ubm 8m pool size bounds

ð18Þ

Here, the matrix D is used to constrain the pool sizes for all cumomers of the same metabolite to be

equal (Eq 19). The vector of metabolite pool sizes, pmetm , is thereby mapped to the vector of cumomer or

EMU fraction pool sizes, pk (Eq 19).

Dkm ¼
1 if cumomer=EMU fraction k is from metabolite m

0 otherwise
ð19Þ

(

The initial conditions, x0i are specified as being the input cumomers or EMU fractions, xinpi .

In eiFlux, the fed label(s) are specified in xinp. Metabolites whose labeling patterns are not spec-

ified are assumed to have natural isotope abundance for each atom. Those whose labeling pat-

terns are specified are assumed to have natural isotope abundance for atoms not specified as

labeled. This definition of initial conditions allows for metabolites to have their initial labeling
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specified. This allows the flexibility to define an impulse input of an isotope label (as an alter-

native to the usual step input), which may be useful for modeling scenarios where a bolus of

label was added to a culture. The cumomer or EMU values at the measured time points (hav-

ing index μ), are mapped using the measurement mapping matrix M to the metabolite labeling

measurements mnμ. The pool sizes, pmetm are constrained by user-defined upper and lower

bounds. The objective function also contains a term for the measurement residuals of any

measured pool sizes.

Support for tandem MS data. Tandem MS (MS/MS) is an extension of conventional

“single” MS that provides greater information on the labeling state than single MS [30,30–32],

thus potentially increasing the accuracy of flux estimations. In MS/MS (S1 Fig), analytes pass

through two mass analyzers in series and undergo fragmentation between the two analyzers.

The first mass analyzer selects for a specific mass of a parent ion, which is then fragmented to

generate daughter ions with various masses. These daughter ions are analyzed in the second

mass analyzer. Combined interpretation of the parent and daughter ion MIDs provides con-

siderably richer information on the labeling state than single MS. A novel feature of eiFlux is

that it supports tandem MS data for both steady-state MFA and inst-MFA. This feature is an

advantage because MS/MS data are particularly useful for MFA [32].

Although most previous reports of MFA were based on gas chromatography (GC)-MS anal-

ysis, the use of liquid chromatography (LC)-MS/MS analysis is becoming more prevalent. Two

distinct benefits of LC-MS/MS are that (i) it does not require derivatization of analytes and (ii)

it can typically measure more intermediates of central carbon metabolism than GC-MS, espe-

cially those that derivatize inefficiently. Researchers utilizing LC-MS/MS for inst-MFA have

often used only the parent ion measurements (MS data), as opposed to the parent and daugh-

ter ion measurements (MS/MS data) due to the current unavailability of an inst-MFA software

to fit the MS/MS data.

Results

Toy network example

We present a simple example to illustrate how eiFlux uses collocation for inst-MFA flux and

pool size estimation. For this example, we simulated the measurements from a given set of

parameter (flux and pool size) values, and therefore the exact solution to the optimal estima-

tion problem is known a priori. In this toy network (Fig 3), metabolite A may be converted to

metabolite B via three different pathways, with one pathway being reversible. Each pathway

has a unique carbon atom rearrangement. Suppose that at t = 0, the cell culture is fed media

containing 100% U-13C Axt. The intracellular metabolites A, B, C, D, E, and F will gradually

become enriched, becoming fully enriched as t!1. In this case, all information on flux and

pool sizes is contained within the labeling transient. Therefore, steady-state MFA is unusable

and inst-MFA is necessary to estimate these parameters.

This toy network is simple enough that the isotopically nonstationary cumomer balances

may be easily formulated and numerically integrated using MATLAB (MathWorks, Natick,

MA). Therefore, to demonstrate the NLP approach to inst-MFA, we generated accurate syn-

thetic data by numerically integrating the cumomer balances with set parameter values. For

this demonstration, the chosen parameter values are shown in S4 Text. The synthetic data was

generated for this toy network assuming no natural 13C abundance and 100% 13C enrichment

of Axt at t = 0. The synthetic measurements were taken from the synthetic data in the time

interval [0 20] in time increments of 2. These synthetic measurements were used for solving

the inverse problem—estimating the fluxes and pool sizes from the synthetic time-series mea-

surements of fragments B[12], B[23], and B[123]. For details on the fluxes and pool sizes used
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to simulate the data, the solution converged on by eiFlux, and model fits to the data, see S4

Text. S1 Data contains the simulated data fit to this model.

The resulting time-dependent labeling profile of metabolite B is shown in Fig 4. The 5th-

order Radau IIA collocation points in each time interval are displayed as markers. In this

example, the time domain was split into five intervals with three collocation points in each

interval. The point at t = 0 represents the initial condition. Using the NLP formulation of inst-

MFA, the synthetic measurements are accurately fit to the model. Additionally, the continuous

approximation generated by the 5th-order Radau IIA method accurately matches the synthetic

data generated by solving the cumomer balances in MATLAB.

The inst-MFA problem consists of a system of ODEs, many of which are stiff. For a typical

labeling experiment, it is known by the nature of the problem that the stiff region is located at

the beginning of the time span. It is important to assign short time intervals early in the experi-

ment’s time span so that the stiff dynamics may be accurately captured. If the time interval

assigned encompassing the stiff region of the ODEs is too wide, the user may notice numerical

artifacts in the polynomial approximation within this time interval. However, due to the stiff

stability properties of the Radau IIA methods, the numerical solution remains stable in the

subsequent intervals.

To demonstrate the important stability properties of the Radau IIA methods, we next solved

the toy network using a larger than permissible step size in the stiff region of the dynamics

(Fig 5). In this case, we divided the time domain into two contiguous intervals: [0, 10] and [10,

20] and performed the parameter estimation using the 5th-order method. As expected, we

found that the solution was approximated poorly in the [0, 10] interval. This is indicated by

the high measurement residuals in this region. However, the solution in the subsequent inter-

val, [10, 20], was not significantly impacted by the poor approximation in the previous interval,

as indicated by the small measurement residuals in this interval. Furthermore, the numerical

approximation of the solution asymptotically approaches the true steady-state solution of the

system despite the poor approximation in the first time interval. In this case, the steady-state

solution is that all metabolites are fully enriched, which is consistent with the numerical

approximation. This numerical stability is an important feature of methods, such as Radau

IIA, which are suitable for stiff ODE systems.

Fig 3. Toy network showing reactions and carbon atom rearrangements with stoichiometric flux constraints. The dashed gray line indicates

the cell boundary. Since v0 is assumed to be known exactly, there are three independent fluxes based on the stoichiometric constraints. There are

also six intracellular pool size parameters.

https://doi.org/10.1371/journal.pcbi.1009831.g003
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Fig 4. (Top) Continuous approximation to the DLS generated by fitting the synthetic measurements. The markers

indicate the collocation points of the 5th-order Radau IIA method, with the larger markers indicating the endpoint of

each time interval (which are also collocation points in Radau IIA methods). The vertical dashed lines indicate the

boundaries of each time interval. (Bottom) The fit to the synthetic data is shown, with a standard deviation of 0.01

arbitrarily assigned to each synthetic measurement. The synthetic data was generated by numerically solving the

cumomer balances with a known flux and pool size distribution using the 4th-order explicit Runge-Kutta method and a

time step of 0.02. The continuous approximation generated by the 5th-order Radau IIA collocation method fitting the

synthetic measurements is superimposed for comparison. Clearly, using the collocation method the synthetic

measurements are accurately fit by the model, and the continuous approximation accurately matches the synthetic

data.

https://doi.org/10.1371/journal.pcbi.1009831.g004
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When choosing time points to segregate the time domain into intervals, the user must be

mindful of the dynamics of a typical isotope labeling experiment. In a typical experiment, the

labeling states of upstream metabolites change rapidly immediately after the isotopically

labeled compound is introduced to the cell culture. After this initial rapid transient, the

dynamics become slower as the system relaxes toward a steady-state labeling distribution. A

system whose dynamics operate in two (or more) different timescales is usually referred to as

being stiff. Isotope labeling states frequently exhibit stiff dynamics with the stiff, rapidly chang-

ing region of the dynamics occurring at the start. Therefore, a user should assign time points

that result in short time intervals at early times to accurately capture the ODE solution in the

rapidly changing region. Wider time intervals may be assigned at later times because the solu-

tion is expected to be slowly varying.

We have found that the most efficient way to estimate fluxes for an inst-MFA model is to

initially perform a set of restarts of the optimization from random initial feasible flux and pool

size distributions (see S5 Text for the method used by eiFlux) using the 3rd-order Radau IIA

collocation method. The best solution from these restarts should subsequently be used as the

initial point for an optimization using the 9th-order Radau IIA method to improve the

Fig 5. The result of assigning a larger than permissible step size in the stiff region for the toy network. The total measurement residuals

converged upon by eiFlux when the time domain is divided into two intervals: [0, 10] and [10, 20] is plotted showing that the poor

approximation in the first time interval does not significantly affect the solution in the later time interval. The solution is plotted for all

measured fragments of B. Clearly, the solution is poorly approximated in the first time interval, but the solution in the second interval remains

accurately approximated and asymptotically approaches the true steady-state solution.

https://doi.org/10.1371/journal.pcbi.1009831.g005
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solution’s accuracy. eiFlux allows the user to specify this refinement such that it occurs

automatically.

We suggest the following guidelines when choosing time points and implementing a collo-

cation method:

• Time points should be assigned that result in short time intervals at early times to accurately

capture the rapidly changing dynamics in this region, and longer time intervals at later times

when the solution is slowly varying and segregating into too many time intervals would be

computationally wasteful.

• To maximize computational efficiency, the optimization should be restarted multiple times

from random initial parameter values using the 3rd-order Radau IIA collocation method to

search for a global optimum. The best solution from these restarts serves as the starting point

for an optimization using a higher order method, such as the 5th-order or 9th-order Radau

IIA method (9th-order is preferred).

• If the user observes that the solution is approximated poorly when plotted, as would be indi-

cated by an apparent discontinuity in the derivative between time intervals, then an addi-

tional time point should be added within the poorly approximated time interval to split this

interval in two and obtain a better approximation.

E. coli tandem inst-MFA example

We demonstrate eiFlux on a realistic example, that of E. coli central carbon metabolism. This

network is based on that presented by Young et al. [9]. It contains a total of 58 metabolites hav-

ing 5152 isotopomers (5094 cumomers) and 84 reactions having 26 independent fluxes. For a

given flux distribution and a randomly assigned metabolite pool size distribution, we simu-

lated transient tandem MS measurements from a hypothetical experiment in which E. coli is

fed 99% uniformly 13C-labeled glucose. The simulated tandem MS data includes the metabo-

lites and daughter fragments described by Rühl et al. [32]. In such an experiment, the steady-

state isotope labeling distribution provides no information on metabolic pathway fluxes.

Therefore, this information must be extracted from the transient (isotopically nonstationary)

labeling data. In total, 2338 measurements were fit to the model. The acceptable SSR based on

the 95% confidence interval was 2368. To fit this data type, we used the cumomer modeling

formalism to construct the NLP.

We perturbed the simulated data with random normally-distributed error to simulate

experimental error, then we fit this data to the model using eiFlux to estimate fluxes and pool

sizes. Because the simulated dataset consisted of complete MIDs, measurement scaling factors

were not used. To search for a best-fit solution, the optimization was restarted 15 times from

random initial feasible flux and pool size distributions, using the 3rd-order Radau IIA colloca-

tion method to treat the ODEs. These starting points were far from the optimum, with each of

these starting points having an initial objective function values on the order of 106. All restarts

converged to a narrow SSR range—2294 (3 times), 2293 (2 times), and 2288 (10 times). The

fact that the optimizations tightly converged from very poor starting points is a testament to

the robust convergence properties of the collocation NLP approach to inst-MFA, and demon-

strates a distinct advantage over traditional methods that use the shooting method. The best

solution from these 15 restarts was used as the initial point for an optimization using the 9th-

order Radau IIA method to improve the accuracy of the solution, which achieved an SSR of

2212. The 15 restarts took a total time of 144.3 minutes, or an average of 9.62 minutes per

restart (median: 8.78 minutes) on an Intel Core i7-7700 CPU @ 3.60 GHz running on a single

processor core. The refinement step using the 9th-order method took 5.80 minutes.
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Ideally, we would recover the flux distribution from which the simulated data was gener-

ated. However, because the data was perturbed with artificial uncertainties, the original flux

distribution may not be recovered exactly. Advantageously, the flux through fermentative ace-

tate synthesis converged to nearly its actual value despite not being a measured flux. This dem-

onstrates that using isotopically nonstationary tandem MS data can potentially allow one to

accurately estimate some metabolite influxes and effluxes without directly measuring them.

The flux map and model fit to some representative data is shown in Fig 6. To estimate flux

confidence intervals, we used bootstrap Monte-Carlo [33]. This approach has been used previ-

ously for MFA studies; see [34] for an example and a brief explanation. A comparison between

a subset of the actual flux values with the estimated flux values is displayed in Table 2. Clearly,

eiFlux accurately estimates the fluxes through these important reactions, despite the measure-

ments being perturbed by simulated measurement error.

Upon running eiFlux, a JSON file containing the network reactions is automatically gener-

ated. This JSON file is readable by Escher, an application used for visualizing metabolic net-

works and flux distributions [35]. This allows the user to visualize their network model and

evaluate fluxes quickly and easily. This fast visualization can aid in model development and

analysis. The flux map for the E. coli network in Fig 6 was generated using Escher. eiFlux also

automatically plots the model fits to the data for visual evaluation, with some representative

model fits to the E. coli tandem MS example data shown in Fig 6. The complete set of model

fits is shown in S4 Text. S1 Data contains the simulated data fit to this model.

Fig 6. (Left) The central carbon metabolic reactions of the E. coli model, generated using Escher. Not shown are peripheral reactions that

produce biomass metabolites (amino acids). For a full list of network reactions and their associated carbon atom rearrangements, see S4 Text.

(Right) A set of representative model fits to the simulated tandem MS measurement data of several metabolites. For the full set of model fits to

all simulated data, see S4 Text.

https://doi.org/10.1371/journal.pcbi.1009831.g006
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Comparison with existing software

To directly compare the NLP approach with the shooting method, we solved the same model

using both eiFlux and the MFA software INCA (version 2.0) [24], which uses the shooting

method. We solved the E. colimodel described previously using a synthetic single-MS time-

series dataset (S1 Data). To develop this synthetic dataset, we generated the simulated mea-

surements for the set of GC-MS fragments listed in [36] using the same flux and pool size dis-

tribution as was used when generating the simulated tandem-MS data. This data was

generated for a hypothetical experiment feeding 80% 1,2-13C and 20% uniformly 13C-labeled

glucose. We then perturbed these measurements with simulated measurement error. To enable

a direct comparison with INCA, measurement scaling factors were used in eiFlux in this exam-

ple. We restarted the optimization 20 times from random initial feasible flux and pool size dis-

tributions using each software. These initial flux and pool size distributions were generated in

INCA by setting the “number of logs to perturb initial values” option to either 4 or 5 for a

given restart, ensuring that the starting points were far from the optimum. These values were

transferred into eiFlux to serve as the starting point for the optimization. This guaranteed that

the initial feasible flux and pool size distributions were the same in both INCA and eiFlux for

each of these restarts, ensuring a fair comparison. With eiFlux, these 20 restarts were each per-

formed using the 3rd-order Radau IIA method followed by a refinement using the 9th-order

Radau IIA method to improve the accuracy of the solution. To compare the two approaches,

we report the average convergence time per restart and the fraction of restarts that converged

within a small neighborhood of the best-computed optimum by each platform. In this exam-

ple, both eiFlux and INCA were run on a personal computer using an Intel Core i5-8250U

CPU @1.60 GHz processor running on a single processor core.

Using eiFlux, the best computed optimal solution from the 20 restarts using the 3rd-order

Radau IIA method was 660.39, which reduced to 644.14 after refinement using the 9th-order

method. Of these 20 restarts, 16 converged within 2% of the best computed optimum, defined

as those that converged with an SSR in the range 660.39 – 673.60 using the 3rd-order Radau

IIA method. The remaining 4 restarts converged to a poor solution greater than 10% above

this optimum. The optimizations using the 3rd-order Radau IIA method required an average

time of 2.55 min per restart. The 9th-order refinements took an average of 2.65 min to con-

verge. Using INCA, the best computed optimal solution from the 20 restarts was 646.34. Of

Table 2. True and estimated flux values are compared for a subset of reactions of the E. coli central carbon metabolism network. The difference is calculated between

the true and estimated fluxes. Clearly, eiFlux accurately estimates the fluxes from a simulated set of measurements perturbed by simulated measurement error. Abbrevia-

tions: pentose phosphate pathway (PPP), Entner-Doudoroff pathway (EDP), tricarboxylic acid (TCA), glucose 6-phosphate (G6P), fructose 6-phosphate (F6P), glyceralde-

hyde 3-phosphate (GAP), 1,3-bisphosphoglycerate (BPG), 6-phosphogluconate (6PG), 2-keto-3-deoxy-6-phosphogluconate (KDPG), oxaloacetate (OAA), acetyl-CoA

(AcCoA), citrate (Cit), isocitrate (iCit), glyoxylate (Gox), succinate (Suc), malate (Mal), pyruvate (Pyr), phosphoenolpyruvate (PEP), acetate (Ac).

Pathway Reaction True Estimated Difference

Mean SD

glycolysis G6P! F6P 0.7367 0.7354 0.0295 0.0013

glycolysis GAP! BPG 1.8510 1.8474 0.0343 0.0037

PPP 6PG! Ru5P + CO2 0.2255 0.2219 0.0100 0.0036

EDP 6PG! KDPG 0.0347 0.0396 0.0370 0.0049

TCA cycle OAA + AcCoA! Cit 0.0961 0.0888 0.0112 0.0073

glyoxylate shunt iCit! Gox + Suc 0.0195 0.0166 0.0027 0.0028

cataplerosis Mal! Pyr + CO2 0.1377 0.1111 0.0176 0.0266

anaplerosis PEP + CO2! OAA 0.1612 0.1480 0.0196 0.0132

efflux Ac! 1.6254 1.6391 0.0088 0.0138

https://doi.org/10.1371/journal.pcbi.1009831.t002
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these 20 restarts, 6 converged within 2% of the best computed optimum (those with an optimal

SSR in the range 646.34 – 659.27). A total of 13 converged to a poor solution greater than 10%

above this optimum. These results are summarized in Fig 7. The optimizations using INCA

required an average time of 7.57 min per restart. This comparison demonstrates that for core

networks, the NLP approach has a comparable run time to the shooting method, but it offers

significantly more robust convergence to the optimal solution.

Genome-scale Synechocystis inst-MFA Example

To demonstrate the scalability of this approach, we solved the Synechocystis PCC 6803

genome-scale inst-MFA model presented by Gopalakrishnan et al. [37]. This model was fit to

the dataset presented by Young et al. [38]. In the analysis by Gopalakrishnan et al. [37], the

authors performed inst-MFA using the shooting method to estimate fluxes and pool sizes in a

genome-scale model of Synechocystis PCC 6803 (hereafter, Synechocystis). In this approach,

the authors first performed FVA to eliminate reactions from the model that could not carry

flux under the studied photoautotrophic growth conditions, which resulted in a reduction in

the model size. However, the model remained quite large and required the simulation of

8.4×105 ODEs at each iteration of a Levenberg-Marquardt optimization algorithm. This num-

ber of equations included both the state equations needed to simulate the EMU dynamics and

their sensitivities to the fitted parameters.

When using this approach, both the state and sensitivity equations must be solved from

scratch at each iteration of the optimization algorithm. In the Levenberg-Marquardt algo-

rithm, the sensitivity equations are used to determine a good step direction during each itera-

tion for parameter estimation. In the inst-MFA case, both the state and the sensitivity

equations are ODEs. The number of sensitivity equations scales as n×p in which n is the num-

ber of EMU mass fractions and p is the number of free parameters [23]. This scaling means

that the number of sensitivity equations grows extremely large as the size of the network

increases. The authors report 851 EMUs, having 2311 EMU mass fractions, each contributing

a balance. There are 367 fitted parameters. The number of sensitivity equations is calculated by

Fig 7. (Left) Number of restarts out of 20 that converged within a vicinity (percent) of the best-computed optimum for the NLP approach and the shooting

method. For the NLP approach, these 20 restarts were performed with the 3rd-order Radau IIA method followed by refinement using the 9th-order method.

The best achieved optimum was 660.39 with the 3rd-order method and 644.14 after the 9th-order refinement. For the shooting method we used the software

INCA, and the best achieved optimum was 646.34. (Right) Results from 100 restarts for the genome-scale Synechocystis example. Using the NLP approach,

most optimizations started from a random initial point converge to within 10% of the best-computed optimal solution, and a large fraction within 2%. This

highlights the robustness of the NLP approach for inst-MFA applications.

https://doi.org/10.1371/journal.pcbi.1009831.g007
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multiplying these two values, giving the reported 8.4×105 ODEs that must be solved from

scratch at each iteration of the Levenberg-Marquardt algorithm. This is the reason for the poor

scalability of the shooting method approach.

While the authors did not report the computational time and memory required to solve

this model, it is presumably quite large considering the size of the ODE system. The authors

found that many predicted fluxes differed considerably between the core model and the

genome-scale model. This indicates that modeling assumptions, such as pathway lumping,

made in developing a core model can notably bias flux estimates. These results demonstrate

that larger, more detailed models are preferable for accurately elucidating fluxes when using

inst-MFA. This highlights the need for scalable approaches to MFA if such analyses with large-

scale models are to become routine.

We repeated the flux and pool size estimation with the genome-scale Synechocystismodel

using eiFlux implementing the EMU modeling method. Because the MIDs being fit were

incomplete and uncorrected, scaling factors were active as free parameters in the optimization.

The natural isotope abundances of the additional atoms were accounted for by factoring their

effects into the measurement mapping matrix,Mnj, in the NLP. This allowed us to fit the data

presented in this study. We restarted the optimization from 100 random initial feasible flux

and pool size distributions using the 3rd-order Radau IIA method. The average convergence

time was 15.89 min per restart. The short convergence time of this genome-scale model dem-

onstrates that the NLP approach scales well to large, detailed networks which represent the

current frontier of inst-MFA applications. Of these 100 restarts, 94 converged within 10%, and

19 converged within 2% of the best-computed optimum (568.23) when running the 3rd-order

Radau IIA method. This demonstrates that the optimization does not frequently converge to

poor local optima far from the globally optimal solution, and that this approach remains

robust and efficient even for models of genome scale. These results are summarized in Fig 7.

To improve the accuracy of the solution, the best solution from these 100 restarts was used as

the initial point for an optimization using the 9th-order Radau IIA method. This 9th-order

refinement converged to a solution with an optimal SSR of 513.30.

For the optimizations using the 3rd-order Radau IIA method, the NLP included ~80,000

algebraic equality constraints and variables after CONOPT’s model preprocessing step. For the

9th-order method, the NLP included ~182,000 algebraic equality constraints and variables.

This is a significant simplification of the problem when compared to the 8.4×105 ODEs that

must be solved from scratch at each iteration of the Levenberg-Marquardt algorithm in the

shooting method approach. This simplification results because the sensitivity equations do not

need to be constructed and solved in the NLP approach.

The optimization was also memory-efficient, using less than 1 gigabyte of memory even for

the 9th-order refinement step. Most of the memory required by CONOPT is used for storing

the Jacobian of the constraints and its LU decomposition. While a large model such as this

may have on the order of 105 equality constraints and variables, the Jacobian is highly sparse.

When running the refinement with the 9th-order Radau IIA method, the Jacobian had only

9.7×105 nonzero elements after CONOPT’s model preprocessing step. GAMS and CONOPT

use sparse linear algebra routines to accelerate computations and remain memory-efficient.

Notably, second derivative information is only computed for the nonbasic variables in the

form of a reduced Hessian. This reduced Hessian is small and has a negligible contribution to

the memory usage of the CONOPT algorithm compared to the Jacobian and its LU decompo-

sition. This example demonstrates that large-scale models can be solved efficiently on a stan-

dard personal computer using a single processor core.
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Discussion

MFA, especially inst-MFA, is a computationally intensive parameter estimation problem

involving O(10-100) free parameters (fluxes and metabolite pool sizes) in a model that con-

tains O(1000) ODEs and O(100-1000) measurements. Currently available algorithms devel-

oped for inst-MFA have used sequential optimization algorithms, wherein the DLS is

recalculated explicitly and from scratch at each iteration of the optimization. This shooting

method could potentially be inefficient and may not scale well to large networks. It is also

known to suffer from small regions of convergence [13], often unable to robustly converge to

global optima without a good initial guess. In this manuscript, we follow a different approach

and formulate the MFA problem as an equality-constrained nonlinear program (NLP). In this

approach, the DLS is not solved from scratch at each iteration, but is updated to satisfy the

equality constraints. In other words, the DLS is handled implicitly without distinguishing the

state variables from the model parameters. This method significantly increases the efficiency

of the optimization, especially when the DLS consists of O(100-1000) labeling transients. It

also scales well when the inst-MFA model contains a large number of state variables and

parameters. The NLP approach enables either the cumomer or EMU framework to be used

effectively and efficiently, leading to robust convergence and fast run times.

We formulated the MFA problem as an equality-constrained NLP by using the framework

presented by Wiechert et al. [1]. This NLP may be solved using optimization algorithms imple-

mented in state-of-the-art AMLs such as GAMS. To solve the inst-MFA parameter estimation

problem, we used collocation to transcribe the ODE system into a set of algebraic constraints

for the NLP. We found that the large-scale reduced gradient algorithm, CONOPT, imple-

mented in GAMS, was particularly fast and robust at solving both the steady-state and inst-

MFA problems. However, in principle, any general NLP solver may be used. For the inst-MFA

problem, this approach scales well to large networks with many free parameters and has more

robust convergence properties compared to traditional methods that use the shooting method.

Furthermore, because the MFA problem may be formulated using the cumomer framework,

tandem MS data is easily supported for both steady-state and inst-MFA. We assembled a soft-

ware package, eiFlux, built using Python and GAMS that employs the NLP formulation and

supports both steady-state and inst-MFA using either the cumomer or EMU framework.

After demonstrating proof of concept with a toy network, we used our formulation and

eiFlux on a realistic E. coli tandem MS example. Here, we demonstrated that our NLP formula-

tion converges robustly to a narrow SSR range for every restart performed from a poor and

random initial point. Computation speeds were fast, and convergence to an optimum took less

than 10 minutes on average for inst-MFA using the cumomer framework. In this example, the

number of constraints and variables in the underlying inst-MFA NLP, which included the

transcribed ODE system, were each ~180,000 after CONOPT’s model preprocessing step.

Next, we provided a direct comparison between eiFlux, which uses the NLP formulation,

and INCA, which uses the shooting method on the core E. coli network fitting simulated sin-

gle-MS data. We found that computation speeds were comparable for both platforms, but that

eiFlux converged more robustly to the optimum as evidenced by the fraction of restarts from a

random initial guess that converged within a small neighborhood of the best-computed opti-

mum. Finally, we used eiFlux to solve a large genome-scale inst-MFA model of Synechocystis
metabolism presented by Gopalakrishnan et al. [37] fitting time-series measurements pre-

sented by Young et al. [38]. This example demonstrated that the NLP formulation scales well

to very large networks, and that using this formulation, such networks may be solved effi-

ciently on a personal computer. The scalability of this approach makes the routine solution of

large-scale inst-MFA models possible and significantly expands the scope in which inst-MFA
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may be applied in the future. We expect that this approach will allow large-scale models of

complex eukaryotic networks (e.g. algae) and co-culture metabolism to be handled efficiently

by inst-MFA.

In the past, increasing the speed and efficiency of the parameter estimation in steady-state

and inst-MFA has emphasized solving for the labeling state quickly at each iteration of an opti-

mization algorithm. Here, we focused on formulating the problem in an improved optimiza-

tion framework, which allows for efficient scalability of the MFA problem to larger and more

detailed networks. We found that this approach is particularly useful for inst-MFA, efficiently

solving a genome-scale model. Finally, the flexibility of the NLP approach allows for incorpo-

rating additional linear and nonlinear constraints on fluxes and pool sizes that are not easily

incorporated in current MFA or inst-MFA applications. These types of constraints may be

incorporated for future extensions and uses of MFA and represents a possible future direction

of this work.
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1. Wiechert W, Möllney M, Isermann N, Wurzel M, de Graaf AA. Bidirectional reaction steps in metabolic

networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng. 1999;

66: 69–85. https://doi.org/10.1002/(SICI)1097-0290(1999)66:2<69::AID-BIT1>3.0.CO;2-6 PMID:

10567066

2. Antoniewicz MR. A guide to metabolic flux analysis in metabolic engineering: Methods, tools and appli-

cations. Metab Eng. 2021; 63: 2–12. https://doi.org/10.1016/j.ymben.2020.11.002 PMID: 33157225

3. Cheah YE, Young JD. Isotopically nonstationary metabolic flux analysis (INST-MFA): putting theory

into practice. Curr Opin Biotechnol. 2018; 54: 80–87. https://doi.org/10.1016/j.copbio.2018.02.013

PMID: 29522915
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