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Circadian rhythms are prevalent in most organisms. Even the smallest disturbances in the orchestration of circadian
gene expression patterns among different tissues can result in functional asynchrony, at the organism level, and may
to contribute to a wide range of physiologic disorders. It has been reported that as many as 5%–10% of transcribed
genes in peripheral tissues follow a circadian expression pattern. We have conducted a comprehensive study of
circadian gene expression on a large dataset representing three different peripheral tissues. The data have been
produced in a large-scale microarray experiment covering replicate daily cycles in murine white and brown adipose
tissues as well as in liver. We have applied three alternative algorithmic approaches to identify circadian oscillation in
time series expression profiles. Analyses of our own data indicate that the expression of at least 7% to 21% of active
genes in mouse liver, and in white and brown adipose tissues follow a daily oscillatory pattern. Indeed, analysis of data
from other laboratories suggests that the percentage of genes with an oscillatory pattern may approach 50% in the
liver. For the rest of the genes, oscillation appears to be obscured by stochastic noise. Our phase classification and
computer simulation studies based on multiple datasets indicate no detectable boundary between oscillating and non-
oscillating fractions of genes. We conclude that greater attention should be given to the potential influence of
circadian mechanisms on any biological pathway related to metabolism and obesity.
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Introduction

The circadian, or daily, rhythm is one of the most obvious
and well-studied periodic processes in living organisms.
Studies of transcriptional output in different tissues report
that expression of approximately 5%–15% of all mammalian
genes show a circadian oscillation [1,2]. This circadian
oscillation is driven by a molecular mechanism involving a
transcriptional/translational feedback loop, which generates
the basic rhythm driving gene expression. In mammals, the
master circadian clock is located in the hypothalamus and is
constantly adjusted to the daily light cycle through photic
stimuli from the retina. Analysis of gene expression in
peripheral tissues indicates that relatively few genes share the
same circadian expression profile in more than one tissue [3].

We have completed independent circadian studies in AKR/J
mice acclimated to a 12 h light: 12 h dark cycle, harvesting
sets of three to five mice at 4-h intervals (details of the
experiment given in Zvonic et al. [8] ). Total RNA samples
from inguinal white adipose tissue (iWAT), brown adipose
tissue (BAT), and liver have been assayed by RT-PCR and
Affymetrix microarrays. In initial analyses, candidate genes
were selected for validation by RT-PCR of their circadian
expression profile in all three tissues. In further analyses,
tissue samples harvested from three mice at 4-h intervals over
a single 24-h period were pooled and assayed on duplicate
microarrays. The resulting individual datasets for each of
three different tissues contained more than 22,000 gene
expression profiles. Each profile consisted of 12 time points,
representing six periods of the day sampled two times. For
analysis of periodicity, we considered this data as reflecting
two complete daily cycles. The data was smoothed by a third-

degree polynomial procedure and converted to a frequency
domain (represented by a periodogram) by Discrete Fourier
Transformation (DFT).
To identify periodically expressed genes, we applied three

different algorithmic approaches in our analysis of the
microarray data: the Fisher’s g-test of periodogram, autocor-
relation, and the permutation test. The Fisher’s g-test
estimates nonrandomness of the dominating frequency in
the periodogram from the signal-to-noise ratio. In our case,
the signal is a diurnal frequency, reflected by a specific peak
in the periodogram, and the noise level is estimated from the
height of all other frequencies represented in the periodo-
gram (see description in Materials and Methods). Autocorre-
lation is based on a different principle: if a gene expression
profile is formed by a periodic process, it should have parts of
the profile repeating each other. Autocorrelation analysis
determines if the expression profile correlates with itself to a
shift of one day, thereby identifying a diurnal periodicity.
These first two approaches, Fisher’s g-test and autocorrela-
tion, have been widely used for analysis of periodic gene
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expression and have been recommended in recent publica-
tions [4,5]. We have developed a permutation test as a noise-
resistant alternative for the analysis of periodicity in short
time series. Like the Fisher’s g-test, it starts with DFT,
producing a periodogram. However, unlike other tests, all
nondiurnal frequencies are ignored along with their associ-
ated noise. The nonrandomness of only a single diurnal peak
is estimated in simulation experiments by random shuffling
of the original time series (see description in Materials and
Methods). Although this method would be computationally
ineffective for a longer time series, analysis of microarray
data with only 12–24 datapoints in each expression profile
offers no computational challenge. We have further em-
ployed these analytical tools to analyze two previously
reported, independent circadian datasets, each prepared
from murine liver [3,6]. Our findings suggest that exper-
imental design, dataset size, and the frequency of datapoint
collection can significantly impact the experimental outcome.
We conclude that analyses using Fisher’s g-test and autocor-
relation alone may underestimate the contribution diurnal
rhythms to global gene regulation.

Results/Discussion

In the first step of our analysis, we applied standard
procedures for the detection of circadian gene expression
based on the widely accepted Fisher’s g-test [7]. This
estimation revealed only 650 genes shared in BAT, iWAT,
and liver for which the p-value was less than 0.05, represent-
ing 12.8%, 14.8%, and 12% of the individual tissue oscillatory
transcriptomes, respectively [8]. Within the periodic genes
shared among these tissues were the circadian clock oscillator
genes Npas2, Bmal1 (Arntl), Per1, Per2, Per3, and Cry1, as well as
the circadian output gene Dbp. Our qRT-PCR studies [8] show
these genes follow a circadian expression pattern (periodicity
confirmed by cosine-fit analysis). A similar analysis of
circadially expressed genes in BAT, iWAT, and liver using
the permutation test developed by the authors revealed fewer
(456) shared genes for which the p-value was less than 0.05 in
all three tissues (Figure S1). However, among these genes
there were more genes (nine) representing the circadian
clock; based on mapping to the biological pathways (KEGG
database), this is the largest functional category among genes
periodically expressed in all three tissues (see Table S1).
Functional annotation and mapping to the biological path-

ways of the tri-tissue overlapping list (see Table S2) suggests
that most of the remaining genes with an oscillatory
expression profile belong to the common ‘‘housekeeping’’
functional categories, indicative of basic cell physiology
rather than tissue-specific functions.
The three algorithms used for microarray data analysis

(Fisher’s g-test, autocorrelation, and permutation test) re-
vealed that ;20% of all genes in each tissue alone followed a
circadian expression pattern with confidence levels of at least
95% (p � 0.05). The results of the analyses are summarized in
Figure 1 and Table 1. Although these values were higher than
previously reported in the liver [3,9,10], they may still
underestimate the actual number of oscillating genes in these
tissues. As in previous reports, we examined these genes one
at a time, and retained only those whose individual estimated
p-value was �0.05. However, from a biological perspective, it
may be incorrect to consider expression values solely as
independent variables as rhythmicity may exist in the noise;
indeed, Hogenesch et al. [2] have speculated that the
circadian clock may regulate as much as 10% of the genome,
which includes genes responsible for the basic cell metabo-
lism. Since these genes all are elements of a common,
complex network, any change in the expression of an
upstream element can cause a significant alteration in
downstream elements of the same biological pathway.
Previous studies have documented a role for the circadian
clock in the regulation of key metabolic pathways [6]. This
implies that large groups of genes could oscillate in a
coordinated manner and their expression patterns should
be studied in relation to one another.
We have conducted a computer simulation to model the

distribution of p-values obtained using each of our three
algorithms. As a test case, we modeled a system where only a
limited percentage of the genes were permitted to display a
circadian expression pattern. We deliberately disrupted the
oscillatory pattern by randomly rearranging the time points
within each series. Consecutive simulations produced data-
sets where all genes were reshuffled, then 0%, 5%, 15%, or
50% of randomly selected genes were left intact, while all
others remained in the shuffled format. For each simulated
dataset, we applied the same analysis to identify periodically
expressed genes similar to the original microarray dataset.
Figure 2 shows the distribution of p-values obtained either
from the permutation test or the distribution of the highest
positive autocorrelations with a circadian lag. In both cases
the distributions were significantly different from the original
data. Even with a complete disruption of true periodicity (0%
line), ;1,000, or ;5%, of the total transcripts display an
apparent false-positive circadian rhythm. Since the time
series is relatively short, and there is the potential for
biological and technical variability exists, it is expected that
some profiles may appear ‘‘periodic’’ for purely stochastic
reasons. As expected, the occurrence of genes identified as
components of the basic circadian mechanism (such as Clock,
Bmal1, Cry, etc.) decreases as the portion of shuffled genes
increases. Indeed, none of these are found among false-
positive circadian genes when all 100% are shuffled. Thus, if
only ;20% of the transcriptome followed a circadian rhythm,
as initially observed, the p-value distribution would be
expected to resemble the corresponding simulated curve,
rather than the profile depicted in Figure 2.
A variety of statistical models have been proposed for the
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Synopsis

The metabolism of living organisms changes over the twenty-four
hour daily cycle in an oscillatory manner. This repeating pattern of
‘‘peak’’ and ‘‘trough’’ expression is known as a ‘‘circadian rhythm.’’
We now know that the body’s internal clock is controlled by a
discrete group of genes. These important regulators are found in
many different organs of the body, and they control expression of
many other genes in the body. Using mice as an experimental
animal, Ptitsyn and colleagues looked at the overall pattern of gene
expression in fat tissues and the liver using three different
mathematical tests. They present data indicating that the majority
of active genes fluctuate rhythmically over a twenty-four hour
period. This work suggests that future studies should pay close
attention to the influence of the circadian rhythm in obesity and in
fat metabolism.
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description of periodic gene expression [5,11], and these
include factors such as the true deviation in gene expression
level and the stochastic component. Shuffling affects the
order of time points, but does not alter the observed levels of
gene expression. Our simulation preserves variation of gene
expression and does not affect the probability that the
circadian oscillations are observed due to a random arrange-
ment of ‘‘noise.’’ The observed distribution can be explained
if we assume that the number of periodically expressed genes
is at least .50%, rather than the 10%–15% previously
reported. This difference implies that relatively few genes can

be identified as ‘‘circadian’’ based solely on a p-value derived
from a single gene in the face of stochastic noise (signal-to-
noise ratio). As the degree of stochastic noise increases due to
biological variability between individual animals, technical
differences introduced by the microarray methodology, and
other sources of ‘‘background,’’ the accuracy of time series
analyses of circadian expression profiles decreases.
The observed distribution of p-values is clearly different

from the simulated data, where an identified fraction of
nonperiodic genes have been introduced. This conclusion is
substantiated by the gene expression heatmap, presented in
Figure 1. Within each phase-group (based on the relative
circadian time of peak expression), expression profiles are
sorted by their p-values in ascending order, and illustrate that
there is no obvious point at which we can differentiate
between periodic and constitutively expressed genes, thus
recapitulating the fact that only a small fraction of all genes
examined do not follow an oscillatory expression pattern.
Alternatively, there may be enough circadian genes mixed in
to trick the eye. Nevertheless, we postulate that the fraction of
expressed genes with a constant steady state mRNA level
(unaffected by circadian oscillation) does not exceed 50% of
all genes (Table 1). The introduction of alternative analytical
tools to more detailed circadian datasets is likely to reveal
additional genes as circadially regulated. The concept of
‘‘steady state mRNA levels’’ may become a temporally
dependent term.
To further prove the conclusion that the majority of the

expressed genes oscillate with a circadian rhythm we have

Figure 1. Summary of the Microarray Analysis of Circadian Periodicity and Phase in Murine BAT, iWAT, and Liver

The red line marks the 0.05 cutoff for the p-value in Fisher’s g-test. The Roman numerals represent the grouping of all expressed genes based on the
calculated circadian phase, displayed in zeitgeber time: I, ZT0; II, ZT4; III, ZT8; IV, ZT16. To produce the heat map, all expression profiles have been z-
scored. There seems to be no dependence between periodicity (indicated by p-value) and overall level of gene expression (Figure S4).
DOI: 10.1371/journal.pcbi.0020016.g001

Table 1. Fraction of Circadially Oscillating Genes Revealed by
Different Algorithmic Approaches in Different Datasets

Dataset Gene

Expression

Profiles

Time

Points

Fisher’s

g-Test

Autocorrelation Permutation

Test

BAT [8] 22689 24 7.9% 20% 16.2%

iWAT [8] 22689 24 6.9% 20.7% 15.1%

Liver [8] 22689 24 9.3% 19.5% 20.3%

Liver [3] 12486 24 3.2% 2.1% 17.4%

Liver [6] 9968 48 5.1% 11% 42.9%

All datasets have been analyzed with the same software at PBRC. Percentage of circadially oscillating

genes is reported with respect to all genes represented in the dataset.

DOI: 10.1371/journal.pcbi.0020016.t001
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reanalyzed two additional independent datasets. The first
independent dataset, provided courtesy of Dr. Storch [3], was
collected from murine liver and heart. Each dataset consisted
of 12 time points collected at even intervals of 4 h over a
period of 48 h. The experimental design was similar to our
own based on number of time points and the period of
observation. The summary of analysis for the liver dataset is
presented in Table 1 and Figure S2. In our analysis of their
data, both the Fisher’s g-test and the autocorrelation
approach have yielded fewer circadian genes (3.2% and
2.2%, respectively) than their reports. However, the permu-
tation test revealed circadian pattern in 17.4% of all genes,
which is more than originally reported by the authors (4.6%
of all genes in the liver dataset). As in the previous analyses, a
visual inspection of the heatmap of phase-grouped expres-
sion profiles showed no clear landmark demarcating that
fraction of genes with a non-oscillating profile, i.e., a flat line.
Indeed, it would appear that the expression profile of the
majority of genes shows an oscillatory pattern.

The second dataset was provided courtesy of Dr. Hoge-
nesch [6] and contains microarray expression profiles of
nearly 10,000 genes in murine liver, measured at 4-h intervals
over a 48-h period with two replicates for each time point.
Although similar to the microarray used in our analysis of the
murine liver, this dataset represents fewer genes, has twice as
many datapoints, and differs in the methods of sample
collection and processing. Nevertheless, use of the same
computational analyses of periodicities led to similar results.
The Fisher’s g-test revealed 511 circadian expressed genes
with p � 0.05, or ;5% of all genes examined (Table 1). The
autocorrelation method identified 1278 or ;13% of all genes
as circadially expressed. In contrast to the first two methods,
our permutation test reported an oscillatory profile in ;43%
of all genes. The heatmap, generated after assigning a phase

to each expression profile, suggested that this latter method is
likely to be a correct, although still conservative, estimation
of the true number of circadially expressed genes (Figure S3).
We conclude that the increased number and frequency of
datapoints collected in this dataset permits a more accurate
assignment of circadian rhythmicity to individual genes using
the permutation test.
Recent reports have connected the basic circadian mech-

anisms to nutrient homeostasis [12]. Specifically, at least two
components of the basic circadian pacemaker, Bmal1 and
Clock, were found to regulate glucose levels, and thus play a
significant role in the energy balance [12]. This finding is
consistent with the accepted view that circadian clocks are
important in driving the activity and feeding behavior in
mammals. Our analysis of a large collection of time series
expression profiles in peripheral tissues leads to the
conclusion that a high percentage, possibly a majority, of all
genes has an oscillatory expression pattern. Direct applica-
tion of the standard methods for identification of circadian
expressed genes to our data already revealed a larger
percentage of oscillating genes relative to previous reports,
ranging from 7%–21% of all, in contrast to previously
reported fraction of 5%–15 % of ‘‘actively expressed’’ genes.
To allow for a direct comparison, we have calculated the
percentage of expressed genes based on the total number of
gene expression profiles available in each particular dataset.
The results are presented in Table 1. In part, the increase in
the numbers of oscillating genes could be explained by the
improvement in the microarray technology over recent years,
permitting more transcripts to be identified. Yet, our
simulation studies have shown that, if there were fewer
oscillating genes, we would continue to detect them, even
with the present degree of stochastic noncircadian variation.
We believe the discrepancy may result from the traditional

Figure 2. Results of the Simulation Experiment

Plot (A) shows distribution of p-values and plot (B) shows respective autocorrelation coefficients for raw data and datasets with different proportion of
genes left intact, while for the rest of the genes periodicity is eliminated by random permutation of time points. The dotted line indicates the p¼ 0.05
significance cutoff. The raw data is derived from the liver circadian expression microarray analysis.
DOI: 10.1371/journal.pcbi.0020016.g002
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0.05 cutoff for p-values as well as the assumption that each
gene’s expression profile should be tested independently. The
data presented in Figure 3 illustrate the latter point. In cases
such as Per2, where the microarray contained multiple probe
sets for an individual gene, the p-values were not identical,
and fell both above and below the 0.05 cutoff points. This
observation may also account for the low percentage of
overlap between the lists of circadian-expressed genes
identified in different tissues [3,8]. The lists of genes in all
three tissues coexpressed in a circadian manner with p � 0.05
were dominated by those involved in basic cell metabolic
activities as well as the elements of the circadian molecular
oscillator themselves [3,8]. Additional qRT-PCR analysis was
performed using primers for a randomly selected subset of
genes included on the Affymetrix microarray that were not
directly associated with the core circadian oscillator (Figures
4,5). The specific genes were: glycogen synthase 2 (GYS),
lipoprotein lipase (LPL), peroxisome proliferator activated
receptor c coactivators 1 a and b (PGC1a, PGC1b), 6-
phosphofructo-2 kinase/fructose 2,6 biphosphatase 3

(PFKFB3), and pyruvate dehydrogenase kinase isozyme 4
(PDK4). These genes had been identified as oscillating based
on the permutation analysis uniquely in our liver dataset but
not by the Fisher’s g test in the liver datasets previously
published [3,6]. All genes in the subset play an important role
in energy metabolism and showed a pattern of peaks
consistent with two complete diurnal periods. All qRT-PCR
expression profiles displayed the same phase of oscillation as
their microarray-derived counterparts. It is of interest to
note that previously published studies have reported a
diurnal or circadian oscillation of lipoprotein lipase serum
enzyme levels in mice, rats, and humans, consistent with the
current observations [13–16].
Permutation analysis of the liver data collected with the

most comprehensive experimental design (based on the
number of independent datapoints) [6], identified circadian
expression in ;43% of the total number of genes (Table 1).
The application of global transcriptomic approaches and
statistical analytical tools permits a greater appreciation of
the potential contribution of circadian biology to metabolism

Figure 3. Expression Profiles and Periodicity Analysis of Basic Circadian Rhythm Genes in iWAT

The first column plots are raw expression values as reported by the Affymetrix MAS5 algorithm. The second column plots show the same data after
preprocessing (central value adjustment, polynomial smoothing, and trimmed mean subtraction). The third column presents the periodograms
resulting from DFT analysis. Highlighted is a single peak corresponding to the circadian rhythm (two complete cycles in 48 h). For each probeset,
representing a particular gene, the results of Fisher’s g-test (pf ), permutation test (pp ), and autocorrelation (r) with circadian lag are listed to the right.
DOI: 10.1371/journal.pcbi.0020016.g003
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Figure 4. Experimental qRT-PCR Verification of Selected Microarray Expression Profiles in Liver.

The qRT-PCR expression profiles for selected transcripts represented on microarray (probe names given in brackets).
DOI: 10.1371/journal.pcbi.0020016.g004
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Figure 5. Experimental Verification of Selected Microarray Expression Profiles in Liver (continued from Figure 4).

The alternative qRT-PCR expression profiles presented on Figure 4 are consistent with microarray data in phase and visual presence of diurnal oscillation
pattern.
DOI: 10.1371/journal.pcbi.0020016.g005
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in peripheral tissues [3,4,6,9,10]. Our analyses lead us to
conclude that circadian rhythms influence the expression of
the majority of genes in metabolic tissues. Previous analyses
using alternative statistical tools may have underestimated
the full extent of the circadian contribution to gene
regulation. The main reason for this underestimation might
be that the null hypothesis is formulated on an equivocal
assumption. It is commonly assumed that the default state for
a gene expression over time is constant, only obscured by
stochastic noise. Most currently applied methods test the data
for the presence of oscillation based on signal-to-noise ratio.
Applied on a gene-by-gene basis, these methods have limited
resolution ability, curbed by the number of replicated
periods in time series. Applying different methods, we
observed continuous improvement but no obvious limit to
the number of genes expressed in circadian oscillation
pattern. This observation makes us question the basic
assumption of the default non-oscillating expression. The
alternative assumption would be that all genes in a living
tissue are expressed in an oscillating pattern, only obscured
by stochastic deviations. For a relatively small number of
genes, a constant level of expression may be imposed by their
function. In this case, expression profiles should be statisti-
cally tested for the absence of a circadian pattern. Our thesis
of default assumption of oscillation for the timeline
expression profiles is corroborated by the analysis of phase
distribution in different datasets, presented in Figure 1 and
in Figures S2 and S3. Each gene is assigned a proper phase by
maximum correlation to an ideal sinusoidal profile.

Our conclusions have significant implications for inves-
tigators examining metabolic pathways related to diabetes,
obesity, and their associated co-morbidities. First of all, the
assumption of oscillation means that synchronization of time
at which gene expression is measured for different exper-
imental conditions is important for the majority of genes, not
only for a fraction of circadian genes. Phase, along with fold
change or amplitude, becomes an important factor in
understanding gene expression. The biological importance
of oscillation cannot be estimated by simply measuring
amplitude and should be considered within a specific func-
tional, spatial, and temporal context. Relatively small diurnal
variations of upstream regulators may have a large impact on
the downstream functions. Also, even without an absolute
change in peak expression level, a phase shift can be
equivalent to a downregulation at a defined time point.
Hence, gene interaction within biological pathways should
also be perceived and modeled in the context of the phase of
a dynamic diurnal oscillation, similar to an alternating
electrical current circuit, rather than by assuming it to be a
static or unchanging process, similar to a direct electrical
current circuit.

Materials and Methods

Affymetrix oligonucleotide microarray gene expression analysis.
The microarrays were performed as described in Zvonic et al. [8]. The
study examined BAT, iWAT, and liver harvested every 4 h over a 24-h
period from AKR/J male mice maintained under a constant 12-h
light–12-h dark cycle in accordance with previous circadian studies of
central and peripheral tissue gene expression profiles [17–20]. RNA
integrity was assessed by electrophoresis on the Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, California, United
States). Double-stranded cDNA was synthesized from approximately 9
lg total RNA using a Superscript cDNA Synthesis Kit (Invitrogen,

Carlsbad, California, United States) in combination with a T7-(dT)24
primer. Biotinylated cRNA was transcribed in vitro using the
GeneChip IVT Labeling Kit (Affymetrix, Santa Clara, California,
United States) and purified using the GeneChip Sample Cleanup
Module. Ten micrograms of purified cRNA was fragmented by
incubation in fragmentation buffer (200 mM Tris-acetate [pH 8.1],
500 mM potassium acetate, 150 mM magnesium acetate) at 94 8C for
35 min and chilled on ice. Six and a half micrograms of fragmented
biotin-labeled cRNA was hybridized to the Mouse Genome 430A 2.0
Array (Affymetrix). Microarrays were performed in duplicate at each
time points as suggested by [21]. Arrays were incubated for 16 h at 45
8C with constant rotation (60 rpm), washed, and then stained for 10
min at 25 8C with 10 lg /mL streptavidin-R phycoerythrin (Vector
Laboratories, Burlingame, California, United States) followed by 3 lg
/mL biotinylated goat anti-streptavidin antibody (Vector Laborato-
ries) for 10 min at 25 8C. Arrays were then stained once again with
streptavidin-R phycoerythrin for 10 min at 25 8C. After washing and
staining, the arrays were scanned using a GeneChip Scanner 3000.
Pixel intensities were measured, expression signals were analyzed,
and features extracted using the commercial software package
GeneChip Operating Software version 1.2 (Affymetrix). All 22,690
expression profiles resulting from the standard Affymetrix processing
were used in the consequent analysis of periodicity without further
filtering. In addition to the standard Affymetrix processing, we have
performed a median adjustment to compensate for possible system-
atic variation of intensity between chips. In each time series, the data
was smoothed by the third-degree polynomial procedure, and the
median of each profile was subtracted from each point to center all
deviations at about zero. To produce the heatmaps presented on
Figure 1 and Figures S1–S3, we have also equalized the amplitude of
variation by z-score transformation. The plot was produced using
Spotfire Decisionsite software (Spotfire, Somerville, Massachusetts,
United States).

Spectral analysis. Consider a series of microarray expression values
for gene x with N samples of the form

Y ¼ fx0; x1; x2; :::xN�1g: ð1Þ

This series can be converted from time-domain, where each
variable represents a measurement in time to a frequency domain
using the DFT algorithm. Frequency domain representation of the
series of experiments is also known as periodogram, which can be
denoted by I(x):

IðxÞ ¼ 1
N

XN�1
t¼0

xteð�ixtÞ
�����

�����
2

;x 2 ½0;p�: ð2Þ

If a time series has a significant sinusoidal component with
frequency x2[0, p], then the periodogram exhibits a peak at that
frequency with a high probability. Conversely, if the time series is a
purely random process (also known as ‘‘white noise’’), then the plot of
the periodogram against the Fourier frequencies approaches a
straight line [22].

Fisher’s g-test. Significance of the observed periodicity can be
estimated by Fisher g-statistics, as recently recommended in [5].
Fisher derived an exact test of the maximum periodogram coordinate
by introducing the g-statistic

g ¼ maxkIðxkÞPN=2
k¼1 IðxkÞ

; ð3Þ

Where I(xk) is a k-th peak of the periodogram. Large values of g
indicate a nonrandom periodicity. To calculate the p-value of the test
under the null hypothesis we use the exact distribution of g given by

P g.xð Þ ¼
X1=x
p¼1

ð�1Þp n!

p!ðn� pÞ! ð1� pxÞn�1
� �

; ð4Þ

where n ¼ [N/2] and p is the largest integer less than 1/x.
To account for multiple testing problems, we employ the method

of FDR as a multiple comparison procedure [23]. This method is less
conservative compared to the classic Bonferroni correction, which
make it more applicable for testing large numbers of relatively short
time series produced by microarray experiments. The FDR threshold
is determined from the observed p-value distribution, and hence is
adaptive to the actual data [5].

Consider the set of ordered p-values p(1), p(2), . . . , p(G) with
corresponding genes g(1), g(2), . . . , g(G), and apply the following
algorithm:
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Let i q be the largest i for which pðiÞ �
i
G
q;

then reject the null hypothesis for all genes gð1Þ; gð2Þ; . . . ; gðiqÞ: ð5Þ

It has been shown that this procedure controls the FDR at level q [23].
This algorithmclosely follows the guidelines recommended for analysis
of periodicities in time-series microarray data [5] with exception that
we applied locally developed Cþþ code instead of R scripts.

Permutation test. The alternative test for significance of a
particular (in our case circadian) periodicity among large numbers
of gene expression profiles is based on the random permutation
procedure. Consider a time series Y ¼ fx0,x1,x2, . . . xN�1g, in which
technical variation approaches or even exceeds the amplitude of
periodic expression. In a very short time series there is a significant
probability to observe a periodicity due to stochastic reasons.
However, the periodic change of the base expression level can still
be identified in spite of the high noise level. Let YR be a random
permutation of the time series Y and its corresponding periodogram
IR(x). If the periodogram IY(x) contains a significant peak corre-
sponding to a particular frequency (for example, circadian) this peak
results from a particular order of observations in the series Y. A
random permutation would preserve the same noise level, but not the
periodicity. After DFT, a periodogram IR(x) represents only the
peaks occurring by chance. To avoid random reinstitution of
periodicity of length T (in this case circadian), we generate YR by
multiple shuffling of randomly selected time points xn � xm , where
T Bjn�mj, i.e., each shuffle swaps time points from different phases.
Comparing permutations with deliberately wiped out periodicity to
the original time series we can estimate whether a particular order of
observations (i.e., time series) is important. For each gene expression
profile we generate two series of min(n!,1000) random permutations.
Each permutated series YR is transformed to the frequency domain
and a single peak of the periodogram IR(x) is stored. The p-value for
the null hypothesis of random nature of a particular peak of
periodogram can be estimated by comparing the stored IR(x) values
to the observed I(x):

p ¼
KIRðxÞ�IYðxÞ
minðn!; 1000Þ : ð6Þ

Here K is the number of permutated series YR for which the
circadian peak of periodogram is higher or equal to that of the
original time series Y. High p-value exceeding the threshold, for
example 0.05, means that at least 5 out of 100 random permutations
of time series produce a periodogram with the same or higher peak,
corresponding to a given periodicity. Low p-values of indicate a
significant difference between periodograms IR(x) preserving circa-
dian periodicity and purely random periodograms with the same
level of technical variation.

Autocorrelation. For a given a discrete time series Y¼fx0,x1,x2, . . .
xN�1g the autocorrelation is simply the correlation of the expression
profile against itself with a frame shift of k datapoints (where 0 � k �
N� 1, often referred to as the lag).

For the time shift f, defined as f¼iþ k if iþ k , N and f¼iþ k�N
otherwise:

Rðf Þ ¼

XN�1
0

ðxi � �xÞðxf � �xÞ

XN�1
0

ðxi � �xÞ2
ð7Þ

For each time series we calculate the maximum positive R(f) among
all possible phase shifts f and use 0.05 significance cutoff values for
correlation coefficient. Time series that shows significant autocorre-
lation R(f) with the lag f corresponding to one day (six datapoints) are
considered circadially expressed.

Phase classification. We have assigned phase to each expression
time series by computing cross-correlation

Rðf Þ ¼

XN�1
0

ðxi � �xÞðyf � �yÞ

XN�1
0

ðxi � �xÞðyi � �yÞ
; ð8Þ

where x is a gene expression time series of N points and y is an
artificially generated profile of ideal cosine function

yi ¼ cos
2p
p
� i

� �
; ð9Þ

where p is the number of time points in a complete circadian cycle;
for example p ¼ 6 time points in the Zvonic et al. [8] dataset. To
account for all phases, the artificial cosine curve profile has been
regenerated with a phase shift by one time point. The highest
correlation among all possible phase shifts was assigned as the most
probable phase. The significance of periodicity was not assessed at
this point, it was done separately by three independent procedures
described above. All expression profiles were sorted (classified) first
by the assigned phase then by ascending p-value estimated by one of
the described algorithms. The heatmap was generated from the table
of sorted time series expression profiles using Spotfire Decisionsite
software (Spotfire).

Supporting Information

Figure S1. Venn Diagram of Circadially Expressed Genes Revealed by
Permutation Test with p ¼ 0.05 Cutoff

Found at DOI: 10.1371/journal.pcbi.0020016.sg001 (16 KB PDF).

Figure S2. Results of Phase Classification for Harvard Murine Liver
Time Series Data

Phase is assigned to each expression profile based on the maximal
correlation to an artificial cosinusoid profile with a given phase shift.
Phase I starts with a peak value at time zero, thus there is a peak in the
middle and a rise at the end. For other phases there are two red
zones, corresponding to the peak expression values, spaced by dark or
green areas. This pattern extends far beyond 575 out of 12,486 genes
reported in [3]. As in all other discussed datasets, the period of
observation covers two complete daily cycles.

Found at DOI: 10.1371/journal.pcbi.0020016.sg002 (111 KB PDF).

Figure S3. Results of Phase Classification for GNF Murine Liver Time
Series Data

Phase is assigned to each expression profile based on the maximal
correlation to an artificial cosinusoid profile with a given phase shift.
Phase I starts with a peak value at time zero, thus there is a peak in the
middle and a rise at the end. For other phases there are two red
zones, corresponding to the peak expression values, spaced by dark or
green areas. This pattern is prominent across the absolute majority of
expressed genes, not merely 10%–15% of each phase category.

Found at DOI: 10.1371/journal.pcbi.0020016.sg003 (232 KB PDF).

Figure S4. Relation between p-Value (Estimated by Permutation Test)

In all three tissues, the mean expression level (raw) is plotted on the
abscissa (x-axis) and the corresponding p-value on the ordinate (y-
axis).

Found at DOI: 10.1371/journal.pcbi.0020016.sg004 (2.2 MB PDF).

Protocol S1. Experimental Procedures

Found at DOI: 10.1371/journal.pcbi.0020016.sd001 (51 KB PDF).

Table S1. KEGG Charts

The relative abundance of KEGGbiological pathways represented in the
subset of transcripts for which oscillation is detected in all three tissues
(BAT, iWAT, and liver). Mapping to the KEGG database was performed
using the DAVID online service (http://david.niaid.nih.gov/david).

Found at DOI: 10.1371/journal.pcbi.0020016.st001 (43 KB PDF).

Table S2. Functional Annotation of Transcripts for Which Circadian
Oscillation Is Detected in All Three Tissues (BAT, iWAT, and Liver)

Found at DOI: 10.1371/journal.pcbi.0020016.st002 (242 KB PDF).
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