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ABSTRACT: Parkinson’s disease (PD) is the second most widespread neurodegenerative disorder in the world. 

It has been reported that exosomes derived from mesenchymal stem cells (MSCs) can contribute to the recovery 

of PD. However, the underlying mechanism remains poorly defined. In this study, proteomics and time-series 

analysis showed that exosomes derived from MSCs can keep human brain microvascular endothelial cells 

(HBMECs) in a transcriptionally active state, which may be beneficial for angiogenesis. Next, we found that MSC-

derived exosomes can promote the angiogenesis of HBMECs by increasing the expression of ICAM1, and alleviate 

the damage caused by 1-methyl-4-phenylpyridinium (MPP+) in these cells. Accordingly, when ICAM1 was 

knocked down, the tube formation ability of HBMECs was obviously decreased. In addition, ICAM1 was found 

to promote the angiogenesis of HBMECs by activating the SMAD3 and P38MAPK signaling pathways. In a PD 

mouse model, MSC-derived exosomes were found to contribute to the recovery of PD by promoting ICAM1-

related angiogenesis. These findings demonstrate that the exosome-ICAM1-SMAD3/P38MAPK axis can promote 

the angiogenesis of HBMECs, with possible therapeutic potential for PD. 
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Parkinson's disease (PD) is a common progressive 

neurodegenerative disorder characterized by tremors and 

delayed movement [1]. The underlying pathological 

features include the progressive degeneration of 

dopaminergic pathways in the substantia nigra and 

striatum, the loss of neurons, and depletion of dopamine 

(DA) [2]. In addition, surviving dopaminergic neurons of 

PD patients contain Lewy bodies, which are composed of 

insoluble aggregated α-synuclein (α-syn) [3, 4]. Neurons 

and vascular cells constitute the neurovascular unit 

(NVU), a functionally integrated network that can secrete 

growth factors and adhesion molecules, which not only 

regulate the survival of neurons, but also maintain 

vascular homeostasis and enhance angiogenesis [5-7]. 

Accordingly, studies have shown that VEGF may mediate 

angiogenesis and improve neuron survival [8, 9]. 

Disorders of the NVU, especially those causing unusual 

neuronal-vascular relationships, play a critical role in the 
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progression of neurodegenerative diseases, including PD 

[10-13]. Conversely, there is evidence that improvement 

of NVUs is correlated with PD recovery [14]. Based on 

these findings, we wanted to investigate whether 

specifically inducing the improvement of NVUs can 

promote PD recovery, which may be an effective 

mechanism for treatment. Clinical trials have indicated 

that stem cell repair or replacement are promising 

therapeutic approaches for PD, for which it is imperative 

to find innovative therapeutic methods to replace 

damaged neurons [15]. Mesenchymal stromal cells 

(MSCs) act as multipotent cells, offering great promise for 

the therapy of various neurological diseases such as PD. 

Their regenerative effect is thought to mainly rely on the 

secretion of growth factors and exosomes, or reducing 

neuroinflammation [16]. There is increasing evidence that 

extracellular vesicles play a critical role in intercellular 

communication through the release of proteins, lipids and 

nucleic acids [17-21]. Exosomes derived from stem cells 

not only regulate normal physiological processes such as 

tissue repair [22] and immune surveillance [23, 24], but 

also contribute to pathological processes such as kidney 

injury [22] and autoimmune connective tissue diseases 

[25]. 

The aim of this study was to evaluate whether 

exosomes derived from MSCs may contribute to 

angiogenesis, which in turn can promote the recovery of 

PD. 

 

MATERIALS AND METHODS 

 

Cell culture 

 

The extraction and culture of MSCs was conducted as 

described in a previous report [26]. HBMECs were 

purchased from Beina Chuanglian Biotechnology 

Institute (Beijing, China). 

 

Extraction and characterization of exosomes  

 

The MSC-derived exosomes were extracted as described 

previously [27]. For characterization, the purified 

exosomes were fixed with 1% glutaraldehyde in PBS (pH 

7.4) for 0.5 h at room temperature and washed with water. 

Then, 20 µL of the resulting suspension was loaded onto 

a Formvar carbon-coated grid, stained with 3% (w/v) 

aqueous phosphotungstic acid for 1 min at room 

temperature, and observed by transmission electron 

microscopy. 

 

Uptake of exosomes 

 

Exosomes uptake was observed by labeling exosomes 

with 1'-dioctadecyl-3,3,3',3-tetramethylindocarbocyanine 

perchlorate (DiL) (Invitrogen). Cell nuclei were counter-

stained with Hochest33342. Transfer of the dye was 

observed by fluorescence microscopy at a final exosome 

concentration of 200 μg/mL. 

 

Proteomics 

 

The samples were divided into three groups, including 

HBMECs, MPTP-treated HBMECs and exosome/MPTP-

treated HBMECs. The specific protocols and analyses 

were performed by Lu-Ming Biotech (China). 

 

Matrigel tube experiment 

 

For in-vitro tube formation, we added 200 µL of Matrigel 

(Sigma-Aldrich) to precooled wells of a 24-well plate and 

incubated it at 37 °C for 15 min. HBMECs were seeded at 

a density of 1×105/well, and tube formation was observed 

using an inverted microscope and photographed at 

different time points (0, 0.5, 2, 6, 12 h).  

For in-vivo tube formation, HBMECs were collected 

and resuspended at a density of 3×106/200 µL PBS. The 

cells were mixed with the same amount of Matrigel with 

or without exosomes and injected subcutaneously into 

nude mice. After 8 days, tissues were extracted, and 

paraffin sections were prepared to observe the tubular 

structure. 

 

Western blot analysis 

 

Western blotting was performed according to a previous 

report [28]. The Rabbit anti-VEGF (19003-1-AP), Rabbit 

anti-FLK1 (26415-1-AP), Rabbit anti-NFDUFS4 (15849-

1-AP), Rabbit anti-alpha-SYN (10842-1-AP), Rabbit 

anti-TH (25859-1-AP), and Rabbit anti-GAPDH (10494-

1-AP) primary antibodies were purchased from 

Proteintech (Wuhan, China). The Rabbit anti-P38MAPK 

(5140), Rabbit anti-ERK1/2 (4370), Rabbit anti-p-

ERK1/2 (4695), Rabbit anti-SMAD3 (9523), Rabbit anti-

p-SMAD3 (C25A9), Rabbit anti-caspase3 (9662) and 

Rabbit anti-ICAM1(4915) primary antibodies were 

purchased from Cell Signaling Technology (Danvers, 

USA). The FITC-labeled anti-Rabbit secondary 

antibodies were purchased from Cell Signaling 

Technology (Danvers, USA). 

 

Immunofluorescence/immunohistochemical staining 

 

Samples were extracted from the striatum and substantia 

nigra of mice, fixed in 4% paraformaldehyde at 4 °C for 

0.5 h, and sent to the Servicebio company (China). The 

company used the same specific antibodies that we used 

for Western blotting. 
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siRNA virus transfection 

 

Three pairs of siRNA virus vectors targeting ICAM1 were 

designed and synthesized (Gene Pharma, Shanghai, 

China). The interference sequence was GGCTGGAG 

CTGTTTGAGAACA. HBMECs were transfected with 

the virus at a MOI of 40-50/cell using 5 mg/L polybrene 

(Gene Pharma, Shanghai, China), according to the 

manufacturer’s instructions. After transfection for 12 h, 

the medium was changed, and after an additional 48 h, 

puromycin was used to screen positive cells. 

 

Animal experiments 

 

Male BALB/c mice (8–10 weeks) were obtained from the 

Laboratory Animal Center of the Chinese Academy of 

Medical Sciences (Beijing, China). The use of animals 

and all experimental operations were approved by the 

Animal Care and Use Committee of the Chinese Academy 

of Medical Sciences. All mice were divided into three 

groups. The control group received an intraperitoneal 

injection of PBS. The second group was injected with 

MPTP at a dose of 25 mg/ kg (Sigma-Aldrich, St Louis, 

MO, USA). The third group was injected with the same 

amount of MPTP as the second group and was also 

injected with 200 µg/mL of ESC-derived exosomes in 

PBS. The PD animal model was established on a five-

week schedule with twice weekly injection. After the end 

of the five weeks, the striatum and substantia nigra were 

removed and fixed with 4% paraformaldehyde or frozen 

at -80 °C for further experiments. 

 

High-performance liquid chromatography (HPLC) 

 

Frozen striatum tissue samples from the three groups were 

sent to the Medical Experimental Center of China 

Academy of Chinese Medical Sciences. The specific 

methods were reported in a previous study[29]. 

 

Statistical analysis 

 

All results were statistically analyzed using SPSS 17.0 

software (IBM Corp., USA). The results were expressed 

as means ± standard deviation, and differences with 

P<0.05 were considered statistically significant. 

 

 
Figure 1. Characterization and uptake of exosomes derived from MSCs (M-Exos). (A) The morphology of M-Exos was assessed 

using electron microscopy. (B) The presence of HSP70, HSP90, and CD63 in M-Exos was analyzed using western blotting. (C) The 

size distribution of M-Exos was evaluated by NTA analysis. (D) Uptake of DiL-labeled M-Exos by HBMECs was detected at 0, 6, 

and 12 h. 
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RESULTS 

 

Preparation of MSC-derived exosomes (M-Exos) 

 

The diameter of exosomes secreted by MSCs was 

assessed by TEM and found to range from 30 to 200 nm 

(Fig. 1A). Additionally, western blot analysis was used to 

confirm the presence of the exosome-specific protein 

markers CD63, HSP70, and HSP90 (Fig. 1B). Finally, 

NTA analysis confirmed the approximate size range 

revealed by TEM, with diameters ranging from 30 nm to 

100 nm (Fig. 1C). To confirm their biological activity, 

DiL-labeled exosomes were added into the HBMECs 

cultures, and real-time fluorescence microscopy after 0, 6, 

and 12 h showed that HBMECs absorbed large amounts 

of the exosomes (Fig. 1D). Overall, we found that the 

exosomes derived from MSCs were in the biologically 

active, native form, and could be used for further 

experiments. 

 
Figure 2. Proteomic analysis of HBMECs treated with M-Exos at different time points. (A) Heat map showing the differentially 

expressed genes (DEGs) in M-Exos-treated HBMECs at three different time points (0, 24, and 48 h). (B) DEGs associated with 

inflammatory factors. (C) DEGs associated with cell proliferation. (D) DEGs associated with immunoregulation. (E) DEGs associated 

with angiogenesis. (F) and (H) Detection of genes associated with inflammatory factors, cell proliferation, immunoregulation using 

time-series analysis. (G) Detection of genes associated with angiogenesis using western blotting (ANGPT1 and FLK1). 
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Figure 3. ICAM1 in HBMECs 

were upregulated after 

exosome treatment. (A) The 

number of tubes was detected by 

immune-histochemical staining 

(CD31). (B) The quantitative 

results (P<0.05). (C) 

Immunohistochemical staining 

results for the expression of 

ANGPT1 with control and 

exosomes stimulus. (D) The 

expression of FLK1 was 

detected using 

immunohistochemical with 

control and exosomes stimulus. 

(E-F) Proteomics and time 

series analysis of the target 

protein ICAM1, which was 

highly expressed after exosome 

stimulus. (G) The formation of 

tubes by HBMECs with or 

without ICAM1 knockdown. 

Proteomic analysis of HBMECs treated with M-Exos 

 

We examined the alteration of genes in HBMECs treated 

with M-Exos by proteomic analysis. The exosomes 

activated the HBMECs, with increased expression of 

various genes at 0, 24, and 48 h (Fig. 2A). In addition, 

heatmap analysis revealed differently expressed 

functional genes, including factors related to 

inflammation, cell proliferation, immune regulation and 

angiogenesis (Figs. 2B-E). Time-series analysis indicated 

that the upregulation of marker genes in HBMECs is 

related to inflammatory factor IL3RA, proliferation-
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related protein CD40 and the immunoregulatory factor 

TNFRSF10C (Figs. 2F-H). We mainly investigated 

whether exosomes promoted the angiogenesis ability of 

the HBMECs, and therefore primarily verified the 

expression of angiogenesis-related genes after M-Exos 

treatment. The western blot results showed that the 

expression of the angiogenesis-related genes FlK1 and 

ANGPT1 was obviously enhanced (Fig. 2I). Taken 

together, the results confirmed that the M-Exos induced 

functional changes in the HBMECs. 

 

M-Exos regulate the angiogenesis of HBMECs by 

increasing the expression of ICAM1 

 

To further investigate the impact of M-Exos on 

angiogenesis in vivo, we subcutaneously injected a 

mixture of ECM gel and HBMECs with or without 100 

µg/mL of exosomes into the right forelimb of mice. 

Subcutaneous tissues were collected after 8 days, 

followed by immunohistochemical staining for CD31, 

which is a marker of endothelial cells. The result showed 

that HBMECs with exosome stimulation produced more 

tubular structures than the control HBMECs without 

stimulation (Figs. 3A/B). Moreover, immune-

histochemical staining revealed that the expression of the 

angiogenic genes Angpt1 and Flk1 was also increased 

(Figs. 3C/D). Next, we assessed the secretion of ICAM1 

protein, which may play a critical role in angiogenesis, by 

proteomics and time-series analysis (Fig. 3E). Time-series 

analysis showed that ICAM1 expression increasing after 

exosome stimulation (Fig. 3F). Moreover, when ICAM1 

was knocked down in the HBMECs, the tube formation 

capacity was significantly reduced (Figs. 3I/J). These 

results suggested that M-Exos regulate angiogenesis by 

increasing the expression of ICAM1 in HBMECs. 

 

 
 

Figure 4. 1-methyl-4-phenylpyridinium (MPP+) affects the ICAM1 expression in HBMECs. (A) The expression of ICAM1 was 

detected at 0, 0.5, 1, 6, 24, and 48 h after exosome treatment. (B) ICAM1 expression was negatively associated with MPP+ treatment 

in HBMECs. (C) M-Exos reversed the effects of MPP+ on the angiogenesis ability of HBMECs. 

 

To further verify the possible mechanism of 

angiogenesis enhancement in an animal model of PD, we 

used 1-methyl-4-phenylpyridinium (MPP+) to establish a 

PD-related cell-damage model in mice. We first detected 

the expression of ICAM1 in the M-Exos-treated 

HBMECs at different time points, and the result showed 

that ICAM1 expression was increased by exosome 

stimulation in a time-dependent manner (Fig. 4A). 

However, when HBMECs were pretreated with MPP+ at 

different concentration for 48 h, the amount of ICAM1 

was obviously decreased (Fig. 4B). Notably, the 

expression of ICAM1 was restored by stimulation with 

100 µg/mL of M-Exos (Fig. 4C). Overall, these results 

show that exosomes derived from MSCs can promote the 

tube formation of HBMECs by increasing ICAM1 

expression, as well as recover ICAM1 expression 

following MPP+ treatment. 

 

 

M-Exos promote angiogenesis via the SMAD3 and p38 

MAPK signaling pathway 
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To identify which signaling pathways were activated by 

M-Exos in HBMECs, we screened several signaling 

pathways in HBMECs treated with M-Exos for 48 h or 

mock-treated with vehicle. KEGG analysis revealed the 

involvement of the AMPK, p38MAPK, VEGF, PPAR, 

EGF and PD-related signaling pathways, as shown in 

Figs. 5A and B. We next confirmed the strong and rapid 

activation of the SMAD3 and p38 MAPK signaling 

pathways in HBMECs following M-Exos stimulation 

using western blot analysis. Moreover, the 

phosphorylation of factors in these two signaling 

pathways was significantly decreased after knocking 

down ICAM1 in HBMECs (Fig. 5C). In addition, the 

knockdown of ICAM1 in HBMECs obviously attenuated 

the expression of the angiogenesis-related genes VEGF 

and FLK1 (Fig. 5D). Therefore, the results indicated that 

exosomes promote the angiogenesis of HBMECs by 

activating the SMAD3 and p38 MAPK signaling 

pathways. 

 
 

Figure 5. M-Exos activated the SMAD3 and p38 MAPK signaling pathways in HBMECs. (A-B) Several signaling pathways 

enriched in M-Exos-treated HBMECs at 48 h according to KEGG analysis. (C) Phosphorylation of SMAD3 and p38 MAPK was 

analyzed by western blotting in HBMECs with or without ICAM1 knockdown. GAPDH was used as the control. (D) The expression of 

angiogenesis-related genes (FLK1 and VEGF) in HBMECs was detected using western blotting. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001126/figure/Fig6/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001126/figure/Fig6/
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M-Exos contribute to the recovery of Parkinson disease 

via ICAM1-mediated angiogenesis in vivo 

 

To construct a mouse model of PD, the animals were 

intraperitoneally injected with PBS, MPTP, or 

MPTP+exosomes with 10 mice in each group. When DIL-

labeled exosomes intraperitoneally injected into the mice, 

they exhibited homing to the injured sites after MPTP 

treatment, including the brain and limbs (Fig. 6A). The 

differntially expressed proteins uncovered by proteomic 

analysis were found to be associated with various 

neurodegenerative diseases, including PD, Alzheimer's 

disease and Huntington’s chorea (Fig. 6B). Moreover, 

HPLC analysis showed that the mice in the 

MPTP+exosomes group had increased amounts of DA in 

the corpus striatum compared to the PBS and MPTP-

untreated groups (Fig. 6C). To further verify the impact of 

exosomes on the recovery of PD in vivo, we performed 

immunofluorescence staining to detect cells expressing α-

SYN and TH. As shown in Fig. 6D, the expression of α-

SYN was significantly increased after MPTP treatment 

compared to the PBS group. Moreover, M-Exos clearly 

reversed the effects of MPTP. In addition, we observed 

the appearance of TH-expressing positive cells in the 

substantia nigra region, suggesting that the abundance of 

TH-expressing positive cells was decreased during the 5 

weeks of MPTP treatment, while intraperitoneal injection 

of M-Exos could efficiently reverse this effect (Fig. 6E). 

Taken together, the results indicate that M-Exos can 

promote the recovery of PD model mice in vivo. 
 

  

 

 

 

 

Figure 6. Exosomes 

contribute to the recovery of 

PD model mice in vivo. (A) 

DiL-labeled exosomes were 

intraperitoneally injected into 

mice, and their homing was 

analyzed using the Caliper 

IVIS Lumina II platform. (B) 

The differentially expressed 

genes in HBMECs after 

exosomes stimulus revealed by 

proteomic analysis were 

predicted to be associated with 

various diseases. (C) The 

amount of DA was measured in 

the three different groups by 

high-performance liquid 

chromatography with 

electrochemical detection 

(HPLC-ECD). (D) The 

expression of α-SYN in the 

substantia nigra region of mice 

from the three different groups 

was detected by 

immunofluorescence staining. 

(E) The number of TH-

expressing positive cells in the 

substantia nigra region of mice 

from the three different groups 

was observed using 

immunofluorescence staining. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001126/figure/Fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001126/figure/Fig3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001126/figure/Fig3/
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It has been reported that the permeability of the 

blood–brain barrier (BBB) is increased in animal models 

of PD, and BBB dysfunction may also be associated with 

angiogenesis [30]. Immunofluorescence staining 

indicated that the expression of ICAM1 in the corpus 

striatum and substantia nigra of mice co-injected with 

MPTP and M-Exos was obviously improved compared to 

the MPTP group (Fig. 7A). Next, we detected the 

expression of the angiogenesis marker gene CD31. The 

results of immunofluorescence staining indicated that the 

expression of CD31 was obviously enhanced in the corpus 

striatum area after adding M-Exos compared to MPTP 

treatment alone (Fig. 7B). Thus, M-Exos can promote 

angiogenesis by increasing ICAM1 expression in a mouse 

model of PD, with possible therapeutic implications for 

human PD. 

 

 
 

 

 

 

 

 

 

 

 

Figure 7. ICAM1 expression 

plays a significant role in the 

angiogenesis process in vivo. 

(A) Detection of ICAM1 

expression in the corpus 

striatum and substantia nigra 

was carried out by 

immunofluorescence staining 

in the three different groups of 

mice. (B) Tube formation in 

the corpus striatum area was 

detected using immune-

fluorescence staining. 

DISCUSSION 

 

PD is a progressive neurodegenerative disorder 

characterized by the large-scale loss of dopaminergic 

neurons in the pars compacta of substantia nigra and 

striatum [30]. Typical symptoms of PD include dyskinesia 

with resting tremors and muscle rigidity, as well as 

cognitive dysfunction [31]. In spite of significant research 
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efforts, there is still no effective treatment for PD. 

Because PD is caused by the loss of DA neurons, their 

replacement is the only potentially effective therapeutic 

approach to fully reverse the symptoms of PD. However, 

long-term treatment produces various side effects, 

including dyskinesia [32]. Therefore, it is necessary to 

develop alternative approaches for the treatment of PD. 

Increasing evidence indicates that MSCs are 

multipotent cells that can be used to treat many diseases. 

Exciting studies over the past years revealed that a variety 

of neurodegenerative diseases can be placed in remission 

using MSCs, including diseases that are typically fatal 

without effective therapies [16]. Although the specific 

mechanisms of the MSC-induced curative effects are 

poorly understood, it has been reported that they include 

nerve regeneration, inhibiting apoptosis, stimulating 

angiogenesis and immunomodulation [33]. Exosomes 

contain various proteins, mRNAs and microRNA [34, 

35], and these components, which have been shown to 

promote neuronal growth and recovery [36-38], are 

enriched in exosomes compared with MSCs. The 

stimulation of angiogenesis is another positive 

mechanism that can contribute to the diffusion of soluble 

factors along newly formed blood vessels in the damaged 

tissue [39, 40]. In our study, we mainly elucidated how 

M-Exos contribute to recovery in a mouse model of PD 

by enhancing angiogenesis, which may provide an 

effective therapeutic approach for human PD. 

The mechanisms through which M-Exos promote the 

recovery of PD are not fully understood, although reports 

have shown that treatment with exosomes can promote 

tissue-repair processes [41, 42]. The results of this study 

demonstrate that M-Exos can promote angiogenesis of 

HBMECs in vitro and can home to the injured sites after 

MPTP treatment, which promotes angiogenesis in the 

striatum and substantia nigra. These results suggest that 

M-Exos can interact with microvascular endothelial cells 

in the injured brain to promote angiogenesis, which is 

beneficial for repairing damaged blood vessels. Indeed, 

the present study indicates that intraperitoneal injection of 

M-Exos into PD model animals after MPTP treatment 

could decrease the aggregation of α-SYN and increase the 

number of TH-expressing positive cells compared to 

MPTP model induction without exosome treatment. At 

the same time, the production of DA was also obviously 

improved after intraperitoneal injection of M-Exos 

compared to the MPTP group. Beyond that, other studies 

have shown that M-Exos can decrease the symptoms of 

PD via a neuroprotective activity [22, 43]. 

In conclusion, ICAM1 secreted by HBMECs plays a 

critical role in the positive effects of M-Exos in PD model 

mice. 
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