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ARHGEF28 P.LYS280METFS40TER IN AN
AMYOTROPHIC LATERAL SCLEROSIS FAMILY
WITH A C9ORF72 EXPANSION

We previously discovered a frameshift variant in
ARHGEF28, encoding rho guanine nucleotide
exchange factor (RGNEF), in a patient with amyo-
trophic lateral sclerosis (ALS) following our observa-
tion of RGNEF cytoplasmic inclusions in the
patient’s motor neurons.1 This variant was subse-
quently observed in a Chinese cohort of patients with
ALS and in ALS-discordant identical twins.2,3 Herein,
we describe the expanded analyses performed on the
family of our index patient, who carries both ARH-
GEF28 p.Lys280Metfs40Ter and a C9orf72 repeat
expansion. We performed neuromuscular examina-
tion and screened for cognitive impairment using
the Montreal Cognitive Assessment on 24 family
members. We also screened for the C9orf72 repeat
expansion and ARHGEF28 p.Lys280Metfs40Ter. In
total, we observed 8 C9orf72 expansion carriers and 9
ARHGEF28 p.Lys280Metfs40Ter carriers, with 4
double heterozygotes carrying both variants. We also
used ONDRISeq, a next-generation sequencing
panel of neurodegeneration-related genes, to identify
additional variations, with no variants detected. We
postulate that ARHGEF28 p.Lys280Metfs40Ter
may modify the incremental neurodegeneration risk
present in individuals with a C9orf72 expansion.

Results. Clinical characteristics. III-2 presented with
left upper extremity weakness at age 60 and later
developed features of bulbar dysfunction, diffuse limb
wasting and weakness, and pathologically brisk re-
flexes (table e-1 at Neurology.org/ng). Given the
history of ALS in the family, the diagnosis was defi-
nite familial ALS using the El Escorial criteria.4 The
postmortem neuropathology confirmed the diagnosis
in the absence of frontotemporal lobar degeneration.

Her brothers, III-3 and III-5, were also diagnosed
with ALS but presented at a much younger age (table
e-1). III-3 presented with bilateral upper extremity
weakness as well as limb wasting. Similar to III-2,
the first symptomology observed in III-5 was weak-
ness in the left upper extremity. He later developed
bulbar dysfunction, limb wasting, and pyramidal
weakness. The 2 surviving siblings, III-7 and III-9,

do not have any features suggestive of ALS. There is
currently no individual affected with ALS in the sub-
sequent generation; however, all are younger than the
typical age at onset (table e-2).

Genetic variants in patients with ALS. We genotyped
family members for ARHGEF28 p.Lys280Metf-
s40Ter and observed an additional 8 heterozygous
carriers (figures e-1 and e-2). Of note, we also identi-
fied ARHGEF28 p.Lys280Metfs40Ter in 2 unre-
lated spouses (IV-4 and IV-7), despite the rarity of
the ARHGEF28 variant based on its absence from
public databases such as the Exome Aggregation
Consortium, Genome Aggregation Database,
Human Gene Mutation Database, and ClinVar, and
from the Amyotrophic Lateral Sclerosis Online
Genetics Database.

DNA of participants was also tested for the C9orf72
repeat expansion as previously described (table e-1).5

We identified 7 additional C9orf72 expansion carriers,
and these results were confirmed by the Clinical Lab-
oratory Improvement Amendments–certified labora-
tories. Of the identified carriers, 2 died with a diagnosis
of ALS. It is unknown whether the other 6 carriers,
who showed no neurologic abnormalities at the time of
evaluation, will eventually develop symptoms of dis-
ease. We also used ONDRISeq6 to identify additional
variation in known ALS genes in III-2 and III-5, with
no further variants identified.

C9orf72 dipeptide repeat protein immunostaining. Cere-
bellar sections from III-2 and III-5 were obtained
from archived neuropathologic specimens and im-
munostained for dipeptide repeat proteins [poly(GP),
poly(GA), and poly(GR)] produced from C9orf72
G4C2 expansions through repeat associated non-ATG
translation. In each instance, dipeptide repeat pro-
teins were observed (figure 1).

Discussion. We expand the analyses in the ALS fam-
ily described in our previous report.1 We previously
identified individuals with ALS who have RGNEF
pathology, which are cytoplasmic inclusions of
RGNEF (encoded by ARHGEF28) in motor neurons,
as well as a C9orf72 expansion. Of interest, we
observed individuals with ALS who have RGNEF
pathology but without a C9orf72 expansion, which
suggests that RGNEF pathology may be sufficient to
cause ALS or there may be other as yet uncharacterized
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pathogenic factors involved. Although ARHGEF28
p.Lys280Metfs40Ter is present in currently unaffected
individuals, which may suggest that the variant is
benign, it is more likely that the variant modifies dis-
ease risk, as we have previously observed RGNEF neu-
ronal cytoplasmic inclusions in spinal cord motor
neurons of the index case (III-5)1 and in other cases.7

In addition, the variant may also reflect common
ancestral origins as both unrelated individuals reported
that they are from the same Northern Netherlands
region as other members of the family. Based on the
location of the mutation (amino acid 280 of 1731)
leading to the eventual termination of the RGNEF
polypeptide, it is likely the variant affects RGNEF
function. Whether the disease mechanism is haploin-
sufficiency or cellular toxicity is unclear.

While it is presently unknown whether carriers
will eventually develop symptoms of disease, we pos-
tulate that double heterozygotes of both the C9orf72
expansion and ARHGEF28 p.Lys280Metfs40Ter
may be at a greater risk of developing ALS earlier than
individuals who only carry a C9orf72 expansion.
Given the limited sample size, precludes us from
definitively determining the effect of the ARHGEF28
variant; we will investigate these variants in vitro to
evaluate their dual effect on motor neurons. In addi-
tion, we plan to sequence a larger cohort of ALS cases
to determine the frequency of ARHGEF28 variation.
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Figure 1 Cerebellar dipeptide repeat protein pathology

Characteristic neuropathologic lesions immunopositive for poly(GP), poly(GA), or poly(GR) proteins in Purkinje cells (PC), the
granule cell layer (GL), or the molecular layer (ML) of the cerebellum. Scale bar 10 mm.
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