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Abstract: Periodontitis is considered a promoter of many systemic diseases, but the signaling pathways
of this interconnection remain elusive. Recently, it became evident that certain microbial challenges
promote a heightened response of myeloid cell populations to subsequent infections either with the
same or other pathogens. This phenomenon involves changes in the cell epigenetic and transcription,
and is referred to as “trained immunity”. It acts via modulation of hematopoietic stem and progen-
itor cells (HSPCs). A main modulation driver is the sustained, persistent low-level transmission of
lipopolysaccharide from the periodontal pocket into the peripheral blood. Subsequently, the neutrophil
phenotype changes and neutrophils become hyper-responsive and prone to boosted formation of
neutrophil extracellular traps (NET). Cytotoxic neutrophil proteases and histones are responsible
for ulcer formations on the pocket epithelium, which foster bacteremia and endoxemia. The latter
promote systemic low-grade inflammation (SLGI), a precondition for many systemic diseases and
some of them, e.g., atherosclerosis, diabetes etc., can be triggered by SLGI alone. Either reverting the
polarized neutrophils back to the homeostatic state or attenuation of neutrophil hyper-responsiveness
in periodontitis might be an approach to diminish or even to prevent systemic diseases.

Keywords: blood transmission of PAMPs; trained immunity; loss of tolerance; neutrophil hyper-
responsiveness; neutrophil-driven damages

1. Introduction

A multitude of clinical findings demonstrated an unambiguous correlation between
periodontitis and systemic diseases, like atherosclerosis, diabetes, and cardiovascular dis-
eases [1]. The main link between systemic diseases and periodontitis is considered to
be the systemic low-grade inflammation (SLGI); apparently a consequence of low-grade
endoxemia (LGE) [2–7]. Endotoxins like lipopolysaccharide (LPS) are involved in the
pathogenesis of many diseases such as atherosclerosis, obesity, chronic fatigue, metabolic
syndrome, and many other inflammation-driven conditions. The detection of elevated
plasma endotoxin levels provides evidence for each of these diseases [8]. Indeed, periodon-
titis [9,10] and even gingivitis [11] is characterized by LGE, which is considered a possible
precondition for SLGI [12]. The exact signaling pathway responsible for triggering the
systemic diseases caused by periodontitis-related LGE is not yet clarified. Understanding
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trained immunity progressed greatly in the last few years. Earlier, the idea of immune mem-
ory was reserved for the adaptive immunity. Growing in vivo and clinical evidences now
indicate the ability of innate immunity to memorize bacterial challenges and to adjust its re-
sponse to recurrent challenges, metabolically, epigenetically, and transcriptionally [13–16].
Certain microbial infections or vaccines promote a heightened response of myeloid cell
populations to a subsequent infection with the same or even different pathogens. This pro-
cess involves changes in cell transcription and is referred to as “trained immunity” [17,18].
The innate immunity fosters a sustained favorable response of myeloid cells to a secondary
challenge, despite the short lifespan of some of these cells in circulation; trained immunity
acts via modulation of hematopoietic stem and progenitor cells (HSPCs) [14].

This review discusses the accomplishment of LGE as the main link between peri-
odontitis and systemic diseases. Long-term LGE in periodontitis is a consequence of
disturbance of gingival barrier function, development of trained immunity, and emergence
of hyper-responsive neutrophils. The trained immunity triggered by periodontitis-reliant
LGE appears to be a crucial deteriorating factor in some systemic diseases, such as dia-
betes, atherosclerosis, and cardiovascular diseases [2–7]. This highlights the importance of
periodontitis-dependent LGE and suggests the necessity of neutrophil calming as a new
prophylactic approach to systemic diseases. Due to the huge domain of trained innate
immunity (for references see [19]), we focused on the role of neutrophils in periodontitis, as
they are responsible for the persistent periodontitis-reliant LGE, which leads to disbalanced
trained immunity and systemic disease pathology.

2. Development of Trained Immunity

The concept of trained immunity describes the long-term functional reprogramming
of the progenitors of innate immune cells evoked by exogenous or endogenous insults.
Subsequently, this leads to an altered response of differentiated cells towards a second
challenge, after returning to a non-activated state [19]. The secondary response to the sub-
sequent non-specific stimulus can be altered in such a way that the cells respond more
or less strongly, when compared to the primary response, conferring context- and time-
adjusted responses [19]. Different stimuli, such as β-glucan [20], bacillus Calmette–Guérin
(BCG vaccine) [16], and LPS [15] induce different programs of trained immunity. How-
ever, as periodontitis preferentially supplies LPS, we focus on the effects of LPS on innate
immunity, in this review. HSPCs directly respond to LPS, e.g., via the toll-like receptor 4
(TLR4) [21,22] or indirectly through LPS-induced cytokines [23]. The pioneering transcription
factor CCAAT-enhancer-binding protein β (C/EBPβ) is induced by LPS in HSPCs and is
required for the epigenetic chromatin marks and altered sensitivity of the associated genes
to secondary challenges [15]. C/EBPβ can act as a pioneer factor triggering chromatin
opening of myeloid genes, without inducing their transcription [24]. It can pre-program
chromatin accessibility for other transcription factors, leading to a facilitated response of
DNA regulatory elements to stimulation [25]. LPS-exposed HSPCs become epigenetically
primed for a myeloid lineage bias with the enhancers remaining more accessible than naive
HSPCs. Furthermore, LPS-exposed HSPCs keep increased accessibility of numerous genes
that predispose one to a more rapid activation of myeloid lineage commitment, in response
to secondary stimulation [15]. As the innate memory responses depend solely on epigenetic
remodeling, the trained immunity appears to lack specificity (Figure 1).

The molecular basis of the epigenetic modifications includes changes in chromatin
organization at the level of the topologically associated domains, transcription of long
non-coding RNAs, methylation and acetylation of genes involved in the innate immune
responses, and reprogramming of cellular metabolism [19]. Most proinflammatory gene loci
in the quiescent myeloid cells are in a repressed configuration [26], hindering access of the
transcriptional machinery to the regulatory regions that drive the expression of inflammatory
factors [27]. Two key epigenetic marks characterize trained immunity—the acetylation of
histone 3 lysine 27 (H3K27ac) at distal enhancers (marked by histone 3 lysine 4 methylation
(H3K4me1)) and the consolidation of histone 3 lysine 4 trimethylation (H3K4me3) at the
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promoters of stimulated genes [19] (Figure 2). The transmission of these marks through DNA
replication and the cell cycle is robustly required to maintain trained immunity [28].
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factor of kappa light polypeptide gene enhancer in B-cells inhibitor (I-κB) proteins; and (b) comparison between innate 
and adaptive immunity. Innate and adaptive immunity provide broad and antigen-specific protection, respectively. (Top) 
innate immunity can provide protection against heterologous stimuli. Adaptive memory (bottom) is elicited with primary 
exposure to a specific antigen, and then, a secondary exposure and subsequent protection requires exposure to the same 
antigenic epitopes. 

The molecular basis of the epigenetic modifications includes changes in chromatin 
organization at the level of the topologically associated domains, transcription of long 
non-coding RNAs, methylation and acetylation of genes involved in the innate immune 
responses, and reprogramming of cellular metabolism [19]. Most proinflammatory gene 
loci in the quiescent myeloid cells are in a repressed configuration [26], hindering access 
of the transcriptional machinery to the regulatory regions that drive the expression of in-
flammatory factors [27]. Two key epigenetic marks characterize trained immunity—the 
acetylation of histone 3 lysine 27 (H3K27ac) at distal enhancers (marked by histone 3 ly-
sine 4 methylation (H3K4me1)) and the consolidation of histone 3 lysine 4 trimethylation 
(H3K4me3) at the promoters of stimulated genes [19] (Figure 2). The transmission of these 
marks through DNA replication and the cell cycle is robustly required to maintain trained 
immunity [28]. 

Figure 1. Concept of trained immunity. (a) The LPS signaling pathway via Toll-like receptor 4 (TLR4) and the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) constitutes a hallmark of both innate and adaptive immune activation.
NF-κB is a protein complex controlling the transcription of DNA, cytokine production, cell survival. It orchestrates the immune
response to infection. The activation of NF-κB is initiated by the signal-induced degradation of Nuclear factor of kappa light
polypeptide gene enhancer in B-cells inhibitor (I-κB) proteins; and (b) comparison between innate and adaptive immunity.
Innate and adaptive immunity provide broad and antigen-specific protection, respectively. (Top) innate immunity can provide
protection against heterologous stimuli. Adaptive memory (bottom) is elicited with primary exposure to a specific antigen,
and then, a secondary exposure and subsequent protection requires exposure to the same antigenic epitopes.
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histone marks such as H3K27me3 (Me3) at regulatory elements of inflammatory genes prevents binding of transcription 
factors and efficient locus re-induction leading to tolerance. S: signal transducer and activator of transcription 1 (STAT1). 
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Figure 2. A scheme of a locus of inflammatory genes (olive-green) in myeloid cells showing (a) hyper-responsive adaptations
elicited by a low-dose LPS exposure. The inflammatory stimulation with low-dose LPS triggers complex changes at the
signaling, metabolic, or transcriptional level. These often result in the formation of H3K27ac (Ac) and an increased chromatin
accessibility of the regulatory elements of the adapted genes. This favors the binding of transcription factors and gene
expression after secondary exposure to another inflammatory stimulus (training) through the expression of H3K4me3.
(b) Tolerization: Exposure to high-dose LPS elicits hypo-responsive adaptations. The deposition of repressive histone
marks such as H3K27me3 (Me3) at regulatory elements of inflammatory genes prevents binding of transcription factors and
efficient locus re-induction leading to tolerance. S: signal transducer and activator of transcription 1 (STAT1).
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3. LGE Induces Systemic Diseases

LGE is a consequence of either metabolic disorders like metabolic endotoxemia or
chronic infections like periodontitis. Prolonged LGE results in trained immunity, a long-
lasting proinflammatory phenotype of leukocytes. LGE represents a strong risk factor
for the occurrence of chronic inflammatory diseases such as diabetes, atherosclerosis,
cardiovascular diseases, and others [29,30]. Here, we provide a concise overview of
mechanisms responsible for initiations of systemic diseases by LGE.

Diabetes: Triggering of TLR4 activates proinflammatory pathways via activation of NF-
κB and activator protein 1, which, in turn, promote production and release of multitudes of
proinflammatory cytokines, including TNF-α and IL-6. This causes serine phosphorylation
of the IRS-1, resulting in insulin resistance [31]. Thus, low doses of LPSs induce a biphasic
change in glucose uptake in normal-weight volunteers. Insulin sensitivity enhances in the
first few hours after injection [32] and significantly reduces later [33]. Doses of LPSs as low
as 3 ng/kg are sufficient to induce a significant reduction of insulin sensitivity and increase
circulation of insulin and glucose, 24 h after the LPS injection [33].

Cardiovascular diseases: LGE is associated with a significantly increased risk of
cardiovascular diseases; however, their mutual relationship is still elusive. In cardiovas-
cular disease patients, LGE triggers TLR4-mediated inflammatory responses, leading to
SLGI [34]. A main representative of cardiovascular disease is the coronary artery disease
resulting from a reduced blood flow to the heart muscle caused by luminal obstruction by
atherosclerotic plaques in the arteries of the heart.

Atherosclerosis: Trained immunity is mechanistically linked to atherosclerosis [35].
LGE induces atherosclerotic plaque formation and progression of atherosclerotic lesions,
and release of proinflammatory molecules from endothelial cells [36]. LPS appears to in-
crease endothelial lipase, which was suggested to cause a reduction in HDL [37]. The latter
supports the growth of atherosclerotic plaques [38]. A short-term treatment with LPS in a
super-low-dose that mimics chronic infection elicits the polarization of monocytes into a
sustained pro-inflammatory state. This is characterized by upregulation of lymphocyte
antigen 6C, C-C chemokine receptor type 5, monocyte chemoattractant protein 1, and de-
creased expression levels of scavenger receptor class B type 1. It ultimately aggravates
atherosclerosis [39]. LGE skews neutrophils into a non-resolving inflammatory state with
elevated and reduced levels of inflammatory and homeostatic mediators, respectively [40].
These neutrophils are prone to NET formation [41,42], which further fosters atherosclero-
sis [43] and cardiovascular complications [44]. This implies that LGE drives many systemic
diseases, predominantly acting through the over-activation of innate immunity.

4. Trained Immunity and Neutrophil Hyper-Responsiveness

While a (non-lethal) high-dose of LPS induces innate immune tolerance with an atten-
uated immune response to a second challenge, a super-low-dose of LPS induces trained
immunity [39,45,46]. The latter is achieved via the reprogramming of HSPCs. Although
trained immunity usually improves the host’s defense against subsequent pathogenic
threats, in chronic inflammatory disease it might be maladaptive [19]. Thus, neutrophils
and other leukocytes derived from HSPCs with trained immunity might develop in a
distinct state of hyper-responsiveness; this might be responsible for the development of
non-resolving inflammation. The nature of non-resolving inflammatory neutrophils is
reflected in elevated reactive oxygen species, due to disrupted peroxisome homeostasis.
This results in the skewed activation of oxidized calmodulin-dependent protein kinase II,
downstream expression of LTB4, matrix-metalloproteinase (MMP) 9, miR24, and reduced
ATF4/KLF2-mediated expression of resolving mediators, such as LRRC32 and miR-126 [40].
Indeed, neutrophil hyper-responsiveness is a hallmark of periodontitis [47–50]. Epigenetic
reprogramming of HSPCs due to LGE makes neutrophils prone to exaggerated neutrophil
extracellular trap (NET) formation [41,42]. NETs are evolutionarily conserved innate
immunity structures produced by activated neutrophils, often in response to bacterial
challenge. NETs have a backbone of DNA and contain neutrophil proteases, as well
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as other bactericidal agents [51–54]. Exaggerated NET formation causes crevicular ul-
cers (see Section 6.2), subsequent bacteremia and LGE. Diabetes can induce late-onset
periodontitis [55,56], as it promotes neutrophils to form NETs [57]. The boosted NET
formation is a part of trained immunity and is epigenetically reprogrammed through
the acetylation of histone 4 in neutrophils [41,42]. Subsequently, the transcriptomes of
hyper-responsive neutrophils in periodontitis are altered [58]. Due to trained immunity,
the neutrophil hyper-responsiveness remains in edentulous patients with a history of
periodontitis [47–50], despite the disappearance of bacteremia after teeth exfoliation [59].
The fact that the hyper-responsiveness of neutrophils from patients with periodontitis is
evident in vitro, where the influence of adaptive immunity is excluded, cannot be explained
in other way than by trained immunity. However, neutrophils are comprised of certain
subsets [60], so they might have different effects on periodontal and systemic disease
(SD) pathology. In vivo, many components modulate neutrophil response, e.g., innate
immunity, adaptive immunity, environment, etc. Besides the innate immunity mechanisms
responsible for deactivating LPS (see Section 6), many adaptive immunity mechanisms
are able to counteract the neutrophil hyper-reactivity in vivo. Therefore, patients with
periodontitis are de facto immunized with the LPS of periodontal pathogens [61]. Normal
human serum contains polyreactive “natural” antibodies that bind LPS [62]. LPS anti-
bodies to periodontal pathogens [63] are elevated in periodontal patients, as compared to
subjects with a healthy periodontium. Regulatory T cells (Treg)/neutrophil interactions in
inflammatory and autoimmune diseases play a crucial role for the neutrophil regulation
and suppression [64]. The pro-inflammatory function of neutrophils in the promotion
and pathogenesis of several autoimmune diseases like vasculitis [65], rheumatoid arthri-
tis [66] etc., was reported. Defective Treg function were demonstrated in all these diseases,
and Treg therapy ameliorated them [67]. Reduced Treg numbers in mice leads to exag-
gerated neutrophil activity resulting in mortality in endotoxic shock [68]. Tregs regulate
survival and activity of human and murine neutrophils, and co-cultures of Tregs and
neutrophils increases neutrophil apoptosis [68]. In addition, LPS-activated Tregs inhibit
neutrophil functions [69–71] and even promote their apoptosis [69]. Thus, despite the
periodontitis-induced hyper-responsibility, neutrophils cannot autonomously determine
the entire immune response since it is orchestrated by the adaptive immunity. Therefore,
it is not surprising that periodontitis is not ever associated to LGE-related SDs. Due to the
huge complexity of the interactions between innate immunity and adaptive immunity, it is
impossible to currently draw conclusions regarding the extent to which the periodontitis-
related trained immunity define LGE-related SDs. Future investigations might show to
which extent this connection is clinically relevant.

5. Correlation between Periodontitis and LGE-Related SDs, the Role of Periodontal
Pathogens

Increasing the periodontitis severity carries a proportionally higher risk of coronary
artery disease [72]. The relationship between periodontitis and coronary artery calcification
indicates that periodontitis correlates positively and linearly with the presence of coronary
artery calcification [73]. A relationship between periodontitis and aortic vascular inflam-
mation exists, which in turn is a surrogate of coronary disease [74]. Live Porphyromonas
gingivalis and Aggregatibacter actinomycetemcomitans were isolated from atheromatous le-
sions [75,76]. Furthermore, periodontal pathogens have the ability to induce atherosclerosis
in animal models [77–79].

Many reports clearly demonstrated the association between diabetes and periodontal
disease in both animals and humans. LGE might induce diabetes predominantly due to the
bacterial burden of periodontitis (see Section 3). The resulting proinflammatory cytokines
cause insulin resistance [31,33,80]. In addition, P. gingivalis contributes to the development
of insulin resistance via an impaired adaptive immune response [81]. Interestingly, treating
the periodontal disease reduced glycated hemoglobin in diabetic patients [82–84].

The high co-incidence between periodontitis and LGE-related SDs, e.g., cardiovascular
diseases, diabetes etc., as well as the ability to induce some SDs via periodontitis in animal
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model, leads to the question as to how periodontitis might yield an initial ignition of
LGE-related SDs? Three periodontitis aspects might be considered:

(i) Transient supply of LPS as bacterial fragments and whole bacteria in periodontitis
[85–88]. As an enduring LPS supplier, this aspect of periodontitis appears to be a
crucial factor in triggering the LGE-relied SDs.

(ii) Trained immunity marked by periodontitis-induced neutrophil hyper- responsive-
ness [47–50]. This aspect might be responsible for the gingiva ulceration, and hence
might act as a promoter of both LGE and bacteremia (see Section 6.2.);

(iii) An independent settlement of periodontal pathogens in the atherosclerotic
plaques [79,89–91]. The periodontal pathogens appear able to induce and promote
atherosclerosis in humans [75].

6. Endotoxemia and LPS Metabolism

LGE can be induced in many different ways. However, the mechanisms of LPS transi-
tion into the blood of patients with periodontitis remain elusive. The enteral LPS content is
the main reservoir of LPS within the human body [92], but the intestinal barrier function
prevents LPS transmission into the blood of healthy individuals. (I) The mucin layer limits
the access of LPS to the epithelium. (II) A multitude of cationic antimicrobial host proteins
binds the negatively charged LPS [93]. (III) Intestinal alkaline phosphatase detoxifies LPS
by the cleavage of the phosphate groups in position 1 and 4 of lipid A. The dephosphory-
lated LPS does not trigger TLR4 signaling [94]. (IV) The LPS-binding protein (LBP) forms
a large LPS–LBP complex, with a reduced ability to trigger TLR4 signaling [95]. (V) LPS
that enters the bloodstream, i.e., into the portal vein, is detoxified in the liver and excreted
into the bile. Taken together, intestinal LPS does not abundantly transit into the peripheral
blood of individuals with healthy intestines [92]. Alterations of the intestinal microbiota
(dysbiosis) lead to increased intestinal permeability and translocation of LPS to the blood
circulation. This disorder is referred to as metabolic endotoxemia ME. Dysbiosis also leads
to the production of trimethylamine-N-oxide, a gut bacterial metabolite discussed as a new
risk factor for the development of cardiovascular diseases [96]. Hence the question arises as
to how LPS of periodontitis origin transmits into the blood of intestinally heathy individu-
als? LPS is able to even penetrate healthy gingival epithelium in very small quantities [97],
as it is detoxified by blood proteins, blood enzymes, and neutrophil-derived enzymes [98].
This, consequently, does not contribute to the elevation of the blood LPS level. However,
increased blood plasma LPS levels were reported both in late [9] and early-onset periodon-
titis [10] and even transient bacteremia during daily hygienic procedures [86–88]. These
clinical findings imply three key points:

• LPS penetration occurs via the inflamed periodontal pocket.
• LPS penetration might be to, a large part, a consequence of transient bacteremia.
• Intermittent pressure on the pocket epithelium appears to be crucial for bacteremia

and subsequent endotoxemia.

6.1. LPS Penetrates the Periodontal Pocket

Increased blood plasma levels of LPS were reported in gingivitis [11] and characterize
periodontitis [9,10]. The source of the LPS is the subgingival plaque (biofilm). A part of the
LPS unleashed into the crevice is bound by blood proteins, neutrophil cationic antimicrobial
proteins [99,100], neutrophil enzymes, and by LPS antibodies. Thus, a diverse repertoire of
inactivation mechanisms modulates the ability of LPS to activate neutrophils via TLR4 [101].
The concentrations of soluble CD14 (sCD14) [102], LPS-binding protein [103], and antibod-
ies to LPS of periodontal pathogens [63] are elevated in periodontal patients, as compared
to subjects harboring a healthy periodontium.

In vitro P. gingivalis induces an increase of the gingival permeability through the
secreted gingipains, enabling macro-molecules to diffuse through the tight junctions [104].
LPS within polar, aqueous fluid forms aggregates several tens of nanometers in size [105].
Moreover, LPS is discharged by bacteria in the form of outer membrane vesicles in a similar
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size range [106], or as fragments of the outer bacterial membrane in cases of bacterial death.
The periodontal crevice, where the dental plaque grows, is confined between the dental
root surface and the crevicular gingival epithelium. The latter continuously produces blood
transudate denoted gingival crevicular fluid (GCF) [107,108]. The incessant GCF flow that
drains off the LPS. P. gingivalis is not a prerequisite for periodontitis. The host inactivation
mechanisms operate on mucosal surfaces and in tissues, lymph, and blood, and might
profoundly influence LPS bioactivity in vivo [8,109].

LPS is first encountered by plasma proteins and the enzymes of the GCF, which is just
blood plasma transudate. Alkaline phosphatase is abundant in GCF [110,111] and inac-
tivates LPS by dephosphorylation [112]. Acyloxyacyl hydrolase, produced by crevicular
neutrophils [113] deactivates LPS through the removal of the secondary acyl chains from
lipid A. Even though LPS penetrates the epithelium in gingivitis [11], it is partially bound
by the blood plasma components like HDL and LDL [114–116]; sCD14 binds and transfers
LPS from leukocytes to HDL [116,117]. The bactericidal-permeability protein binds the
LPS produced by many Gram-negative bacteria and blocks lipid A bioactivity [118,119];
Gelsolin, a highly conserved plasma protein, binds and neutralizes LPS [120]; human
serum from healthy individuals contains polyreactive “natural” antibodies that bind and
neutralize LPS antigens [62].

Gingivitis is a transitory inflammation and is not yet connected to trained immu-
nity. Sustained untreated chronic gingivitis leads to pocket formation and consequently
to transition into periodontitis. Due to the features of the periodontal pocket, which
is a pathological formation, periodontitis must be considered a non-resolving chronic
inflammation [121]. It is characterized by the formation of crevicular NETs, [122,123],
multiple gingival micro-ulcerations [124] and bacteremia [85–88]. The periodontitis-related
bacteremia is responsible for the direct contact of LPS with HSPCs.

6.2. Ulcerations Circumvent the Epithelial Barrier in Periodontitis

The exaggerated NET formation in the crevice drastically changes the situation, as
NETs damage the epithelium, such that both bacteria and their pathogen-associated molec-
ular pattern (PAMPs) overcome the epithelial barrier. On one hand, the topically-liberated
LPS of the gingiva binds host proteins (LPS, antibodies as well as enzymes), and on the other
hand, the periodontitis-related endotoxemia appears to be concomitant with bacteremia.
Thus, the question arises, whether periodontitis-related endoxemia is just a consequence
of the transitory bacteremia? Bacteremia requires discontinuations of crevicular epithe-
lium in order to transmit the whole bacteria into connective tissue. Indeed, the crevicular
epithelium is characterized by multiple micro-ulcerations [124]. Epithelial ulcerations
enable the invasion of microorganisms and the unrestricted penetration of their PAMPs
into the connective tissue, and thus aggravate the course of periodontitis. The influx of
neutrophil and NET-derived proteases into the connective tissue facilitates bacterial spread.
Therefore, both in late-onset [125,126] and experimental periodontitis [59], crevicular NETs
are unable to completely prevent periodontal pathogen dissemination into connective
tissues and peripheral blood. The latter becomes evident as bacteremia (number of species
and positive cultures), which increases with the severity of the gingival inflammation [127].
The periodontitis-reliant bacteremia disappears after teeth exfoliation [59]. Epithelial ulcer-
ations are of interest insofar as they represent the entry points for oral pathogens and their
PAMPs, especially LPS. This results in bacteremia and endotoxemia. Epithelial disruptions
such as insect bites or minor skin scratches [128] and gingival micro-ulcerations [86–88] are
also accompanied by transient bacteremia and endotoxemia. In experimental periodontitis,
disseminated oral pathogens are regularly observed within both liver and spleen, but not
in mice after complete teeth loss [59]. Ulcers of oral epithelium other than the crevicular
epithelium are very common, but they are mostly due to hereditary and environmental
factors. Only in cases of acute necrotizing gingivitis, syphilis and tuberculosis are caused
by bacteria [129,130]. Indeed, oral pathogens penetrate crevicular epithelium either by
bacterial internalization [131] or mechanically (yeasts) [132] without the formation of ulcers.
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Thus, bacterial pathogens appear to not directly cause gingival ulcerations. Otherwise,
hyper-responsive neutrophils and in particular exaggerated NET formation are able to
damage mucosal epithelium. The main task of NETs is to limit the bacterial spread [51],
but exaggerated NET formation is destructive [133]. Exaggerated NET formation in the
periodontal crevice [99] results in oversupply of neutrophil proteases [134–136]. These
proteases damage the epithelial basal lamina if the NETs are not aggregated [137] and
laminin-332 breakdown products foster neutrophil recruitment, which damage epithelia
and subsequently weaken the epithelial barrier [138]. NET-derived components such
as histones [139–142] and myeloperoxidase (MPO) [140] are cytotoxic to epithelial cells;
neutrophil proteases damage and even kill the epithelial cells. Some periodontal pathogens
might even promote epithelial ulceration by stimulating the release of neutrophil elastase
(NE) [143]. Indeed, increased GCF levels of laminin-332 [144–146] and neutrophil pro-
teases [134–136] correlate with the epithelial ulceration in periodontitis [121,124]. NETs
also cause epitheliopathy via Oncostatin M [147]. Gingival epithelium becomes ulcerated
in late-onset [121] and in experimental periodontitis [148,149]. Obviously, epithelial ulcera-
tions enable the contact between connective tissue matrices and NET-bound NE and MMPs,
which are much more aggressive than the soluble enzymes [138]. High NET concentrations
reportedly suppress keratinocyte proliferation, delay wound closure [57,150], and hence
prolong the persistence of ulcers. However, aggNETs proteolytically inactivate several
soluble pro-inflammatory mediators. Except for limited histological examinations, the
ulcers of crevicular epithelium are not extensively studied and their role for systemic
diseases remains elusive.

6.3. The Pocket Pump

The continuously secreted GCF [107,108] produces GCF flow, which drains off the
disseminated bacteria and PAMPs. However, the retention of GCF in the pocket rises with
deepening the periodontal pocket and increasing the GCF viscosity, particularly due to
suppuration [151]. Intermittent pressure on the gingiva during mastication and dental
hygiene is an underestimated problem and publications on this topic are scarce. However,
clinicians should never forget to instruct dental patients after intra-pocket application of
medications [152] and guided bone regeneration [153] to restrain from chewing. During
mastication and dental hygiene procedures, the food bolus or the tooth brush, exerts
intermittent pressure onto the oral gingiva, whereby the crevicular content (GCF and
dispersed bacteria) is also pressed towards the pocket epithelium. In the ulcers, where
matrices of the connective tissue are partly dissolved by exaggerated NETs, bacteria might
be deeply inserted and even reach the venules. The high tendency of the venules to bleed
in periodontitis and the transitory bacteremia/endotoxemia during mastication [85], tooth
brushing and flossing [86–88], suggests such a portal of entry for pocket bacteria. Thus, the
periodontal pocket might be considered to be a pump, which presses bacteria and their
metabolic products into gingival connective tissues. From there they are pushed by inter-
mittent mastication pressure into the gingival venules and reach the blood circulation via
vena cava superior, conditioning both periodontitis-related bacteremia and endotoxemia.
Thus, endotoxemia might be largely a consequence of transient bacteremia and lysis of the
blood-borne bacteria, as the circulating LPS is continuously detoxified by the liver [92].

Intermittent pressure on the pocket epithelium and consequently within the crevice ap-
pears to be crucial for bacteremia and endotoxemia. Despite the fact that the phenomenon
of intermittent pressure is familiar, up to now it was considered clinically irrelevant and
is not yet examined. Thus, its examination and the exact mechanism of bacterial penetra-
tion through the gingiva into blood are indispensable to enable further progress in the
periodontal pathology.

7. Targeting Neutrophils in the Prophylaxis of Systemic Diseases and Periodontitis

It is empirically known that the treatment of periodontitis attenuates systemic in-
flammatory diseases [154]. A main reason for this appears to be the reduction of the
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periodontitis-related LGE. The latter skews neutrophils into a non-resolving inflamma-
tory state with elevated the levels of the inflammatory mediators dectin-1, MMP9, and
leukotriene B4 (LTB4), and reduced the levels of the homeostatic/anti-inflammatory me-
diator leucine-rich repeat containing 32 (LRRC32), transforming growth factor–β, and
ferroportin (FPN) [40]. The reduction of LGE by the treatment of periodontitis attenuates
the LPS effects on neutrophils and might be a favorable approach for the mitigation of sys-
temic diseases. Treatment options of periodontitis and their limitations are well-known in
clinical periodontology. Therefore, here we focus on mitigating the inflammatory effects of
LPS on neutrophils. In general, two strategies are conceivable—(i) reverting the polarized
neutrophils back to the homeostatic state or (ii) diminishing the exaggerated crevicular
NET formation.

7.1. Reverting the Polarized Neutrophils back to the Homeostatic State

A potential candidate is 4-phenylbutyrate (4-PBA), known to restore peroxisome home-
ostasis in other cells [155–158]. Recently, the application of 4-PBA was demonstrated to
be a novel and effective strategy to revert polarized neutrophils back to their homeostatic
state [40]. Thus, 4-PBA restores peroxisome–lysosome fusion in neutrophils and reduces
the LPS-mediated elevation of neutrophil-derived ROS. In in vitro cultures of neutrophils,
4-PBA effectively reduced the induction of oxidized calmodulin-dependent protein kinase II,
LTB4, MPO, dectin-1, CD11b, and miR-24 through a super-low-dose LPS and also restored
the expression of ATF4, FPN, LRRC32, and miR-126 that was suppressed by LPS [40]. This
functional rejuvenation of homeostatic neutrophils by 4-PBA treatment might reduce the
pathogenesis of experimental atherosclerosis [40] and of related cardiovascular complications.

7.2. Diminishing the Exaggerated Crevicular NETs

Despite the ability of aggNETs to prevent and even resolve inflammation on mucosal
surfaces [109] and other tissues [159,160], they also cause an increase in the viscosity of
GCF [122]. This hinders the GCF evacuation from deep periodontal pockets and poten-
tially drives the formation of periodontal abscesses [151]. Diminishing the exaggerated
NET formation, which appears to be a part of some cases of trained immunity [41,42] by
inhibitors of peptidylarginine deiminases 4 (PADI4), can reduce the periodontitis-related
LGE and subsequently attenuate systemic diseases. As NETs directly promote atheroscle-
rosis, the use of specific PADI4-inhibitors, in order to suppress the PADI4-dependent
NET formation, might have therapeutic benefits in atherosclerosis [43] and cardiovascular
complications [44]. In humans, metformin treatment reduces the concentrations of NET
components independent of glucose control. In vitro this effect was related to the inhibitory
effect exerted on the protein kinase C-nicotinamide adenine dinucleotide phosphate oxi-
dase pathway [161]. Using topical treatment in periodontitis might prevent the systemic
side effects of neutrophil inhibitors.

Taken together, both strategies aim at reducing the periodontitis-related LGE. Future
treatment strategies are needed to diminish neutrophil hyper-responsiveness and, in partic-
ular, their propensity for NET formation, as neutrophil hyper-responsiveness fosters both
non-resolving inflammation and LPS penetration through the gingival epithelium.

8. Conclusions

LGE is blamed for many systemic diseases, like diabetes, atherosclerosis, cardio-
vascular diseases, and others. Periodontitis, similar to other chronic infections, causes
LGE and hence might foster systemic diseases. LGE might turn innate immunity into a
state of trained immunity with the hyper-responsive neutrophils prone to exaggerated
NET formation. The latter is responsible on one hand for gingival ulcerations and subse-
quent bacteremia/endotoxemia, and on the other hand for damages of blood vessels and
other host tissues observed in systemic diseases. Attenuation of periodontitis reduces the
periodontitis-related LGE and is prone to ameliorate the LGE-related systemic diseases.
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Modulation of innate immunity might be a promising approach to diminish systemic
inflammatory diseases and in the treatment of periodontitis.
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