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Abstract: Heart rate variability (HRV) has been widely used as indices for autonomic regulation,
including linear analyses, entropy and multi-scale entropy based nonlinear analyses, and however,
it is strongly influenced by the conditions under which the signal is being recorded. To investigate the
variability of healthy HRV under different settings, we recorded electrocardiograph (ECG) signals from
56 healthy young college students (20 h for each participant) at campus using wearable single-lead
ECG device. Accurate R peak to R peak (RR) intervals were extracted by combing the advantages
of five commonly used R-peak detection algorithms to eliminate data quality influence. Thorough
and detailed linear and nonlinear HRV analyses were performed. Variability of HRV metrics were
evaluated from five categories: (1) different states of daily activities; (2) different recording time
period in the same day during free-running daily activities; (3) body postures of sitting and lying;
(4) lying on the left, right and back; and (5) gender influence. For most of the analyzed HRV metrics,
significant differences (p < 0.05) were found among different recording conditions within the five
categories except lying on different positions. Results suggested that the standardization of ECG data
collection and HRV analysis should be implemented in HRV related studies, especially for entropy
and multi-scale entropy based analyses. Furthermore, this preliminary study provides reference
values of HRV indices under various recording conditions of healthy young subjects that could be
useful information for different applications (e.g., health monitoring and management).

Keywords: heart rate variability; entropy; healthy young college students; ECG recording
conditions; standardization

1. Introduction

Heart rate variability (HRV) refers to the beat-to-beat variation of the time interval from R peak to
R peak (i.e., RR intervals, RRIs or inter-beat intervals, IBIs) in the electrocardiograph (ECG) signals.
Healthy heart rate fluctuates in complex patterns, driven by the complex nonlinear interactions of two
competing forces (sympathetic stimulation increases and parasympathetic stimulation decreases heart
rate), as well as breathing, circulation, etc., which allow the cardiovascular system to rapidly adjust to
sudden physical and psychological challenges to homeostasis [1,2].
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HRV indices are quantitative measures of the emergent property of interdependent regulatory
systems which operate on different time scales to help our bodies to adapt to environmental and
psychological challenges. The commonly used HRV metrics are quantified using temporal, spectral and
nonlinear measures. Time-domain indices quantify the amount of HRV observed during monitoring
periods. For example, standard deviation of all NN intervals (SDNN) is used to assess the size of
the overall change in heart rate [3], and its values are different depending on the ECG recording
length or segment duration; root mean square of the successive differences (RMSSD), standard
deviation of differences between adjacent NN intervals (SDSD), NN50 and pNN50 are sensitive
indicators of parasympathetic tone. Frequency-domain values calculate the absolute or relative
amount of signal energy within component bands, i.e., ultra-low frequency (ULF), very-low-frequency
(VLF), low-frequency (LF), and high-frequency (HF) bands. VLF reflects chemoreceptor regulation,
thermoregulation and vasomotor activity [4]; LF is related to baroreflex regulation [5], and can reflect
the regulation of both the sympathetic and parasympathetic nervous systems; HF mainly reflects the
regulatory function of the parasympathetic nerve, and the index is affected by respiration. In young
and healthy individuals, the HF band is significantly increased at night and decreased during the
day; the LF/HF ratio can reflect the interaction and comparison of the intensity of sympathetic and
parasympathetic activities [6]. The importance of nonlinear dynamic theory for HRV analysis is that it
can quantitatively describe the characteristics of complex dynamic systems and extract the evolution
information. The most widely used nonlinear analysis methods include detrending fluctuation analysis
(DFA) [7], and entropy or multi-scale entropy based measures [8–12]. DFA can quantify the fractal
scale index of HRV, which is suitable for detecting long-range power law correlation analysis of
non-stationary time series; entropy based measures can study the complexity of HRV from single scale
or multiple scale time scales [13]. Healthy biological systems exhibit spatial and temporal complexity,
disease can involve either a loss or increase of variability [14]. Changes of HRV occur in several
systemic diseases, such as diabetes [15], hypertension [16], heart failure [17,18], and coronary heart
disease [19]. Reduced HRV is a remarkable predictor of cardiac events including sudden death in
subjects with coronary artery disease, myocardial infarction and heart failure [20].

Studies have shown that HRV could be strongly influenced by environmental conditions and
subject variables. [21]. For example, HRV varied with age and gender [22], ECG recording length or
ECG segment duration [23], physical activity intensity [24,25], body posture change [21], et al. Besides,
the intra-day and inter-day reliability of HRV measurements was also introduced in [26]. Although
several studies have found an adequate reproducibility of HRV both in the time and in the frequency
domain analyses [21,27–31], others have not made this observation [31]. Reliability and reproducibility
of the various of HRV metrics obtained from short-term records is still under discussion [21,31–33].
Longer recording periods provide data about cardiac reactions to a greater range of environmental
stimulation. For example, SDNN over 24 h will always differ to SDNN of ten minutes, and it is more
accurate when calculated over 24 h than during the shorter periods; ULF usually requires 24 h Holter
monitoring; VLF needs at least a recording time of 10 min or more. Therefore, guarantee of HRV
reliability, stability and reproducibility is a key question in longitudinal studies or in clinical conditions,
where the same data are recorded from a single individual at different times and scenarios, or in
comparative studies where ECG data are recorded from different diseased and healthy control groups.
Unfortunately, many HRV studies were conducted without considering such influences or had no
standardized or normalized data recording criteria.

HRV analysis has become an established procedure over the past two decades [34,35] since
the publication of the first guidelines [36]. There have been advances in recording technology
(smaller, wearable, more mobile, more accurate devices) [37], for example, long-term RR intervals can
now be measured by small chest strap and pulse watch systems [38,39]. Technology developments have
decreased the costs of recording and analysis and have facilitated applications in home monitoring.
With the development of wearable devices, continuous HRV metrics monitored and analyzed at
patients’ home becomes feasible, which puts forward higher requirements for the standardization
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of environment conditions during measurement. Moreover, the importance of early detection and
early treatment is self-evident, however, diseases or clinical conditions at very early stages have a less
pronounced effect on HRV than severe or acute heart disease, and their alteration on HRV may be
submerged in the noise of subject variables and environment conditions.

Awareness of the condition of recording and subject variables can aid interpretation of both
24-hour and short-term HRV measurements. Important factors include recording time (i.e., day or
night) and recording length (i.e., 5 min, 1 h, or 24 h) [40], recording method/device [41], sampling
frequency, data quality, removal of artifacts, respiration, and other environmental factors (i.e., home,
school/work, hospital or laboratory) [42]. Important subject variables are age, gender, heart rate, mental
stress, emotions, sleep, health status, et al. In addition, influences of body position (i.e., sitting or lying),
movement, physical activity, and tasks can all affect measurements subtly or even greatly by changing
autonomic nervous system activation, breathing mechanics, and emotions. The level of daily physical
and mental activity should also be considered. In particular, 24-hour HRV results significantly depends
on activity. Mixing HRV data of subjects with obviously different daily activities is inappropriate and
may lead to values that are of little use. Many HRV related algorithms published in the literature were
developed and evaluated using different public databases without checking data recording conditions.
There is a lack of standardization for those HRV measurements, and thus it is difficult to make direct
comparison between groups or studies.

The objectives of the present study were to investigate (1) the variability of HRV in healthy young
subject under different recording conditions; and (2) subject variables in the same day of routine daily
life. We mainly focus on the variability of healthy young HRV at different home monitoring scenarios in
daily life, especially the routine normal daily activities which were diverse at recording time, physical
activity intensity, mental activity, and body postures.

2. Data and Methods

2.1. Protocol and Data

A total of 56 volunteered healthy college students aged 21.1 ± 2.1 years (mean ± std) from
Southeast University in China took part in this study, including 28 males (21.5 ± 2.4 years) and
28 females (20.8 ± 1.7 years). All participants were informed the experimental protocol and matters
needing attention, then signed the written informed consent prior to participating in the study. This
study was approved by IEC (Independent Ethics Committee) for clinical research of Zhongda Hospital,
affiliated to Southeast University (No. 2019ZDSYLL073-P01).

ECG recordings were collected by a FDA (U.S. Food and Drug Administration) approved
ambulatory electrocardiogram monitor (DynaDx Corporation, Mountainview, CA, USA) with a
computer-based data-acquisition system and a sleep quality analysis software. The ECG recording
equipment was a single-lead Holter device that can record ECG for over 24 h. The study was conducted
at the campus of Southeast University. All participants were instructed to wear the ECG device for at
least 20 h from Friday night earlier than 23:00 (before going to bed as usual) to Saturday night 19:00,
and to follow the experiment protocol during the whole day. Sampling rate of ECG monitoring was set
to 512 Hz.

Participants in this study were required to be healthy, free of cardiovascular diseases, diabetes,
mental conditions, sleep apnea and other diseases that have a known impact on HRV, and have
no adverse life behaviors, such as smoking and drinking alcohol. Female students were not in
menstruation period. Subjects were also required to fill in the self-rating depression scale (SDS), profile
of mood states (POMS) and Pittsburgh sleep quality index (PSQI) to avoid the influences due to mental
and sleep related issues.

Of the 60 initially recruited volunteers, 56 recordings were included and 4 recordings were
excluded due to low data quality.
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The data collection protocol was shown in Table 1. The experiment was conducted for 20 h
under various recording conditions: sleeping at night, reading quietly in different body postures, brisk
walking at a certain exercise intensity, and free-running daily activities (after meals) in the morning,
noon and evening.

Table 1. Data collection protocol: activities and its corresponding duration.

Activity Start and End Time Duration (min)

Night Sleeping 1:00–2:00 60

Body postures
(Reading)

Sitting 9:00–10:00 60

Lying

Left 10:00–10:30 30

Right 10:30–11:00 30

Back 11:00–11:30 30

Brisk Walking 14:15–15:00 45

Free-running daily
activities

Morning 8:00–9:00 60

Noon 13:00–14:00 60

Evening 18:00–19:00 60

Night sleeping: Subjects were directed to go to bed at 23:00 and wake up at 7:00 to guarantee 8-h
sleep. Sleep quality and staging analysis were performed by the ‘sleephousekeeper’ software. The
sleep and wake-up time were calibrated via self-reported forms filled in by the subjects. To keep a
comparable ECG recording length with the other activities during daytime, the sleep ECG signals in
the period of 01:00–02:00 were selected for subsequent HRV analysis.

Reading: Subjects were required to read paper books of general science in a quiet environment
(i.e., in their dormitory) in specified body postures, consisting of sitting posture reading and lying
posture reading. Lying posture reading included lying on the left, lying on the right and lying on
the back.

Brisk walking: Subject were required to walk at a faster speed than usual on a 400 m plastic track
at the campus.

Free-running daily activities (FreeDA): Subjects were asked to follow their normal daily activities
except performing physical exercise or taking a shower/bath. They were free to choose whatever they
want to do, such as chatting with friends, surfing the Internet, writing homework, cleaning the room,
doing laundry and performing other daily activities, but the same activity cannot be run more than
15 min. ECG signals during FreeDA were recorded in three different time periods, i.e., morning, noon
and evening, beginning at about 30-min after meals.

2.2. Data Preprocessing

The third-order band-pass Butterworth filter and zero-phase shift filter with a cut-off frequency of
2 Hz to 30 Hz were first used to eliminate the baseline drift, power frequency interference and high
frequency noise, which can make the QRS complex (including the Q wave, R wave, and S wave) more
prominent, and avoid changing the position of R peaks. At the same time, for those serious noises that
may not be resolved using above procedure, a manual removal method was adopted, i.e., the ECG
signals drowned in serious noise (probably due to unstable contact between the wearable device and
the skin) were set to zero. All ECG recordings were carefully checked with ectopic beats, very few
ectopic beats were found and eliminated (i.e., set to zero), and only ECG signals with normal R peaks
(i.e., N peaks) were remained.

2.3. High-Quality RR Interval Detection and De-Noising

At present, plenty of R-peak detection methods have been proposed on ECG signal analysis.
However, when applying these detectors on ECG signals collected in daily life, especially via wearable
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single-lead ECG devices, the R peak detection accuracies were usually unsatisfying. In this study,
the ECG signals during brisk walking and free-running daily activities contains more noise than ECG
collected during sleeping and reading. To compare HRV measured in different conditions, we should
keep the data quality of detected RRIs at the same or similar level. A single R-peak detection method
was not qualified on this database. Hence, we proposed a method combining five commonly used
R-peak detection methods to get high-quality RRIs from noisy ECGs.

The five popular R-peak detection methods applied in this study were ‘Pan-Tompkins’ [43,44],
‘jqrs’ [45], ‘mteo’ [46], ‘nqrs’ [47], and ‘sixth power’ [48]. Each R-peak detection method has its own
advantages. Details of the proposed method to get high-quality RRIs from noisy ECGs are as follows:

1. Detect R peaks of the ECG samples with five detection methods. Five sets of initial detection
results were obtained.

2. Categorize the ECG sample by template matching and select weights by the category. There were
five categories in total that corresponding to five sets of weights. A set of weights included five
weights corresponding to five detection methods. For a specific kind of ECG signal, the method
with better performance was assigned more weight.

3. Calculate the “scores” of each R-peak annotation in five sets of detection results in (1) based on
the weights in (2). A high score indicated that the annotation might be correct.

The five sets of R detection results were merged into a vector, and the scores of the initial R-peak
annotations obtained in Step (1) were calculated one by one.

First, to calculate the score of R-peak annotation j, the score was calculated based on the weight of
the detection method that marked annotation j.

Then, find out whether there were other R-peak annotations marked by other four methods in the
left or right range (i.e., within 50 ms around the center of annotation j) of annotation j. There would be
some deviation between the results of several detection methods. When other annotations within the
range were more concentrated on annotation j, it is more likely that j was a correct R-peak annotation.
Therefore, the score of annotation j was inversely related to the distances from it to other annotations
within the range. The score of R-peak annotation j was defined in expression (1).

score j = weight j

∑
i

f s·weighti

100·
∣∣∣annotation j − annotationi

∣∣∣ , (1)

where weight j is the weight corresponding to the detection method that marked annotation j, annotationi
is the annotation within the range, f s is the sampling rate of ECG signals.

Finally, a threshold was used to filter out the R-peak annotations with high scores.

threshold = 0.8·mean, (2)

where mean is the average score of the five R-peak annotations before the annotation being calculated.
The parameters were adjusted according to the accuracy of the data set.
A more accurate R peak position were obtained. Figure 1 shows examples of the R peak

labeling results.
All detected RR time series were carefully checked with artifacts, ectopic beats or outliers.

Thus, in this study, the RR intervals are the same meaning of NN intervals. Outliers would have
a certain impact on the results of HRV analysis. Here we chose the Thompson algorithm [49] to
find outliers in the RRIs, which divided the original sequence into small windows according to the
customized length to find out outliers and then to replace them with the average of adjacent points.
In this study, four windows with lengths of 15, 50, 100, and 200 data points were selected to remove
outliers. Figure 2 shows the results of using Thompson algorithm to eliminate outliers.
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2.4. HRV Metrics

In this study, we evaluated the variability of healthy HRV mainly based on the widely-used HRV
linear metrics (i.e., time-domain and frequency-domain) and nonlinear metrics. All HRV metrics were
analyzed under nine different recording scenarios, including sleeping at night, sitting (reading), lying
down (reading) separately on the left side, right side and the back, brisk walking and free-running
daily activities separately in the early morning, noon and evening. All indices and their definitions
analyzed in this study are shown in Table 2. We used the PhysioNet Cardiovascular Signal Toolbox [50]
to perform indicator calculations, except for fuzzy entropy and multi-scale fuzzy entropy (MATLAB
codes from Hamed Azami and Javier Escudero Rodriguez [51,52]) and permutation entropy and
multi-scale permutation entropy (MATLAB codes provided by Gaoxiang Ouyang [53,54]).

Table 2. Heart rate variability (HRV) metrics analyzed in this study.

Parameter (Unit) Description

Linear Metrics

Time-domain

Num-RR The number of RR intervals analyzed in HRV metrics
RR-mean (ms) Mean of RR intervals

RR-median (ms) Median of RR intervals
SDNN (ms) Standard deviation of RR intervals
RMSSD (ms) Root mean square of successive RR interval differences
SDSD (ms) Standard deviation of successive RR interval differences

SDANN (ms) The standard deviation of the average value every 5 min in the RR interval
NN50 The number of successive RR intervals that differ by more than 50 ms

pNN50 (%) Percentage of successive RR intervals that differ by more than 50 ms

Frequency-domain

TP (ms2) Absolute power of total frequency band (≤0.4 Hz)
VLF (ms2) Absolute power of the very-low-frequency band (0.003–0.04 Hz)
LF (ms2) Absolute power of the low-frequency band (0.04–0.15 Hz)
HF (ms2) Absolute power of the high-frequency band (0.15–0.4 Hz)

LF-percent (%) Percentage of LF in VLF, LF and HF power
HF-percent (%) Percentage of HF in VLF, LF and HF power

LF-HF-ratio Ratio of LF-to-HF power

Nonlinear Metrics

DFA-alpha1 Short-term correlation (fractal interval 4–15) in detrended fluctuation analysis
DFA-alpha2 Long-term correlation (fractal interval 16–64) in detrended fluctuation analysis

ApEn Approximate entropy
SampEn Sample entropy
FuzzyEn Fuzzy entropy

PeEn Permutation entropy
MSE Multi-scale entropy
MFE Multi-scale fuzzy entropy
MPE Multi-scale permutation entropy

Complexity1–4 Sum of sample entropy for 1–4 scales of MSE
Complexity1–10 Sum of sample entropy for 1–10 scales of MSE
Complexity1–20 Sum of sample entropy for 1–20 scales of MSE

2.4.1. Linear HRV Metrics

Linear HRV metrics include time-domain indices and frequency domain indices. Time-domain
indices quantify the amount of variability in measurements of the time period between successive
heartbeats. For example, SDNN is used to assess the size of the overall change in heart rate,
while SDANN relates to the variance below the 0.0033 Hz spectral frequency. RMSSD, SDSD, NN50
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and pNN50 reflect the beat-by-beat changes in heart rate, that is, the size of the short-term changes in
heart rate.

Frequency-domain measurements estimate the distribution of absolute or relative power at four
frequency bands. The Task Force of the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology (1996) divided heart rate oscillations into ULF, VLF, LF, and
HF bands (see Table 2). ULF usually requires long-term recordings of Holter monitoring, and thus was
not included in this study.

2.4.2. Nonlinear HRV Metrics

Heartbeat is a chaotic dynamic process. The complex interactions between electrophysiology,
hemodynamics, autonomic nervous system, fluid regulation and other systems lead to nonlinear
phenomena. The oscillations of a healthy heart are complex and nonlinear. The variability of heart
rate provides the flexibility to rapidly cope with an uncertain and changing environment. Thus,
the traditional linear HRV metrics are not enough to characterize the complex dynamics of generation
of the heartbeat. Nonlinear analysis methods differ from the conventional linear HRV methods
because they do not assess the magnitude of variability but rather the unpredictability, fractability and
complexity of RRIs (or IBIs) time series, which results from the complexity of the mechanisms that
regulate HRV. In this case, the nonlinear method is of great value in analyzing the RRIs time series.

This section introduces approximate entropy (ApEn) [8], fuzzy entropy (FuzzyEn) [9,51],
sample entropy (SampEn) [10], permutation entropy (PeEn) [11,53], detrending fluctuation analysis
(DFA, alpha1 and alpha2) [7], multi-scale entropy (MSE) [12], multi-scale fuzzy entropy (MFE) and
multi-scale permutation entropy (MPE). Such metrics have potentially important applications with
respect to evaluating both dynamical models of biologic control systems and bedside diagnostics.
For example, a wide class of disease states, as well as aging, appear to degrade physiologic information
content and reduce the adaptive capacity of the individual. Loss of complexity, therefore, has been
proposed as a generic feature of pathologic dynamics.

• Approximate Entropy (ApEn)

ApEn is a conventional measure to quantify the irregularity or complexity of time series. It reflects
the probability of new subsequences, which is a conditional probability method to measure the
possibility of new information in time series. Therefore, the more complex time series corresponds to
the larger ApEn.

1. For a given time sequence u(i) : 1 ≤ i ≤ N and given r and m, reconstruct to obtain (N − m + 1)
subsequences X(i) = u(i), u(i + 1), u(i + 2), . . . , u(i + m− 1).

2. Calculate the distanced dm[X(i), X( j)] between any two reconstructed subsequences. The distance
is determined by the maximum difference between the corresponding position elements of the
two sequences, including the distance when i = j.

3. Calculate the ratio Cm
i (r) of the number of distances less than r:

Cm
i (r) =

num(dm(X(i), X( j)) < r)
N −m + 1

, (3)

4. Calculate the average similarity rates Φm(r) and Φm+1(r) when the number of subsequences are
m and m + 1:

Φm(r) =

∑N−m+1
i=1 log

(
Cm

i (r)
)

N −m + 1
, (4)

5. Approximate entropy:
ApEn = Φm(r) −Φm+1(r), (5)
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• Sample Entropy (SampEn)

SampEn is an improved complexity measurement based on the concept of ApEn. The initial
calculation process is the same as ApEn.

SampEn is calculated as:

SampEn = − log
[

Φm+1(r)
Φm(r)

]
, (6)

• Fuzzy Entropy (FuzzyEn)

FuzzyEn is improved on the basis of SampEn, which describes the probability of a new pattern
in a complex system containing noise. It is the entropy of a fuzzy set, which loosely represents the
information of uncertainty.

1. Different from step a) in ApEn, get X(i) = [u(i), u(i + 1), u(i + 2), . . . , u(i + m− 1) − u0(i)].

u0(i) =
1
m

m−1∑
j=0

u(i + j), (7)

2. Calculate the distance dm
ij [X(i), X( j)] (i , j) between any two reconstructed subsequences.

3. Introduce fuzzy membership function Am
ij (r) and calculate the average Cm

i (r) for each i:

Am
ij (r) = e−(

dm
ij
r )

2

, Cm
i (r) =

∑N−m+1
i=1, j,i Am

ij (r)

N −m
, (8)

4. Calculate the average similarity rates Φm(r) and Φm+1(r) when the number of subsequences are
m and m + 1:

Φm(r) =

∑N −m+1
i=1 Cm

i (r)

N −m + 1
, (9)

5. Fuzzy entropy:

FuzzyEn = − log
[

Φm+1(r)
Φm(r)

]
, (10)

• Permutation Entropy (PeEn)
• PeEn is similar to ApEn, SampEn and FuzzyEn, which are all used to measure the complexity of

time series. PeEn introduces the idea of permutation when calculating the complexity between
reconstructed subsequences.

1. Consistent with step a) in ApEn, get X(i).
2. Incremental sorting is performed inside each X(i) and mapped to m! kinds of permutations.

The internally sorted order of X forms a symbol sequence Y(i), and its probability distribution is
represented by P(i).

3. Permutation entropy:

PeEn = −

∑N−−m+1
i=1 P(i) log(P(i))

ln(m!)
, (11)

• Detrended Fluctuation Analysis (DFA)

DFA is a scaling method commonly used for detecting long-range correlations in non-stationary
time series. It has two important advantages over other scaling analysis: it reduces noise effects and
removes local trends, it is relatively unaffected by any non-stationarities.
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In the standard DFA, basically, a time series is integrated to obtain a type of random-walk profile.
Then, this sequence is divided into non-overlapping boxes of equal size n. In each box, the local
trend is estimated by an m-degree polynomial fitting. In a subsequent step, the root-mean-square
fluctuation, denoted by Fm(n), of the difference between the integrated sequence and the polynomial
fits is calculated for each n. Finally, assuming that such fluctuations meet a power-law with respect to
the box size, a scaling factor α is computed as the slope of the following fluctuation plot.

F
def
=

{
log(n) versus log(Fm(n))

}
, (12)

• Multi-Scale Entropy (MSE)

Disease and aging will reduce the physiological information and the adaptability of individuals,
and the complexity of physiological indicators will be reduced. However, some conditions are associated
with highly unstable fluctuations, such as arrhythmias, and the increase in single-scale entropy of such
pathological signals contradicts the common perception that the complexity of physiological indicators
decreases under pathological conditions. To solve this problem, MSE is proposed.

MSE analyses the complexity of time series from multiple time scales. The algorithm consists of
three steps:

1. Time series coarse graining: for the given time series u(i) : 1 ≤ i ≤ N, construct a continuous
coarse-grained time series yτ:

yτ( j) =
1
τ

jτ∑
i=( j−1)τ+1

u(i), 1 ≤ j ≤ N/τ, (13)

where τ is the scale factor, as τ = 1, 2, 3...
2. Calculate the SampEn of each coarse-grained time series yτ.
3. Draw the graph line with the scale factor τ as the independent variable and the SampEn of the

corresponding scale sequence as the dependent variable.

Similarly, multi-scale fuzzy entropy (MFE) and multi-scale permutation entropy (MPE)
were calculated.

When calculating ApEn, SampEn and FuzzyEn, the embedding dimension m was set to 2, and the
similar tolerance r was set to 0.15 times the standard deviation of the sequence. In PeEn, the embedding
dimension was set to 3. In the DFA analysis, the fractal interval was set to 4–64, alpha 1 corresponded
to 4–15, and alpha 2 corresponded to 16–64. In this study protocol, each task proceeded for 30 to
60 min, thus the scale factor τ in MSE/MFE/MPE was set to 1~20 for 60-min tasks and 1~10 for 30-min
tasks (i.e., lying reading tasks) to ensure the reliability of large-scale analysis. A representative MSE
curve of the 60-min RRIs time series was shown in Figure 3, here we constructed 20 coarse-grained
time series from the original RRIs. The complexity indices were defined by calculating the area
under the MSE curve (see definitions in Table 2), i.e., Complexity1-20 (area under the whole MSE
curve), Complexity1-10 (area under the scales 1-10), and Complexity1-4 (area under the small scales 1–4,
which mainly demonstrated the influence of breathing or vagal tone).

2.5. Statistical Analysis

IBM SPSS Statistics 21.0 was used for statistical analysis in this study. The main purpose of
statistical analysis is to determine whether there are significant differences between specific groups.

One-sample K-S hypothesis test was used to test whether it follows a normal distribution
(significance level α = 0.05). For the population followed a normal distribution, one-way ANOVA test
was performed on multiple sets of control samples and independent sample t-test was performed for
the analysis between the two sets of samples. For the population did not follow a normal distribution,
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non-parametric tests were performed. The Mann–Whitney U test was used for the comparison of the
two sets of samples, and the Kruskal–Wails H test was used for multiple samples. The significant
difference was defined as the p-value < 0.05.
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3. Results

We firstly observed the 20-h circadian rhythm of the real-time RR intervals in healthy young college
subjects. Then, the variability of healthy HRV metrics was presented from the following five different
categories: (1) different routine activities in daily life (free-running daily activities, reading, sleeping
and brisk walking); (2) different recording time period in the same day during free-running daily
activities (morning, noon and evening); different body position of (3) sitting and lying, and (4) lying
on the left side, right side and supine; (5) gender influence (males and females). Finally, we selected
SDNN, LF-HF-ratio, and Complexity1-10 as representative results to show the overall variation of
healthy HRV in the nine different states within the 20-h recording period.

3.1. Temporal Fluctuations and 20-Hour Trend of RR Intervals

The 20-h dynamic fluctuations and trend of RR intervals (inverse of instantaneous heart rates)
affected by circadian rhythm and protocol tasks could be observed in Figure 4. The shaded part
represents the standard deviation, and the curve in the middle represents the mean RR intervals
of 56 healthy volunteers. It can be observed that the RR values are higher and more stable from
23:00–7:00 (night sleeping, lower heat rate), and dramatically decreased immediately after waking
up in the morning with a visible local nadir, which indicates the heart rate morning peak. The RR
intervals dropped into another nadir during brisk walking at around 14:15–15:00. From 9:00–11:30
(reading quietly), the heart rate slows down, and RR reaches a small peak, but it is still lower than
the sleep state. The observed overall fluctuations and trends are consistent with existing theory and
common sense, which proves that the recorded ECG data and extracted RR time series are reliable.

3.2. Variability of HRV under Different States in Daily Life

To evaluate the variability of HRV in different daily scenarios, four different routine daily activities
were considered, including FreeDA, reading, sleeping and brisk walking. In this section, the HRV
results of FreeDA for each subject were obtained by taking the averaged value of HRV metrics in the
morning, noon and evening for this subject, and the reading state HRV was analyzed only while sitting.
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Comparison results of HRV metrics under the four different daily activities were shown in Table 3:

• Significant differences were observed for all HRV metrics among the four different states in daily
life. Some of the HRV metrics (i.e., RR-mean, RR-median, SampEn, FuzzyEn and Complexity1-20)
existed significant difference between any two states. For the other HRV metrics, significant
differences were found between most two daily life states.

• For RR-mean, RR-median, RMSSD, SDSD, NN50, pNN50, TP, HF, HF-percentage, DFA-alpha2,
SampleEn, and FuzzyEn, sleep state had the highest values, followed by reading, FreeDA, and brisk
walking had the lowest values, which is sleeping > reading > FreeDA > brisk walking. The
inversed trend was found in LF-percent, LF-HF-ratio and DFA-alpha1.

• ApEn and PeEn had similar trend, which is brisk walking > sleeping > FreeDA > reading.
• For the frequency-domain metrics, like VLF and LF, we got reading > sleeping > FreeDA > brisk

walking. LF-percent also gave the lowest values during sleeping, but very close values during the
other three activities.

• Interestingly, MSE measured Complexity1-4 and Complexity1-20 gave the highest values during
reading and lowest values during brisk walking.

The comparative multi-scale based entropy curves measured by MSE, MFE and MPE was plotted
in Figure 5:

• Significant differences were found among four different daily scenarios at all scales (1–20) in MSE
(Figure 5a), MFE (Figure 5b) and MPE (Figure 5c) curves.

• The overall trend of MSE and MFE curves were relatively close, and the entropy values during
sleep shows a downward trend as the scales increase, while the other three daytime states slowly
rise on the small scales (1–5) and then towards stability on large scales (6–20) showing reading >

FreeDA > sleeping > brisk walking, which is consistent with Complexity1-20 shown in Table 3.
• The trend of MPE curve was quite different from MSE and MFE. The entropy values at small

scales (1–10) were unstable for different activities, while it could be found that sleeping > reading
≈ FreeDA > brisk walking at large scales (11–20).
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3.3. HRV Metrics Varied with Recording Time in the Same Day during Free-Running Daily Activities

RR interval time series obtained from subjects while they were doing one-hour free-running daily
activities separately in the morning, noon and evening of the same day were included in this section.
Comparison results of HRV metrics in the three time period were presented in Table 4 and Figure 6.
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Table 3. Variability of HRV under different states of daily life (data was presented as mean ± standard
deviation). * p < 0.05.

Sleep (n = 52) Read-Sit (n = 51) Walk-Brisk (n = 53) FreeDA (n = 46) p

Num-rr 3484.04 ± 556.64 4602.16 ± 601.85 4224.68 ± 855.01 4933.96 ± 476.43 0.000 *
RR-mean 1011.59 ± 134.45 774.62 ± 97.27 580.16 ± 90.77 724.41 ± 59.96 0.000 *

RR-median 1021.11 ± 141.76 779.89 ± 99.18 563.76 ± 93.68 727.49 ± 62.42 0.000 *
SDNN 93.37 ± 30.33 90.29 ± 38.44 71.95 ± 39.38 94.62 ± 28.81 0.001 *

RMSSD 69.25 ± 29.34 55.88 ± 56.97 25.31 ± 19.77 44.82 ± 23.61 0.000 *
SDSD 69.26 ± 29.35 55.88 ± 56.97 25.32 ± 19.77 44.82 ± 23.61 0.000 *

SDANN 45.83 ± 23.07 44.10 ± 21.24 56.75 ± 40.11 62.31 ± 24.10 0.001 *
NN50 1342.75 ± 598.85 962.53 ± 659.97 221.25 ± 260.81 798.13 ± 421.37 0.000 *

pNN50 40.09 ± 19.64 22.09 ± 15.76 5.84 ± 7.33 16.34 ± 8.76 0.000 *

TP 1,665,810.63 ±
449,877.49

989,060.80 ±
343,791.86

666,929.99 ±
309,226.21

870,813.42 ±
206,973.84 0.000 *

VLF 11,723.92 ± 9810.59 11,827.35 ±
10,470.17 4898.31 ± 8354.71 9386.96 ± 4766.43 0.000 *

LF 4812.40 ± 4022.08 5393.98 ± 5207.24 2360.54 ± 5377.76 4248.50 ± 2516.23 0.004 *
HF 4585.07 ± 3643.85 2393.98 ± 2402.09 630.69 ± 909.49 1730.02 ± 1257.34 0.000 *

LF-HF-ratio 1.33 ± 0.85 2.77 ± 1.13 4.33 ± 0.97 3.28 ± 1.51 0.000 *
LF- percent 32.13 ± 1.31 33.34 ± 1.12 33.92 ± 1.35 33.61 ± 0.84 0.000 *
HF- percent 31.99 ± 2.15 29.87 ± 1.63 27.13 ± 2.78 29.23 ± 1.17 0.000 *
DFA-alpha1 0.93 ± 0.21 1.12 ± 0.21 1.24 ± 0.18 1.17 ± 0.13 0.000 *
DFA-alpha2 1.12 ± 0.09 1.05 ± 0.10 1.04 ± 0.13 1.05 ± 0.07 0.000 *

ApEn 0.85 ± 0.42 0.48 ± 0.29 1.08 ± 0.43 0.51 ± 0.19 0.000 *
SampEn 1.72 ± 0.23 1.48 ± 0.30 0.94 ± 0.39 1.29 ± 0.19 0.000 *
FuzzyEn 2.63 ± 0.29 2.31 ± 0.42 1.53 ± 0.43 2.08 ± 0.23 0.000 *

PeEn 2.52 ± 0.06 2.49 ± 0.06 2.54 ± 0.04 2.50 ± 0.04 0.000 *
Complexity1–4 6.08 ± 0.81 6.32 ± 1.04 3.99 ± 1.53 5.61 ± 0.72 0.000 *
Complexity1–20 27.47 ± 4.42 33.62 ± 4.88 23.95 ± 6.65 30.48 ± 3.63 0.000 *

Table 4. Variability of HRV in different time periods during free-running daily activities (data was
presented as mean ± standard deviation). * p < 0.05.

Morning (n = 50) Noon (n = 49) Evening (n = 51) p

Num-rr 4886.50 ± 743.77 4962.10 ± 562.09 4869.39 ± 642.39 0.755
RR-mean 718.34 ± 86.67 725.07 ± 82.57 727.86 ± 96.37 0.859

RR-median 717.67 ± 90.38 726.35 ± 86.41 733.51 ± 104.11 0.699
SDNN 99.74 ± 41.72 86.33 ± 28.85 93.57 ± 42.13 0.220

RMSSD 44.68 ± 42.64 38.05 ± 12.50 49.77 ± 44.04 0.485
SDSD 44.68 ± 42.65 38.06 ± 12.51 49.77 ± 44.04 0.485

SDANN 66.63 ± 34.48 57.46 ± 33.46 55.38 ± 31.92 0.201
NN50 720.66 ± 668.94 731.57 ± 450.86 827.71 ± 568.43 0.585

pNN50 15.31 ± 13.47 15.41 ± 10.20 18.04 ± 13.76 0.469
TP 877,506.52 ± 358,835.21 855,094.12 ± 243,956.73 888,768.21 ± 229,642.28 0.834

VLF 9845.47 ± 8974.84 7926.83 ± 4530.85 9557.84 ± 6391.30 0.331
LF 4679.59 ± 4804.97 3581.90 ± 1917.09 4381.01 ± 4258.90 0.924
HF 1833.74 ± 2495.58 1547.95 ± 1247.57 1724.11 ± 1911.60 0.765

LF-HF-ratio 3.58 ± 2.13 2.92 ± 1.41 3.25 ± 2.02 0.222
LF- percent 33.74 ± 1.30 33.61 ± 0.91 33.54 ± 1.20 0.676
HF- percent 29.02 ± 1.87 29.52 ± 1.45 29.28 ± 1.71 0.342
DFA-alpha1 1.19 ± 0.20 1.18 ± 0.14 1.14 ± 0.22 0.358
DFA-alpha2 1.04 ± 0.10 1.03 ± 0.09 1.04 ± 0.11 0.759

ApEn 0.53 ± 0.29 0.52 ± 0.27 0.51 ± 0.27 0.950
SampEn 1.17 ± 0.30 1.41 ± 0.33 1.37 ± 0.34 0.001 *
FuzzyEn 1.97 ± 0.37 2.20 ± 0.38 2.16 ± 0.42 0.009 *

PeEn 2.49 ± 0.06 2.51 ± 0.05 2.52 ± 0.05 0.027 *
Complexity1–4 5.26 ± 1.13 6.04 ± 1.16 5.76 ± 1.23 0.005 *
Complexity1–20 30.03 ± 5.20 31.98 ± 4.74 30.43 ± 5.77 0.152
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• No significant difference was found in all of linear HRV metrics (time- and frequency-domain),
as well as nonlinear HRV metrics like DFA-alpha1, DFA-alpha2, ApEn and Complexity1-20.

• Significant differences were found in nonlinear HRV metrics like SampEn, FuzzyEn, PeEn and
Complexity1-4, consistently showing entropy-based complexity: noon > evening > morning. The
statistical significances were mainly from morning vs noon and morning vs evening, and no
significant difference was found between noon and evening. A similar trend was found in
Complexity1-20, but the group difference was not statistically significant.

• In Figure 6, the overall trends of the three sets of MSE, MFE and MPE curves were relatively close.
The difference among MSE curves was more obvious, the entropy values at small scales (1–4)
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measured in the morning is significantly lower than that at noon and in the evening. The MSE
curve measured at noon is the highest, but the difference was not statistically significant at large
scales. Significant differences were found in MPE at some specific scales, e.g., scales 1, 4–7, 16, 18
and 20.

3.4. Variability of HRV Metrics Influenced by Body Postures

3.4.1. Sitting and Lying

Subjects were asked to sit and then lie down while reading general science books quietly. Lying
posture consisted of lying on the left, right and back. HRV metrics analyzed for sitting and lying were
presented in Table 5 and Figure 7:

• Significant differences were found in linear HRV metrics (time- and frequency-domain) like
RR-mean, RR-median, SDNN, SDANN, NN50, pNN50, TP, VLF, LF, HF, LF-HF-ratio, LF-percent
and HF-percent, consistently showing lying > sitting, except LF-percent and HF-percent where
sitting > lying. RMSSD and SDSD also had similar trend of lying > sitting, but the differences
were not statistically significant.

• No significant difference was found in nonlinear HRV metrics like DFA-alpha1, DFA-alpha2,
SampEn and Complexity1-4.

• Significant differences were found in ApEn, FuzzyEn, PeEn and Complexity1-10, where FuzzyEn
and PeEn showed lying > sitting, and ApEn and Complexity1-10 showed sitting > lying.

• For the multi-scale based entropy curves in Figure 7, MSE, MFE and MPE performed uniquely.
Complexity of RR intervals while sitting was significantly higher than lying posture at large scales
(3–10) in MSE, which was inversed in MFE at scale 1 and MPE at scales 1, 3 and 4.

Table 5. Variability of HRV from sitting and lying posture (data was presented as mean ± standard
deviation). * p < 0.05.

Sitting (n = 51) Lying (n = 50) p

Num-rr 4602.16 ± 601.85 4945.32 ± 1394.07 0.114
RR-mean 774.62 ± 97.27 864.22 ± 112.48 0.000 *

RR-median 779.89 ± 99.18 877.40 ± 120.98 0.000 *
SDNN 90.29 ± 38.44 117.89 ± 38.75 0.001 *

RMSSD 55.88 ± 56.97 74.01 ± 48.06 0.087
SDSD 55.88 ± 56.97 74.02 ± 48.07 0.087

SDANN 44.10 ± 21.24 63.99 ± 29.48 0.000 *
NN50 962.53 ± 659.97 1562.64 ± 790.25 0.000 *

pNN50 22.09 ± 15.76 32.96 ± 16.34 0.001 *
TP 989,060.80 ± 343,791.86 2,395,637.74 ± 1,409,513.55 0.000 *

VLF 11,827.35 ± 10,470.17 24,402.23 ± 16,106.63 0.000 *
LF 5393.98 ± 5207.24 9570.96 ± 7491.56 0.002 *
HF 2393.98 ± 2402.09 5863.54 ± 5783.15 0.000 *

LF-HF-ratio 2.77 ± 1.78 2.08 ± 1.09 0.021 *
LF- percent 33.34 ± 1.12 32.91 ± 0.77 0.027 *
HF- percent 29.87 ± 1.63 30.62 ± 1.59 0.021 *
DFA-alpha1 1.12 ± 0.21 1.04 ± 0.19 0.054
DFA-alpha2 1.05 ± 0.10 1.07 ± 0.11 0.440

ApEn 0.48 ± 0.29 0.31 ± 0.23 0.002 *
SampEn 1.48 ± 0.30 1.52 ± 0.31 0.564
FuzzyEn 2.31 ± 0.42 2.51 ± 0.34 0.008 *

PeEn 2.49 ± 0.06 2.53 ± 0.05 0.000 *
Complexity1–4 6.32 ± 1.04 6.00 ± 1.11 0.135
Complexity1–20 33.62 ± 4.88 30.11 ± 5.33 0.001 *
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3.4.2. Lying in Different Body Postures

Here, influence of three different lying postures (i.e., lying on the left, lying on the right and
lying on the back) were evaluated in Table 6 and Figure 8. We found that, except for num-rr, there
was no significant difference in any of the HRV metrics among different lying postures. However,
there was the same trend of right > back > left in most of linear HRV measures like SDNN, RMSSD,
SDSD, NN50, VLF, LF and HF. Interestingly, the nonlinear HRV measures of SampEn, FuzzyEn, PeEn,
Complexity1-4 and Complexity1-10 indicated another trend that the lowest complexity appeared while
lying on the back.

3.5. Gender Influence

In this section, gender influence was evaluated under the involved seven states or scenarios for all
the analyzed HRV metrics. Results were shown in Table 7.
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Table 6. HRV metrics analyzed for different lying postures (data was presented as mean ± standard
deviation). * p < 0.05.

Left (n = 27) Right (n = 27) Back (n = 42) p

Num-rr 2161.37 ± 514.58 2120.67 ± 593.06 2914.69 ± 993.90 0.000 *
RR-mean 869.05 ± 107.37 891.25 ± 111.12 849.15 ± 126.95 0.349

RR-median 879.28 ± 118.93 901.70 ± 124.88 861.81 ± 134.61 0.451
SDNN 99.89 ± 40.50 115.24 ± 52.27 111.45 ± 40.90 0.409

RMSSD 66.66 ± 43.46 78.58 ± 63.12 73.28 ± 57.02 0.732
SDSD 66.68 ± 43.48 78.60 ± 63.13 73.29 ± 57.05 0.732

SDANN 46.16 ± 36.49 54.61 ± 42.69 57.83 ± 29.40 0.410
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Table 7. Male and female HRV analysis and comparison results table (data was presented as mean ± standard deviation). * p < 0.05.

Sleeping Morning (FreeDA) Sitting (Reading) Lying (Reading) Noon (FreeDA) Brisk Walking Evening (FreeDA)

Num-rr
Man 3276.93 ± 357.44 4707.07 ± 811.94 4412.07 ± 609.25 4795.88 ± 1300.25 4696.31 ± 383.53 3856.81 ± 771.09 4643.36 ± 522.01

Woman 3725.67 ± 651.09 5097.13 ± 605.91 4816.00 ± 526.98 5107.21 ± 1500.02 5262.57 ± 586.77 4606.69 ± 777.37 5144.57 ± 677.70
p 0.005 * 0.064 0.015 * 0.436 0.000 * 0.001 * 0.004 *

RR-mean
Man 1079.98 ± 106.03 746.97 ± 91.40 808.66 ± 102.30 898.11 ± 118.05 767.47 ± 71.03 620.78 ± 76.34 761.13 ± 99.87

Woman 931.80 ± 120.62 684.74 ± 68.36 736.32 ± 76.46 827.51 ± 95.41 677.13 ± 67.93 537.97 ± 86.27 687.35 ± 75.79
p 0.000 * 0.010 * 0.007 * 0.025 * 0.000 * 0.001 * 0.005 *

RR-median
Man 1095.25 ± 109.50 747.54 ± 99.37 816.69 ± 103.63 914.42 ± 127.92 767.85 ± 78.00 601.91 ± 81.19 769.80 ± 109.46

Woman 934.61 ± 126.43 682.61 ± 64.38 738.50 ± 76.59 837.29 ± 100.82 679.43 ± 71.02 524.15 ± 90.52 689.33 ± 78.82
p 0.000 * 0.010 * 0.004 * 0.023 * 0.000 * 0.002 * 0.005 *

SDNN
Man 104.23 ± 27.80 113.96 ± 42.44 103.72 ± 46.20 127.09 ± 40.57 92.61 ± 32.38 79.16 ± 41.34 107.45 ± 48.30

Woman 80.70 ± 28.66 83.04 ± 34.76 75.18 ± 17.86 107.92 ± 34.80 79.23 ± 22.92 64.47 ± 36.51 76.67 ± 25.06
p 0.004 * 0.008 * 0.007 * 0.080 0.106 0.177 0.006 *

RMSSD
Man 72.79 ± 29.00 53.82 ± 55.37 68.09 ± 75.21 78.96 ± 60.41 39.19 ± 10.43 26.85 ± 15.75 62.23 ± 55.37

Woman 65.11 ± 29.81 33.94 ± 14.28 42.14 ± 16.97 68.65 ± 29.96 36.77 ± 14.64 23.72 ± 23.45 34.60 ± 14.37
p 0.352 0.082 0.105 0.454 0.505 0.569 0.016 *

SDSD
Man 72.80 ± 29.00 53.83 ± 55.37 68.10 ± 75.22 78.97 ± 60.41 39.19 ± 10.44 26.86 ± 15.75 62.24 ± 55.38

Woman 65.12 ± 29.82 33.95 ± 14.28 42.14 ± 16.97 68.66 ± 29.96 36.77 ± 14.64 23.72 ± 23.46 34.60 ± 14.37
p 0.352 0.082 0.105 0.454 0.505 0.569 0.016 *

SDANN
Man 53.00 ± 25.07 74.02 ± 31.98 47.08 ± 25.33 64.77 ± 29.18 60.80 ± 38.18 63.09 ± 42.38 61.08 ± 35.39

Woman 37.47 ± 17.52 57.96 ± 35.96 40.75 ± 15.27 63.14 ± 30.41 53.68 ± 27.53 50.17 ± 37.30 48.43 ± 26.20
p 0.012 * 0.101 0.292 0.847 0.463 0.245 0.161

NN50
Man 1380.00 ± 582.14 850.59 ± 820.56 1110.33 ± 738.74 1497.73 ± 686.41 750.92 ± 398.49 236.56 ± 246.09 979.64 ± 591.03

Woman 1299.29 ± 627.46 568.13 ± 394.84 796.25 ± 524.83 1632.96 ± 899.11 709.70 ± 511.98 205.35 ± 279.26 642.74 ± 490.41
p 0.633 0.138 0.090 0.551 0.753 0.668 0.034 *

pNN50
Man 43.38 ± 19.49 18.35 ± 15.98 26.33 ± 17.41 32.69 ± 16.12 16.45 ± 9.45 6.70 ± 7.58 21.99 ± 14.99

Woman 36.26 ± 19.53 11.75 ± 8.80 17.33 ± 12.35 33.25 ± 16.91 14.23 ± 11.08 4.94 ± 7.09 13.23 ± 10.51
p 0.195 0.072 0.041 * 0.905 0.453 0.387 0.022 *

TP
Man 1,860,802.31 ± 371,337.19 984,906.23 ± 437,538.33 1,102,124.05 ± 406,070.18 2,523,628.42 ± 1,407,752.56 963,705.06 ± 232,973.27 713,373.60 ± 327,305.49 975,248.48 ± 225,058.10

Woman 1,438,320.34 ± 431,990.30 751,428.60 ± 172,534.79 861,864.64 ± 196,599.66 2,256,981.17 ± 1,428,257.91 732,316.53 ± 196,143.10 618,700.08 ± 287,625.79 783,487.88 ± 191,270.82
p 0.000 * 0.015 * 0.011 * 0.510 0.001 * 0.269 0.002 *

VLF
Man 13,803.55 ± 7755.53 12,521.56 ± 10,803.76 16,719.86 ± 12,214.49 30,402.21 ± 18,226.87 9881.73 ± 4844.70 4968.93 ± 6312.48 11,674.82 ± 7322.63

Woman 9297.67 ± 11,463.08 6703.98 ± 4727.77 6323.26 ± 3154.14 17,902.24 ± 10,334.18 5716.94 ± 2914.77 4824.98 ± 10,185.00 6980.65 ± 3792.46
p 0.099 0.016 * 0.000 * 0.004 * 0.001 * 0.951 0.008 *

LF
Man 5109.36 ± 2928.40 6152.54 ± 5901.79 7544.14 ± 6149.00 11,400.63 ± 8214.23 4333.31 ± 1970.92 2338.24 ± 3146.62 5766.09 ± 5054.16

Woman 4465.95 ± 5056.84 2950.46 ± 2114.31 2975.05 ± 2161.38 7588.81 ± 6192.12 2732.48 ± 1477.44 2383.70 ± 7060.87 2694.82 ± 2111.65
p 0.570 0.013 * 0.001 * 0.072 0.003 * 0.976 0.009 *

HF
Man 4507.65 ± 3374.09 2250.66 ± 3168.09 3043.96 ± 2986.95 5786.14 ± 6004.52 1580.03 ± 1118.57 742.87 ± 986.40 1971.24 ± 2287.27

Woman 4675.38 ± 4007.69 1344.31 ± 1243.33 1662.75 ± 1184.92 5947.39 ± 5661.13 1511.68 ± 1404.08 514.19 ± 825.16 1423.26 ± 1308.47
p 0.870 0.204 0.033 * 0.923 0.851 0.365 0.313
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Table 7. Cont.

Sleeping Morning (FreeDA) Sitting (Reading) Lying (Reading) Noon (FreeDA) Brisk Walking Evening (FreeDA)

LF-HF-ratio
Man 1.54 ± 0.94 3.89 ± 2.01 3.15 ± 1.79 2.49 ± 1.20 3.37 ± 1.50 4.40 ± 2.19 3.71 ± 2.15

Woman 1.08 ± 0.67 3.22 ± 2.25 2.34 ± 1.69 1.64 ± 0.75 2.41 ± 1.13 4.26 ± 2.89 2.70 ± 1.75
p 0.049 * 0.276 0.104 0.005 * 0.016 * 0.840 0.076

LF- percent
Man 32.30 ± 1.26 33.92 ± 1.04 33.56 ± 1.03 33.07 ± 0.70 33.81 ± 1.04 34.21 ± 1.21 33.92 ± 1.14

Woman 31.93 ± 1.37 33.53 ± 1.55 33.09 ± 1.19 32.73 ± 0.81 33.39 ± 0.70 33.62 ± 1.44 33.08 ± 1.13
p 0.317 0.322 0.136 0.118 0.102 0.107 0.122

HF- percent
Man 31.52 ± 2.12 28.78 ± 1.67 29.55 ± 1.41 30.09 ± 1.44 29.16 ± 1.16 27.41 ± 2.68 29.13 ± 1.40

Woman 32.54 ± 2.09 29.31 ± 2.08 30.23 ± 1.82 31.20 ± 1.57 29.93 ± 1.65 26.84 ± 2.90 29.45 ± 2.06
p 0.086 0.322 0.136 0.012 * 0.062 0.457 0.535

DFA-alpha1
Man 0.97 ± 0.22 1.22 ± 0.21 1.16 ± 0.25 1.11 ± 0.19 1.22 ± 0.13 1.24 ± 0.20 1.14 ± 0.25

Woman 0.88 ± 0.17 1.16 ± 0.18 1.08 ± 0.16 0.97 ± 0.17 1.12 ± 0.14 1.24 ± 0.17 1.14 ± 0.18
p 0.086 0.318 0.181 0.010 * 0.013 * 0.876 0.955

DFA-alpha2
Man 1.14 ± 0.10 1.04 ± 0.11 1.04 ± 0.11 1.09 ± 0.10 1.03 ± 0.08 1.02 ± 0.13 1.02 ± 0.11

Woman 1.08 ± 0.08 1.04 ± 0.10 1.06 ± 0.10 1.04 ± 0.11 1.03 ± 0.09 1.06 ± 0.13 1.07 ± 0.10
p 0.019 * 0.960 0.399 0.151 0.874 0.272 0.064

ApEn
Man 0.77 ± 0.34 0.44 ± 0.25 0.42 ± 0.31 0.27 ± 0.18 0.43 ± 0.19 0.95 ± 0.41 0.39 ± 0.17

Woman 0.94 ± 0.49 0.63 ± 0.32 0.54 ± 0.24 0.35 ± 0.28 0.61 ± 0.32 1.22 ± 0.43 0.65 ± 0.32
p 0.162 0.019 * 0.135 0.230 0.017 * 0.024 * 0.002 *

SampEn
Man 1.72 ± 0.25 1.12 ± 0.29 1.45 ± 0.36 1.41 ± 0.27 1.41 ± 0.31 1.00 ± 0.36 1.31 ± 0.38

Woman 1.72 ± 0.19 1.23 ± 0.30 1.52 ± 0.225 1.63 ± 0.32 1.41 ± 0.35 0.87 ± 0.41 1.43 ± 0.27
p 0.938 0.204 0.374 0.010 * 0.942 0.222 0.202

FuzzyEn
Man 2.69 ± 0.28 1.96 ± 0.42 2.30 ± 0.52 2.45 ± 0.31 2.24 ± 0.32 1.65 ± 0.37 2.12 ± 0.47

Woman 2.55 ± 0.30 1.98 ± 0.31 2.31 ± 0.29 2.58 ± 0.37 2.16 ± 0.44 1.42 ± 0.46 2.20 ± 0.35
p 0.096 0.863 0.888 0.176 0.456 0.049 * 0.495

PeEn
Man 2.53 ± 0.04 2.49 ± 0.06 2.49 ± 0.07 2.53 ± 0.05 2.50 ± 0.05 2.53 ± 0.04 2.52 ± 0.05

Woman 2.50 ± 0.07 2.49 ± 0.05 2.49 ± 0.05 2.53 ± 0.04 2.51 ± 0.04 2.55 ± 0.03 2.51 ± 0.04
p 0.046 * 0.929 0.772 0.624 0.192 0.013 * 0.477

Complexity1–4

Man 5.97 ± 0.91 5.10 ± 1.09 6.25 ± 1.24 5.76 ± 1.04 6.18 ± 1.12 4.35 ± 1.37 5.60 ± 1.36
Woman 6.21 ± 0.67 5.45 ± 1.18 6.40 ± 0.78 6.26 ± 1.15 5.88 ± 1.22 3.61 ± 1.61 5.95 ± 1.05

p 0.311 0.281 0.610 0.114 0.374 0.080 0.321

Complexity1–10

Man 14.15 ± 2.34 14.10 ± 2.71 16.35 ± 2.89 14.63 ± 2.69 16.18 ± 2.56 12.13 ± 3.30 14.69 ± 3.33
Woman 14.78 ± 1.66 14.82 ± 2.63 16.59 ± 1.96 15.35 ± 2.61 15.33 ± 2.56 10.22 ± 3.75 15.39 ± 2.36

p 0.276 0.349 0.734 0.342 0.251 0.054 0.398

Complexity1–20

Man 26.76 ± 4.90 29.51 ± 5.44 32.56 ± 4.73 25.56 ± 6.17 29.70 ± 6.64
Woman 28.31 ± 3.72 30.63 ± 4.96 31.34 ± 4.76 22.28 ± 6.83 31.32 ± 4.46

p 0.211 0.454 0.373 0.072 0.322
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• Generally, males have significant bigger inter-beat RR intervals (i.e., slower heart rate) than females
under all seven scenarios (see RR-mean and RR-median in Table 7).

• For time-domain metrics, males had significant higher SDNN during sleeping, sitting (reading),
FreeDA in the morning and evening; other time-domain metrics was not influenced much by
gender, e.g., significant differences were found in RMSSD, SDSD and NN50 only during FreeDA
in the evening, and in SDANN only during sleeping at night; males had significant higher pNN50
than females during sitting and FreeDA in the evening.

• For frequency-domain metrics, males had significant higher TP, VLF and LF in most of scenarios
except brisk walking, sleeping (VLF and LF) and lying (TP and LF), and had higher LF-HF-ratio
during sleeping, lying and FreeDA at noon; other frequency metrics was not influenced much
by gender, e.g., males had significant higher HF only during sitting, lower HF-percentage only
during lying, and no significant difference was found in LF-percent.

• For nonlinear metrics, males had significant higher DFA-alpha1 during lying and FreeDA at
noon, higher DFA-alpha2 during sleeping, and lower ApEn during brisk walking and FreeDA in
the morning, noon and evening; other entropy measures were not influenced much by gender,
e.g., males had significant lower SampEn only during lying, and higher (borderline) FuzzyEn
only during brisk walking; significant differences were found in PeEn during sleeping and brisk
walking; no significant differences were found in MSE measured complexity metrics.

3.6. The Variability of MSE during the Whole Study Protocol

To present the overall changes of HRV during the whole study protocol, we selected three
conventional measures from each category of HRV metrics, e.g., SDNN in time-domain, LF-HF-ratio in
frequency-domain, and MSE based complexity in nonlinear analysis. Figure 9 shows the mean and
standard deviation of SDNN, LF-HF-ratio and Complexity1-10 for all subjects.
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4. Discussion

In this study, we focused our investigation on the variability of HRV influenced by data recording
conditions for healthy young subjects that have been frequently used as healthy controls in HRV
studies, and we did not study the influence of aging and disease. By grouping the HRV metrics into
five different categories, we found the following: (1) HRV metrics for healthy subjects, both linear
measures and nonlinear measures, were significantly influenced by routine life states and physical
activities, ECG recording time (morning, noon, evening), body postures, and gender. (2) Although
significant differences between sitting and lying were observed, no significant difference was found
among different lying positions. (3) Nonlinear measures were more sensitive to ECG recording time
than time- and frequency-measures. Thus, these findings demonstrated that the standardization of
ECG data collection and HRV analysis should be emphasized in HRV related studies.

Our findings are consistent with common sense and previously published results.
The cardiovascular system shows obvious daily rhythms in most physiologic parameters including HR
and blood pressure [55]. Generally, HRV parameters tend to increase during the night and decrease
during the day, but when HR suddenly changes from a low point at night to a higher daily value,
the variability around arousal is greater [56,57]. The lowest HRV in the morning [58] corresponds
to the period of the highest occurrence of ventricular tachycardia and sudden death [59–61]. When
doing more intense exercises (like brisk walking), compared with more relaxed daily activities, the
sympathetic nerve activity is stronger, the parasympathetic nerve activity is weak, the complexity
of HRV is lower, and the body’s ability to adapt to environmental changes will also be weakened.
In different time periods, the HRV changes less, but the complexity of the morning was significantly
lower than that of noon and evening. It may reflect that the morning is a more stressful state, which
is an important time for the body to wake up. The highest complexity is obtained at noon, which
may be related to biological rhythm and temperature. We also found that the influence of posture on
HRV is greater than that of different periods of the day. Sitting and lying postures showed obvious
differences in sympathetic and parasympathetic excitability and complexity. However, we didn’t find
significant difference in HRV between lying postures of left, right and supine positions. Similarly,
studies have shown that, from supine to standing, HR increased significantly, time-domain HRV
metrics decreased correspondingly. Frequency domain variables decreased significantly from supine
to sitting position [62].

We presented the MSE measured complexity, instead of MFE and MPE, in the Tables 2–7 and its
overall changes during the seven scenarios within 20-h in Figure 9. The multi-scale based entropy
analysis was firstly proposed by Costa et al. [12] using sample entropy, and named it MSE. MSE is
the original and also the most widely used multi-scale complexity measure in physiological signals,
such as RR intervals. For the past two decades, hundreds of research studies have applied MSE to
investigate problems ranging from heart disease, diabetes, traumatic brain injury, frailty in the elderly,
to neurological diseases, which demonstrated that the complexity of healthy physiologic systems is
higher than those with advanced aging or pathology [12]. Hence, it is important to know how to define
the baseline of ‘healthy MSE’ based on the observed variability influenced by data recording conditions.

Entropy curves of MFE and MPE are more stable than MSE during different life states or postures.
MFE and MPE are more applicable for time series with large noise interference, so they were less
influenced by the noises generated from different recording conditions, and thus didn’t show as much
variations as MSE in this study. On the other hand, small fluctuations caused by minor health problems
could not be quantified by MFE or MPE, either. MSE is more sensitive to RR time series fluctuations
than MFE and MPE, and even minor changes in complexity could be monitored by MSE, which is
more suitable for the detection of HRV alteration caused by disease in its early-stage. Under these
conditions, to apply MSE, we should set up the same measuring protocol for all the involved groups
for easy comparison.

In addition, current R peak or P peak detection algorithms generally have strict requirements for
ECG or PPG signal quality. It is expected that new algorithms with better noise resistance could be
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proposed to extract high quality RR or PP intervals from data collected in daily life or during physical
activities, which is of great significance to apply HRV for daily health monitoring and management.

In conclusion, the main contribution and new insights of this presented study could be summarized
as follows: (1) our findings could provide supportive evidence for future HRV measurement during
home monitoring because all the considered variables were controlled properly, e.g., ECG signals of
different life states for each subject were recorded within the same day, only healthy young subjects
were involved and their ECG recording time periods and environments were almost the same, age and
gender were controlled, et al.; (2) instead of recording length, this study focus more on the influence of
ECG recording time to HRV, and found the lowest heart rate complexity in the morning and highest
complexity at noon, emphasizing the special role of morning in a day; (3) more detailed body postures
(i.e., lying-left, lying-right, lying-back) were studied in addition to HRV comparison between sitting
and lying; (4) more importantly, various of entropy and multi-scale entropy based measures were
analyzed in this study, compared with traditional linear HRV metrics and nonlinear DFA indices,
entropy and multi-scale entropy based measures were more sensitive to HRV variations, especially
caused by ECG recording time, at recording length of 30–60 min, demonstrating that entropy based
measures should be more helpful to detect the sub-healthy status or early-stage diseases that may
result in minor variations from healthy HRV, especially during early morning.

5. Study Limitations and Future Directions

The presented study is a pilot study with 56 subjects, and thus the results cannot serve as the HRV
norms. All participants were healthy young college students who do not represent the whole spectrum
of healthy young people. Although we chose to collect data during weekend to reduce the influences
of specific course learning during weekday, there are still diversities between college students and
other young people.

To evaluate the influence of body postures, subjects were asked to read books (topic of general
science) instead of resting (doing nothing). The protocol for recording ECG signals during different
body postures lasted for 2.5 h. It is challenging to have the participants to maintain stable resting state
for such a long period, thus reading book was used as an alternative protocol.

Gender-related differences were found for some HRV metrics under specific conditions in this
study, and were not found for other metrics. Due to small sample size (with equal number for males
and females), we didn’t evaluate group differences by gender in Tables 3–6.

The ECG signals recorded in the period of 01:00–02:00 were picked up to represent sleeping state.
According to sleep staging report, during this period, most subjects were in deep sleep, some subjects
were in light sleep, and nobody was awake. The effects of different sleep stages on HRV should be
further investigated in future studies, for example, we are analyzing HRV changes in different sleep
stages in another ongoing study on 3–14 years children.

Due to limit of data acquisition time and financial support, other important factors have not
been covered in this study, such as age, temperature and season, recording time length, mental stress,
emotion, sampling rate, and so on. Further studies are needed to explore those interesting factors.
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