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Abstract: A series of ruthenium compounds containing a pyrrole-ketone bidentate ligand, 2-(2′-
methoxybenzoyl)pyrrole (1), have been synthesized and characterized. Reacting 1 with [(η6-
cymene)RuCl2]2 and RuHCl(CO)(PPh3)3 generated Ru(η6-cymene)[C4H3N-2-(CO-C6H4-2-OMe)]Cl
(2) and {RuCl(CO)(PPh3)2[C4H3N-2-(COC6H4-2-OMe)]} (3), respectively, in moderate yields.
Successively reacting 2 with sodium cyanate and sodium azide gave {Ru(η6-cymene)[C4H3N-2-(CO-
C6H4-2-OMe)]X} (4, X=OCN; 5, X=N3) with the elimination of sodium chloride. Compounds 2–5
were all characterized by 1H and 13C-NMR spectra and their structures were also determined by
X-ray single crystallography.
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1. Introduction

Ruthenium compounds [1–3] containing varieties of ligands, such as cymene [4,5], phosphine [6]
NHC [7], keto-amine [8,9], and Schiff-base [10,11], represent an important chemical series on the
field of medicinal chemistry [12–15] and catalytic transfer hydrogenation [16–18] etc. Finely tuned
ruthenium complexes can be achieved by changing the coordinating ligands. Therefore, by combining
suitable ruthenium complexes with organic ligands and studying their structural geometries may shed
some light on the understanding of the functions of these ruthenium complexes.

Among of these ruthenium compounds, [(η6-cymene)RuCl2]2 [19] and RuHCl(CO)(PPh3)3 [20] are
two important starting materials for synthesizing corresponding ruthenium compounds due to their
versatile applications [21–24]. Pyrrole represents an important heterocyclic compound for forming
materials such as hemes and porphyrinc [25,26], ion-receptors [27,28], bio-active products [29–31], and
light-harvesting pigments [32], etc. Its related compound, 2-(2′-methoxybenzoyl)pyrrole (1) [33–35],
a multi-dentate ligand, was isolated from the mycelia extract [36] and exhibits bio-activity [37,38].

Here we report the synthesis and structural characterization of a series of ruthenium compounds
containing the multidentate pyrrole-ketone ligand. The successive reacting of these ruthenium
complexes with sodium salts of NaOCN and NaN3 is also reported. These compounds were
structurally determined in order to understand their steric geometries for further applications.

2. Results and Discussion

2.1. Synthesis and Characterization

A series of ruthenium compounds containing 2-(2′-methoxybenzoyl)pyrrole (1) was synthesized
and characterized. A reaction scheme of 1 with [(η6-cymene)RuCl2]2 and RuHCl(CO)(PPh3)3 is shown
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in Scheme 1. Reacting [(η6-cymene)RuCl2]2 with two equivalents of 1 in methanol solution at room
temperature in the presence of sodium bicarbonate gave a 32.0% yield of Ru(η6-cymene)[C4H3N-2-
(CO-C6H4-2-OMe)]Cl (2). The 1H-NMR spectrum of 2 showed four doublets in the range of δ
5.62~5.35 representing the arene CH protons of the cymene fragment. Similarly, while reacting 1 with
RuHCl(CO)(PPh3)3 in toluene under refluxing and work-up, the resulting product {RuCl(CO)(PPh3)2

[C4H3N-2-(COC6H4-2-OMe)]} (3) was prepared in a 66.9% yield along with the elimination of one
equivalent of hydrogen molecules. The 1H-NMR spectrum of 3 showed the pyrrole CH chemical
shifts at δ 5.50, 5.59, and 6.65. Due to the weak hydrogen bonding, the isopropyl fragment showed
two doublets in the 1H-NMR spectrum representing the slow C-C bond rotation of the isopropyl and
the cymene phenyl ring. The 13C-NMR spectra of 3 showed two chemical shifts at δ 205.6 and 183.4,
assigned as the carbon of C≡O and C=O, respectively [39,40]. The IR spectrum of 3 also showed a
strong absorption band at 1942 cm−1 representing the stretching frequency of C≡O [41,42].
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Scheme 1. Synthesis of Compounds 2–5. 
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new ruthenium compounds {Ru(η6-cymene)[C4H3N-2-(CO-C6H4-2-OMe)]X} (4, X=OCN; 5, X=N3). 
Compounds 4 and 5 were both characterized by 1H and 13C-NMR spectra and showed patterns similar 
to those of Compound 2, indicating that the electronic properties around the ruthenium atom was 
not affected by the coordinated mono-anionic ligands. 
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Single-crystals of Compounds 2–5 for X-ray diffraction analysis were obtained from either 
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atom forming the three legs and the cymene ring acting as the stool plane. The bond length of the 
ruthenium atom to the center of the cymene ring is 1.6598(1) Å, relatively close to the bond lengths 
of published ruthenium-cymene compounds [41,42]. It is interesting to note that the methine proton 
(H8) of the cymene ring was close to the oxygen atom (O2) of the methoxy group of ligand 1, with a 
bond length of 2.511 Å, which is assumed to be a weak hydrogen bonding between the H8 and O2 
atoms [43]. 

Scheme 1. Synthesis of Compounds 2–5.

Successively replacing the chloride anion of 2 with sodium salts of NaX in methanol resulted in
new ruthenium compounds {Ru(η6-cymene)[C4H3N-2-(CO-C6H4-2-OMe)]X} (4, X=OCN; 5, X=N3).
Compounds 4 and 5 were both characterized by 1H and 13C-NMR spectra and showed patterns similar
to those of Compound 2, indicating that the electronic properties around the ruthenium atom was not
affected by the coordinated mono-anionic ligands.

2.2. Molecular Geometries of Compounds 2–5

Single-crystals of Compounds 2–5 for X-ray diffraction analysis were obtained from either
methanol or THF saturated solution at −20 ◦C. The summary of the X-ray crystal data and selected
bond lengths and angles are shown in Tables 1 and 2, respectively. The molecular geometries of 2–5 are
depicted in Figures 1–4. The molecular geometry of 2 could be described as a three-legged piano stool
with the nitrogen atom of the pyrrole, the oxygen atom of the carbonyl atoms, and the chloride atom
forming the three legs and the cymene ring acting as the stool plane. The bond length of the ruthenium
atom to the center of the cymene ring is 1.6598(1) Å, relatively close to the bond lengths of published
ruthenium-cymene compounds [41,42]. It is interesting to note that the methine proton (H8) of the
cymene ring was close to the oxygen atom (O2) of the methoxy group of ligand 1, with a bond length
of 2.511 Å, which is assumed to be a weak hydrogen bonding between the H8 and O2 atoms [43].
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Table 1. The summary of X-ray crystal data for Compounds 2–5.

2 3 THF 4 5

formula C22H24ClNO2Ru C53H48ClNO4P2Ru C23H24N2O3Ru C22H24N4O2Ru
FW 470.94 961.38 477.51 477.52

T [K] 150(2) 150(2) 150(2) 150(2)
crystal system Monoclinic Monoclinic Monoclinic Monoclinic
space group P21/n P21/n P21/c P21/c

a [Å] 10.4657(4) 10.2279(5) 10.157(5) 17.3849(14)
b [Å] 9.1505(3) 17.5822(9) 15.836(7) 9.2423(7)
c [Å] 21.1478(8) 25.9234(13) 14.019(8) 13.8157(11)
α [◦] 90 90 90 90
β [◦] 99.097(2) 97.693(3) 105.44(3) 112.379(4)
γ [◦] 90 90 90 90

V [Å3] 1999.78(13) 4619.8(4) 2173.5(19) 2052.7(3)
Z 4 4 4 4

ρc [Mg m−3] 1.564 1.382 1.465 1.545
µ [mm−1] 0.934 0.513 0.748 0.787

F(000) 960 1824 980 976.0
rflns collected 28,629 49,633 26,439 18,124

independent rflns 5176 [Rint = 0.0263] 8132 [Rint = 0.0979] 5380 [Rint = 0.0893] 5243 [Rint = 0.0298]
data/restraints/parameters 5176/0/248 8132/0/560 5380/0/266 5243/0/266

goodness-of-fit on F2 1.027 0.880 0.968 1.067

R1, wR2 (I > 2σ(I)) R1 = 0.0208 R1 = 0.0591 R1 = 0.0568 R1 = 0.0306
wR2 = 0.0494 wR2 = 0.1682 wR2 = 0.1449 wR2 = 0.0783

R1, wR2 (all data)
R1 = 0.0260 R1 = 0.0879 R1 = 0.0890 R1 = 0.0356

wR2 = 0.0520 wR2 = 0.1925 wR2 = 0.1724 wR2 = 0.0810
largest diff. peak, hole [eÅ−3] 0.406 and −0.367 0.811 and −0.925 1.071 and −2.014 0.870 and −0.699
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Table 2. Selected bond lengths (Å) and angles (◦) for Compounds 2–5.

2

Ru(1)-Cl(1) 2.4092(5) Ru(1)-N(1) 2.060(1)
Ru(1)-O(1) 2.103(1) Ru(1)-Cymene 1.6598(1)
O(1)-C(15) 1.273(2) N(1)-Ru(1)-O(1) 77.09(5)

Cl(1)-Ru(1)-N(1) 85.41(4) Cl(1)-Ru(1)-O(1) 85.53(3)

3

Ru(1)-C(50) 1.845(7) Ru(1)-N(1) 2.038(5)
Ru(1)-O(1) 2.139(4) Ru(1)-P(1) 2.4058(15)
O(1)-C(15) 1.273(2) Ru(1)-P(2) 2.3908(15)

Ru(1)-Cymene 1.6598(1) Ru(1)-Cl(1) 2.4185(15)
O(1)-C(41) 1.280(7) C(50)-O(4) 1.128(8)

C(50)-Ru(1)-O(1) 172.9(2) P(2)-Ru(1)-P(1) 177.38(5)
N(1)-Ru(1)-Cl(1) 166.70(14) N(1)-Ru(1)-O(1) 78.32(16)

4

Ru(1)-N(1) 2.070(5) Ru(1)-N(2) 2.057(3)
Ru(1)-O(2) 2.124(3) Ru(1)-Cymene 1.6674(7)
O(2)-C(5) 1.278(5) N(1)-C(23) 1.155(6)

O(1)-C(23) 1.218(6) Ru(1)-N(1)-C(23) 156.9(4)
N(1)-Ru(1)-N(2) 84.53(16) N(2)-Ru(1)-O(2) 77.03(13)
N(1)-Ru(1)-O(2) 83.61(16) N(1)-C(23)-O(1) 176.3(6)

5

Ru(1)-N(1) 2.109(2) Ru(1)-N(2) 2.0640(19)
Ru(1)-O(1) 2.1114(15) Ru(1)-Cymene 1.6610(2)
O(1)-C(15) 1.276(3) N(1)-N(2) 1.204(3)
N(2)-N(3) 1.157(3) N(4)-Ru(1)-O(1) 77.08(7)

N(1)-Ru(1)-N(4) 86.02(8) N(1)-Ru(1)-O(1) 86.62(7)
Ru(1)-N(1)-N(2) 120.43(17) N(1)-N(2)-N(3) 176.7(3)
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The molecular geometry of 3 is shown in Figure 2 and the THF molecule was omitted for clarity.
It can be described as a distorted octahedral with three axes of Cl(1)-Ru(1)-N(1), O(1)-Ru(1)-C(50), and
P(1)-Ru(1)-P(2) with angles of 166.70(14)◦, 172.9(2)◦, and 177.38 (5)◦, respectively. The ligand 1 binds to
the ruthenium atom in an acute chelating angle of N(1)-Ru(1)-O(1) at 78.32(16)◦. The bond lengths of
Ru(1)-C(50) and C(50)-O(4) are 1.845(7) Å and 1.128(8) Å, respectively, indicating a slight back bonding
of the ruthenium atom to the carbonyl and the longer C≡O bond. The results are in agreement with
reported trans-RuCl(CO)(PPh3)2(bidentate) structures [44–48].

The molecular geometry of 4 can also be described as a three-legged piano stool geometry,
as shown in Figure 3. The bond length from the ruthenium atom to the center of the cymene ring is at
ca. 1.667 Å. The ambi-dentate NCO ligand was bound to the ruthenium atom at the N-end. Similar
ruthenium cymene-NCO structures have been reported in the literature [49,50]. The bond lengths
of ruthenium to the cyanate-N atom as well as N=C and C=O are all consistent with the results in
the literature.

The pale orange crystals of 5 were obtained from a saturated methanol solution at −20 ◦C.
The molecular structure of 5 is shown in Figure 4 and its geometry is similar to that of 2. It can also
be described as a three-legged piano stool geometry with the azide and pyrrolyl nitrogen atoms and
carboxyl oxygen atom taking the three leg positions and the cymene acting as the planar surface.
The bond length of O(2)-H(8) was ca. 2.868 Å, indicating a very weak or no hydrogen bonding effect.
Ru(cymene)azido compounds have been reported in the literature [51–54]. For 5, the bond lengths
of Ru(1)-N(1), N(1)-N(2), and N(2)-N(3) were 2.109(2) Å, 1.204(3) Å, and 1.157(3) Å, respectively and
these data are consistent that reported in the literature.

3. Experimental Section

3.1. General Consideration

All reactions were performed under a nitrogen atmosphere using standard Schlenk techniques
or in a glove box. Toluene was dried by refluxing over sodium benzophenone ketyl. CH2Cl2 was
dried over P2O5. All solvents were distilled and stored in solvent reservoirs that contained 4-Å
molecular sieves and were purged with nitrogen. The 1H and 13C-NMR spectra were recorded using
a Bruker Avance 300 spectrometer and the chemical shifts were recorded in ppm relative to the
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residual protons of CDCl3 (δ = 7.24, 77.0 ppm). Elemental analyses were performed using a Heraeus
CHN-OS Rapid Elemental Analyzer at the Instrument Center of the NCHU. Ligands [33–35] 1 and
[Ru(η6-p-cymene)Cl2]2 were prepared using a modified procedure [19].

3.1.1. Synthesis of the Ligand [C4H3NH-2-(CO-C6H4-2-OMe)] (1)

A Schlenk flask charged with pyrrole (0.38 g, 5.7 mmol) and 15 mL of toluene was added to
equimolar MeMgBr (3.0 M, 1.9 mL) at 0 ◦C. The resulting solution was then refluxing for 30 min
under nitrogen. The color changed from bright yellow back to orange. Methoxybenzoyl chloride
(0.97 g, 5.7 mmol) was then added to the resulting solution at room temperature and the solution color
changed back to yellow again. Ammonium chloride water solution was added to the solution after
30 min and the combing solution was extracted with diethyl ether (10 mL × 3). The extraction was
dried over MgSO4 and volatiles were removed to give ligand 1 in a 63.0% yield (0.727 g). 1H-NMR
(CDCl3): 3.80 (s, 3H, OMe), 6.24 (m, 1H, pyr CH), 6.62 (m, 1H, pyr CH), 6.99 (m, 2H, phenyl CH), 7.10
(m, 1H, pyr CH), 7.42 (m, 2H, phenyl CH), 10.12 (s, 1H, pyr NH).

3.1.2. Synthesis of Compound {Ru(η6-cymene)[C4H3N-2-(CO-C6H4-2-OMe)]Cl} (2)

A methanol solution (10 mL) of 1 (0.20 g, 0.99 mmol) and [Ru(η6-p-cymene)Cl2]2 (0.304 g,
0.50 mmol) in a 50 mL of flask was stirred for 1 h at room temperature. Sodium bicarbonate then was
added into the solution and stirred for 3 h. The volatiles were removed under vacuum and the solid
was extracted with methylene chloride and then solvent was removed again to give crude product
of 2. The product was recrystallized from a methanol solution to generate 0.149 g of red brown crystals
in a 32.0% yield. 1H-NMR (CDCl3): 1.21 (d, 3H, CHMe2), 1.23 (d, 3H, CHMe2), 2.30 (s, 3H, Me), 2.81
(sept, JHH = 7.2 Hz, 1H, CHMe2), 3.77 (s, 3H, OMe), 5.35 (d, JHH = 6.0 Hz, 1H, cymene CH), 5.40
(d, JHH = 6.0 Hz, 1H, cymene CH), 5.55 (d, JHH = 5.7 Hz, 1H, cymene CH), 5.62 (d, JHH = 5.7 Hz,
1H, cymene CH), 6.37 (m, 1H, pyr CH), 6.79 (m, 1H, pyr CH), 7.36 (m, 5H, phenyl C6H4 + pyr CH).
13C-NMR (CDCl3): 18.9 (cymene Me), 22.1 (cymene CHMe2), 22.8 (cymene CHMe2), 31.9 (cymene
CHMe2), 55.9 (OMe), 79.3 (cymene CH), 81.8 (cymene CH), 82.0 (cymene CH), 83.5 (cymene CH), 98.4
(cymene Cipso), 100.5 (cymene Cipso), 111.8 (pyr CH), 116.1 (pyr CH), 120.4 (phenyl CH), 123.4 (phenyl
CH), 125.5 (pyr Cipso), 131.4 (phenyl CH), 132.1 (phenyl CH), 141.8 (phenyl Cipso), 143.1 (pyr CH), 157.7
(phenyl Cipso), 186.7 (C=O). Anal. Calcd for C22H24ClNO2Ru: C, 56.11; H, 5.14; N, 2.97. Found: C,
56.08; H, 5.15; N, 3.36.

3.1.3. Synthesis of Compound {RuCl(CO)(PPh3)2[C4H3N-2-(COC6H4-2-OMe)]} (3)

A toluene solution (10 mL) of 1 (0.08 g, 0.40 mmol) and RuHCl(CO)(PPh3)3 (0.378 g, 0.40 mmol)
in a 50 mL of flask was refluxed for 24 h under nitrogen. The volatiles were removed under vacuum
and residue was washed with heptane to remove excess of PPh3. The resulting solid was recrystallized
from a saturated THF solution at −20 ◦C to give 0.24 g of yellow crystals in a 66.9% yield. 1H-NMR
(CDCl3): 3.31 (s, 3H, OMe), 5.50 (t, 1H, pyr CH), 5.59 (m, 1H, pyr CH), 6.20 (m, 1H, phenyl CH), 6.40
(m, 1H, phenyl CH), 6.65 (m, 2H, pyr + phenyl CH), 7.30 (m, 31H, PPh3 CH+ phenyl CH). 13C-NMR
(CDCl3): 55.0 (OMe), 110.3, 117.3, 119.7, 123.0, 125.4, 126.6, 127.8, 127.9, 128.0, 128.3, 128.6, 128.7, 129.2,
129.5, 130.5, 130.9, 131.0, 131.2, 131.5, 132.2, 134.5, 134.6, 134.7,141.3, 142.6, 156.3, 183.4 (C=O), 205.6
(C≡O). Anal. Calcd for C49H40NO3P2ClRu: C, 66.13; H, 4.53; N, 1.57. Found: C, 66.01; H, 4.86; N, 1.53.

3.1.4. Synthesis of Compound {Ru(η6-cymene)[C4H3N-2-(CO-C6H4-2-OMe)](OCN)} (4)

A 25 mL Schlenk flask charged with 2 (0.117 g, 0.25 mmol), excess sodium cyanate and methanol
(10 mL) was stirred at room temperature for overnight. Methanol was removed under vacuum and
residue was extracted with methylene chloride (10 mL × 3). The methylene chloride was removed and
residue was recrystallized from a methanol solution at −20 ◦C to yield 0.045 g of orange crystals of 4
(38.1% yield). 1H-NMR (CDCl3): 1.20 (d, 3H, CHMe2), 1.22 (d, 3H, CHMe2), 2.25 (s, 3H, Me), 2.74 (sept,



Molecules 2018, 23, 159 8 of 11

JHH = 6.9 Hz,1H, CHMe2), 3.77 (s, 3H, OMe), 5.32 (d, 2H, JHH = 6.3 Hz, cymene CH), 5.57 (d, JHH = 5.4 Hz,
1H, cymene CH), 5.62 (d, JHH = 5.4 Hz, 1H, cymene CH), 6.37 (m, 1H, pyr CH), 6.78 (m, 1H, pyr CH),
7.38 (m, 4H, phenyl C6H4 CH), 7.62 (t, 1H, pyr CH). Anal. Calcd for C23H24N2O3Ru: C, 57.70; H, 5.06;
N, 5.86. Found: C, 57.70; H, 5.18; N, 6.04.

3.1.5. Synthesis of Compound {Ru(η6-cymene)[C4H3N-2-(CO-C6H4-2-OMe)](N3)} (5)

A 25 mL Schlenk flask charged with 2 (0.047 g, 0.10 mmol), excess sodium azide, and methanol
(10 mL) was stirred at room temperature for overnight. Methanol was removed under vacuum and
residue was extracted with methylene chloride (10 mL × 3). The methylene chloride was removed and
residue was recrystallized from a methanol solution at −20◦C to yield 0.026 g of orange crystals of
5 (53.8% yield). 1H-NMR (CDCl3): 1.23 (d, 3H, CHMe2), 1.25 (d, 3H, CHMe2), 2.27 (s, 3H, Me), 2.78
(sept, JHH = 6.9 Hz,1H, CHMe2), 3.80 (s, 3H, OMe), 5.32 (m, 2H, cymene CH), 5.53 (d, JHH = 6.0 Hz,
1H, cymene CH), 5.62 (d, JHH = 6.0 Hz, 1H, cymene CH), 6.43 (t, 1H, pyr CH), 6.82 (m, 1H, pyr CH),
7.38 (m, 5H, phenyl C6H4 + pyr CH). 13C-NMR (CDCl3): 18.4 (cymene Me), 22.5 (cymene CHMe2),
22.8 (cymene CHMe2), 31.2 (cymene CHMe2), 55.9 (OMe), 78.9 (cymene CH), 81.7 (cymene CH), 82.4
(cymene CH), 84.2 (cymene CH), 98.7 (arene C), 100.5 (Cipso),111.7 (pyr CH), 116.2 (pyr CH), 120.5
(phenyl CH), 123.7 (phenyl CH), 125.2 (Cipso), 131.6 (phenyl CH), 132.1 (phenyl CH), 142.1 (Cipso), 143.2
(pyr CH), 157.7 (Cipso), 187.2 (C=O). Anal. Calcd for C22H24N4O2Ru: C, 55.34; H, 5.07; N, 11.73. Found:
C, 55.32; H, 5.09; N, 11.75.

3.2. X-ray Crystallography

Suitable crystals of Compounds 2–5 were attached to a fine glass fiber and mounted in goniostat
for data collection. Data collections were performed at 150 K under liquid nitrogen vapor for
all compounds. Data were collected on a Bruker SMART CCD diffractometer with graphite
monochromated Mo-Kα radiation. No significant crystal decay was found. Data were corrected
for absorption empirically by means of ψ scans. All non-hydrogen atoms were refined with anisotropic
displacement parameters. For all the structures, the hydrogen atom positions were calculated and
they were constrained to idealized geometries and treated as rigid where the H atom displacement
parameter was calculated from the equivalent isotropic displacement parameter of the bound atom.
An absorption correction was performed with the program SADABS [55] and the structures of both
complexes were determined by direct methods procedures in SHELXS [56] and refined by full-matrix
least-squares methods, on F2’s, in SHELXL [57]. All the relevant crystallographic data and structure
refinement parameters are summarized in Table 1.

4. Conclusions

We have successfully employed a bidentate pyrrole-ketone ligand with ruthenium compounds to
form a series of Compounds 2–5 and their structures were determined by X-ray single crystallography.
A preliminary test of hydrogen transfer reactions of acetophenone and isopropyl alcohol using these
ruthenium compounds showed low conversion. We are currently using Compounds 2–5 to investigate
the catalytic activities of hydrogen transfer reactions toward varieties of ketones and alcohols and the
hydroaminations of inter- and intra-molecular alkenes and alkynes.

Supplementary Materials: Tables for crystal data including H-bonding. Crystallographic data for the
structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as
supplementary publications nos. CCDC-1567212-5 (Compounds 2–5). Copies of the data can be obtained free
of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336-033; e-mail:
deposit@ccdc.cam.ac.uk or www:http://www.ccdc.cam.ac.uk).
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