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Abstract

This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10°
Facing(Toe) Down, 0° Flat and 10°, 20°, 25° Facing (Toe) Up) and postural orientation on
the margins of postural stability in quiet standing of young adults. The findings showed that
the center of pressure—CoP (displacement, area and length) had least motion at the base-
line (O° Flat) platform condition that progressively increased as a function of platform angle
in both facing up and down directions. The virtual time to collision (VTC) dynamics revealed
that the spatio-temporal margins to the functional stability boundary were progressively
smaller and the VTC time series also more regular (SampEn—Sample Entropy) as slope
angle increased. Surface slope induces a restricted stability region with lower dimension
VTC dynamics that is more constrained when postural orientation is facing down the slope.
These findings provide further evidence that VTC acts as a control variable in standing pos-
ture that is influenced by the emergent dynamics of the individual-environment-task
interaction.

Introduction

Upright standing posture is maintained by muscles that support the configuration of the whole
body against gravity. This helps to stabilize the individual body elements to ensure that balance
is preserved through the vertical projection of the center of gravity being within the base of
support [1,2]. Upright postural balance has been largely assessed by variables of center of pres-
sure (CoP) motion such as amplitude, velocity, acceleration, root-mean-square, scaling expo-
nent and coefficient of variation [3-6]. However, more contemporary studies have illustrated
the shortcomings of restricting analyses to CoP traces only [7]. The dynamics of the CoP have
a dimension higher than that of a limit cycle oscillator [5,8], and reflect 1/f properties [9] that
are modulated with factors such as features of the individual, availability of feedback (environ-
ment), and the nature of the task base of support [10,11].

It has been postulated that the virtual time-to-collision (VTC) with the functional stability
boundary could potentially be a low dimensional postural control variable [12]. VTC is defined
as the time it would take, at any instant, for the CoP trajectory to reach the functional stability
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boundary. The computation of the VTC takes the current kinematics of the CoP and then pre-
dicts its motion given those kinematics until the CoP intercepts the functional stability bound-
ary. Slobounov et al. (1997) derived the VTC in a two-dimensional plane (that can be extended
to 3 D) to estimate postural stability, which reflects that the control variable for posture is
defined by the organism-task-environment interaction [11, 13]. The coefficient of variation of
VTC is typically lower than that of CoP position. It has been proposed that the VTC of the
CoP with the functional stability boundary may yield important properties about the dynamic
stability in upright postural balance [13]. The model illustrated the stability limits for center of
mass (CoM) dynamics with respect to joint torques and state boundaries, and showed experi-
mental support that torque safety margins were highly correlated with CoP safety margins,
thereby supporting the use of CoP safety margins as a control variable for staying away from
the functional stability boundary.

Standing on sloped surfaces represents a common postural challenge in human activity and
CoP measures have been applied to investigate upright postural control to address the risk of
slipping incidents owing to frictional demands [14]. Slopes have been employed to understand
the after effects on leaning forward [15], the effects of slope on trunk kinematics during lifting
weights [16], control of the fusimotor system [17] and perception-action coupling in infant
posture [18]. Postural sway has been found to decrease in response to increased roof inclina-
tion [19], decrease in seamen using the horizon as a referent [20]. Furthermore, the effect of
task specificity together with trade-offs between biomechanical and task constraint models of
postural control have been shown in quiet standing [21].

The purpose of this study was to investigate the dynamic postural stability across sloped
support base of platform angles, ranging from 35° Toe Down to 25° Toe Up, as a function of
postural orientation. Given the above findings on postural control it was anticipated that the
slope of the surface of support in relation to the orientation of the standing posture (toe up or
down) would change the VTC dynamics in general and more specifically differentially relate to
particular postural orientation segments of the functional stability boundary (e.g., fore, aft,
side). Such a finding would provide further evidence that VTC acts as a control variable in
standing posture that is influenced by the emergent dynamics of the individual-environment-
task interaction.

Three hypotheses were examined. Firstly, we investigated the hypothesis that the stability
index, which is a ratio of the actual CoP area (95% of the ellipsoid enclosed in CoP trace) to the
functional stability boundary area would be closer to 0 for the 0° Flat platform condition. Sec-
ondly, based on previous studies [22,23], we examined the hypothesis that VTC would be
lower in the extreme sloped platform conditions i.e. 35° Toe Down and 25° Toe Up when com-
pared to 0° Flat platform condition. Thirdly, that the effect of slope angle on VTC dynamics
changes as a function of the orientation of the posture to the slope (toe up or down) and hence
the spatial region of the postural boundary. Collectively, the study investigated the postural sta-
bility margins across varying slope surfaces ranging from a flat support base to extreme angles
of support base and how VTC properties contrast to standard CoP distributional metrics in the
regulation of upright standing posture.

Methods
Participants

Seventeen healthy male participants provided written consent for their participation and were
recruited, according to an experimental protocol approved by The Pennsylvania State Univer-
sity Institutional Review Board. Their heights ranged from 163 to 182 cm (mean = 174.5 cm),
ages ranged from 23 to 37 years old, and the masses ranged from 55 to 89 kg (mean = 73 kg).
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All participants were healthy and self-reported no apparent neurological disorders and muscu-
loskeletal injuries that could influence postural control.

Instrumentation

An AMTI force platform (OPT400600-1000, Watertown, MA) was used to derive the displace-
ment of the CoP. Pre-fabricated wooden platform wedges of different angles (25°, 20°, 10° Toe
up (Up), 0° Flat, 10°, 20°, 30°, 35° Toe down (Down) were mounted on the force platform to
provide slope surfaces. The slope angles were based on pilot tests of the biomechanical limits of
ankle angle range of motion for the population group. The base of support on platform wedges
was covered with commercial sand paper of grain size 100 to standardize the coefficient of fric-
tion across all platform angle conditions. The data were sampled at 100 Hz and were digitally
low-pass filtered with a second order Butterworth filter with a cut-off frequency of 5 Hz.

Tasks and procedures

The participants were instructed to maintain their upright postural balance when they stood
on the force platform with bare feet, eyes open. They focused on a visual target placed 2 m
away from the platform at eye level so as to remain as still as possible for the trial without fur-
ther adjustments to the foot placement and maintaining their foot planted on the wedge for 40
s. The participant was familiarized with the protocol by a demonstration by an investigator fol-
lowed by the participant practicing the task until they felt confident ~ <20 s. Thereafter, the
platform angles were assigned randomly, with the baseline (0° Flat) as the first trial. Each plat-
form condition had 2 trials, where the mean of the two trials were analyzed. There was a 1 min
of recovery between successive trials and 4 min between each platform condition.

For each platform condition there was a trial to evaluate the functional stability boundary;,
where the participant was asked to lean as far as they could in 8 equally spaced directions
within an ellipse surrounding the center of the base of support while maintaining the same foot
placement throughout the entire trial [22].

Data Analysis

CoP, which reflects the location of the ground reaction force at the surface of support, was ana-
lyzed along both x (AP) and y (ML) directions, with midpoint of the force plate as the origin
[24]. There is a high correlation between several of the force platform CoP variables [3,10], and
CoP area (95% confidence of ellipse area) which was applied to describe the degree of CoP
motion exhibited by each participant. VTC was computed as in Slobounov et al. [22], which
provides a direct measure of the relation of the CoP kinematics to the functional stability
boundary.

The stability index, the ratio of the actual CoP area to the functional stability boundary area,
was computed across the platform conditions. Sample Entropy (SampEn) was computed on
the VTC time series to determine the irregularity of the VTC as a function of platform condi-
tion [22,23,24,25,26]. Input parameters for the SampEn calculation were: (1) a pattern length
of 2 data points of VTC, and (2) a tolerance window normalized to 0.2 times the standard devi-
ation of individual time series.

Statistical analysis of the data included descriptive statistics of the dependent variables and
analysis of variance (ANOVA) of the variables across platform conditions. Significance was
assumed when there was less than 5% chance for Type I error. When appropriate, Tukey’s post
hoc analysis was performed to adjust the alpha value.
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Results
Area of CoP

The area of CoP during quiet standing was smallest in the 0° Flat condition and CoP area
was larger at 35° Down and largest at 25° Up condition (Fig 1A). In general, there was
greater area to CoP motion in the toe Up condition (with more between-S variability) than
the toe Down condition indicating asymmetry of control with postural orientation and
slope. The effect of platform conditions on CoP area was significant, F(7,128) = 9.40
(p<0.05). Post-hoc Tukey analysis showed all pair-wise conditions were significant except
for the following pairs 10° Down-10° Up, 35° Down-30° Down, 0° Flat-10° Down, 0° Flat-
10° Up and 10° Up-20° Down.
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Fig 1. Group mean (n =17) values with between-S standard deviation of: (a) CoP area, (b) Functional stability boundary area, (c) CoP length and (d)
Stability index.

doi:10.1371/journal.pone.0164913.g001
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Functional Stability Boundary Area

The mean area of the functional CoP stability region as a function of slope condition is shown
in Fig 1B. The effect of platform conditions on the functional stability area was significant, F
(7,128) = 23.72 (p<0.05). Post-hoc Tukey analysis showed all pair-wise conditions were signifi-
cant except for the following pairs: 10° toe Down-10° toe Up, 0° Flat-10° toe Up, 35° toe Down-
20° toe Up, 35° toe Down-25° toe Up and 0° Flat-10° toe Down. The stability area was reduced
at 25° Up and even more restricted at 35° Down condition.

Length of CoP

For platform conditions 35° toe Down, 30° toe Down and 25° toe Up, the CoP length was larger
than 1 m, whereas for platform condition 10° toe Down, 10° toe Up and 0° Flat, the length of
CoP less than 0.5 m (see Fig 1C), thereby showing asymmetric change of CoP length as a func-
tion of platform condition. The effect of platform conditions on CoP length was significant, F
(7,128) = 30.13 (p<0.05). Post-hoc Tukey analysis showed all pair-wise conditions were signifi-
cant except for the following pairs: 10° toe Down-10° toe Up, 0° Flat-10° toe Up, 30° toe Down-
25° toe Up and 0° Flat-10° toe Down.

Stability Index

The histogram in Fig 1D shows that lower slope platform angles have a stability index closer to
0. The extreme slope platform angles have values between 0.1-0.15 with large variability across
subjects. Platform angle had a significant effect on the stability index, F(7,128) = 11.60
(p<0.05). Post-hoc Tukey analysis showed all pair-wise conditions were significant except for
the following pairs: 10° toe Down-10° toe Up, 0° Flat-10° toe Up, 20° toe Down-10° toe Up, 30°
toe Down-20° toe Up and 0° Flat-10° toe Down.

Virtual Time to Collision (VTC)

The functional stability boundary area, its orientation and distribution on the AP and ML axes
is shown for a representative subject. The distribution is largest for 0° Flat platform condition,
supplemented by reduced CoP distribution at the other slope platform conditions (see Fig 2).
The representative plots are commensurable with the histogram plot of Fig 1A that shows the
group mean (n = 17) of CoP area is higher with larger variability in the 25° toe Up platform
condition than the 35° toe Down platform condition.

The mean VTC values are close to 0.7 s for 0° Flat platform condition and between 0.3 s to
0.4 s for the extreme slope platform conditions (35° toe Down and 25° toe Up) (see Fig 3). The
nature of this change suggests that 0° Flat has highest VTC values and tapers down at the
extreme platform slope conditions. The main effect of platform on VTC was significant, F
(7,128) = 64.59 (p<0.05). Post-hoc Tukey analysis revealed that all pair-wise conditions were
significant except for the following pairs 10° toe Down-10° toe Up, 35° toe Down-25° toe Up,
0° Flat-10° toe Up and 20° toe Up-20° toe Down.

Virtual Time to Collision Irregularity (SampEn)

The mean SampEn across all the sloped platform conditions is shown in Fig 4. SampEn was
higher for flat (0.66) and lower platform slopes and decreased to less than 0.35 for extreme
platform angles. SampEn was significantly influenced by platform conditions, F(7,128) = 34.01
(p<0.05). Post-hoc Tukey analysis showed all pair-wise conditions were significant except for
the following pairs: 10° toe Down-10° toe Up, 35° toe Down-25° toe Up, 0° Flat-10° toe Up, 0°
Flat-10° toe Down and 20° toe Up-20° toe Down.
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Fig 2. Representative 3D plot of VTC in CoPx and CoPy across all sloped platform conditions. The heel position is towards CoPy and the toes are

oriented towards CoPx.

doi:10.1371/journal.pone.0164913.9002

The mean VTC values and the mean probability of virtual contacts for each of the 20
boundary segments is shown as CoP radar distribution with its corresponding standard devia-
tion in Fig 5. There is a distinct qualitative change in the shape of the distributions across
sloped platform angles. The radar distribution suggests that the CoP data have a wider spread
at the lower sloped angles when compared with the elevated sloped platform angles. In addition
to that, it can be noted that the CoP distribution is predominantly along AP direction and ori-
ented towards the left side.

Discussion

This study investigated postural regulation in young adults as a function of the postural orien-
tation to the sloped angles of the surface of support. Upright postural control on sloped sur-
faces is a common postural challenge in daily human activity that is an emergent product of a
complex dynamical system involving a large number of degrees of freedom [3,7,14,20]. The
findings showed an interaction between slope and postural orientation (toe up or toe down) on
the temporal and spatial margins of postural stability. In general, surface slope induced a
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Fig 3. Representative 3D plot of VTC in CoPx and CoPy across all sloped platform conditions. The heel position is towards CoPy and the toes are

oriented towards CoPx.

doi:10.1371/journal.pone.0164913.9003

restricted stability region with lower dimension VTC dynamics that was further constrained
when participants were facing down the slope (toe down).

The CoP area was smallest in the 0° Flat, 10° toe Down and 10° toe Up platform conditions
when compared with the higher sloped platform conditions. This is consistent with the finding
that the mean area of CoP is significantly reduced when surface compliance is altered, i.e.
standing on foam surface with no vision when compared to standing on firm ground with
vision (10). Here the CoP length was largely restricted to less than .5 m for a group mean
(n =17) at 0° Flat, 10° toe Down and 10° toe Up platform conditions. In comparison the higher
platform angles, i.e. 35° toe Down and 25° toe Up platform conditions had a CoP length twice
than that of lower angle and flat platform conditions. In general, the distribution of CoP
motion increases when a participant stands upright on an unaccustomed support base (e.g.
foam surface or angled surface) in contrast to standing upright on a flat base of support.

To investigate the fluctuations of the stability index and VTC in sloped base of support the
functional stability boundary was recorded across all platform angles. The functional stability
boundary was restricted in overall area and particularly in the lateral direction with increments
of slope of the support surface. There was also a small but general tilt to the left of the VTC
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doi:10.1371/journal.pone.0164913.9004

orientation as a function of slope angle. There is evidence that the majority of the population
have a right foot preference [27] and an associated right foot bias during standing tasks [28]
which when standing on a slope will shift the center of pressure to the left side of a subject.

The functional stability boundary is a more appropriate procedure than the geometric
boundary to calculate the stability index [29] as it incorporates the actual postural sway bound-
ary on different platform angles of the individual and provides the effective boundary of stabil-
ity for the posture. Here, the stability index being a dimensionless ratio number, designed to
represent the postural stability on the sloped surface, which adjusts the values measured on dif-
ferent sloped angles to a notionally common scale that eliminates the effects of any anomaly in
the VTC time series. The stability index was essentially conserved for flat and lower platform
angles.

The results are consistent with previous findings on the postural stability index in studies of
aging [23], support surface compliance [10] and vision/no vision with aging [30]. The CoP
area and functional stability boundary area provide evidence on the sensitivity of spatial/tem-
poral margins of postural stability to the sloped base of support and provide a boundary rele-
vant measure for postural stability. This relative measure is revealing because the amount and
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Fig 5. Group mean (n = 17) with between-S standard deviation for polar distribution of VTC mean
magnitude and probability of a virtual contact across 20 boundary segments as a function of sloped
platform conditions using CoP data. 15! and 3™ Row — VTC mean (s), 2" and 4" Row — Probability of VTC.

doi:10.1371/journal.pone.0164913.9005

location of CoP motion in the functional stability boundary does not directly relate to the tem-
poral immediacy of making contact with the functional stability boundary [31].

The time series of VTC revealed that there was more time available on average to reach the
functional stability boundary for flat and lower platform angle conditions. The sloped platform
surfaces resulted in adaptation of postural sway dynamics to maintain upright postural stability
thereby resulting in lower values of VTC and reduced stability. Thus, lower values of VTC can
increase the probability of falling as a result of potentially a more immediate collision of the
CoP with the functional boundary and the loss of stability [22]. These findings further support
the hypothesis that postural control is regulated in relation to VTC with the functional stability
boundary rather than minimization of the amount of postural sway around a CoP fixed point
[12,19,27,28,29].

The complexity of spatio-temporal variable was highest in the flat condition even though
CoP was restricted here to a smaller area and reduced length. The SampEn values were com-
paratively lower at the sloped platform conditions, thereby indicating that the predictability of
VTC time series is more regular in such platform conditions. This supports the view that the
task of quiet standing on a flat platform has a higher dimension than the sloped platform con-
ditions that induce a lower dimension postural regularity for a spatio-temporal variable such as
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VTG, even when a spatial variable such as amount of motion of CoP is largely higher in such
platform conditions [22].

There was an asymmetry in terms of the effect of toe up or toe down on the slope on the
motion of CoP and its related variables that was statistically significant across the platform
conditions. The stability index revealed that 25° toe Up platform condition was highly unstable
with a larger CoP area. On the other hand, 35° toe Down condition had a more regular VTC
time series with lower functional stability boundary and longer CoP length. Thus, the two
extreme platform conditions had asymmetric postural sway properties consistent with the dif-
ferential anatomical range of joint motion potential of fore and aft orientation [19]. The out-
come is that spatial and temporal margins of postural stability are reduced with surface slope
that is further magnified with a postural orientation that is toe down on the surface slope.

In summary, the study found that the stability index for a flat platform support condition
and lower sloped platform conditions results in restricted CoP distribution complemented by
higher safety margin values of VT'C with more irregularity thereby indicating a higher dimen-
sion mechanism to control postural sway while maintaining upright equilibrium. On the other
hand, the larger distribution of CoP traces along with lower values of VTC and SampEn suggest
that a lower dimension mechanism is adopted to maintain upright postural equilibrium at
sloped bases of support. The slope of the surface of support interacts with orientation in the
organization and resultant sway of postural control.

These findings provide further evidence that VTC acts as a control variable in standing pos-
ture that is influenced by the emergent dynamics of the individual-environment-task interac-
tion [10, 13, 22, 23, 32, 33]. The postural orientation as a function of the slope of the base of
support significantly channels the emergent VTC dynamics independent of the standard met-
rics of the amount of motion of the CoP. The slope of the base of support induces postural
dynamics that channel asymmetrically with postural orientation (toe up, toe down) the motion
of the postural system toward the functional stability boundary.
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