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Abstract
Purpose:	This	work	presents	an	automatic	characterization	of	 the	Alzheimer’s	dis-
ease describing the illness as a multidirectional departure from a baseline defining 
the	 control	 state,	 being	 these	 directions	 determined	 by	 a	 distance	 between	
functional- equivalent anatomical regions.
Methods:	After	a	brain	parcellation,	a	 region	 is	described	by	 its	histogram	of	gray	
levels,	and	the	Earth	mover’s	distance	establishes	how	close	or	far	these	regions	are.	
The	medoid	of	the	control	group	is	set	as	the	reference	and	any	brain	is	characterized	
by its set of distances to this medoid.
Evaluation: This hypothesis was assessed by separating groups of patients with mild 
Alzheimer’s	disease	and	mild	cognitive	impairment	from	control	subjects,	using	a	sub-
set	of	the	Open	Access	Series	of	Imaging	Studies	(OASIS)	database.	An	additional	ex-
periment	 evaluated	 the	 method	 generalization	 and	 consisted	 in	 training	 with	 the	
OASIS	data	and	testing	with	the	Minimal	 Interval	Resonance	Imaging	 in	Alzheimer’s	
disease	(MIRIAD)	database.
Results:	Classification	between	controls	and	patients	with	AD	resulted	in	an	equal	
error	rate	of	0.1	(90%	of	sensitivity	and	specificity	at	the	same	time).	The	automatic	
ranking of regions resulting is in strong agreement with those regions described as 
important in clinical practice. Classification with different databases results in a sen-
sitivity	of	85%	and	a	specificity	of	91%.
Conclusions:	This	method	automatically	finds	out	a	multidimensional	expression	of	
the	AD,	which	is	directly	related	to	the	anatomical	changes	in	specific	areas	such	as	
the	hippocampus,	the	amygdala,	the	planum	temporale,	and	thalamus.

K E Y W O R D S
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1  | INTRODUC TION

The	increased	life	expectancy	and	aging	of	the	general	population	
have	 made	 of	 Alzheimer’s	 disease	 (AD)	 a	 growing	 public	 health	

concern.	 AD	 is	 nowadays	 the	 most	 common	 form	 of	 dementia	
and	 it	 is	 expected	 that	 by	 the	 year	 2050,	 there	 will	 be	 approx-
imately 135 million patients suffering from different stages of 
AD	 (Alzheimer’s	 Disease	 International,	 2013).	 This	 means	 that	
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roughly one in 85 persons worldwide will develop the disease 
(Brookmeyer,	Johnson,	Ziegler-	Graham,	&	Arrighi,	2007),	suffer	a	
diminished	quality	of	life,	and	require	constant	assistance	for	the	
rest of their life.

Despite	high	human	and	monetary	costs,	our	AD	understand-
ing is at present limited. There is neither a clear disease model nor 
a	 plausible	 physio-	pathological	 explanation	 about	 the	 underlying	
progression.	 In	 consequence,	AD	 treatment	 and	management	 are	
not	 designed	 toward	 planning	 a	 personalized	 therapy	 or	 to	 delay	
the	disease	progress	but	rather	to	merely	treat	symptoms,	that	is,	
the	 physician	 response	 is	 purely	 reactive.	 AD	 is	 commonly	 diag-
nosed when a physician detects cognitive impairment or memory 
complaints,	based	on	the	patient’s	clinical	history	and	a	battery	of	
neuropsychological	tests	measuring	different	cognitive	aspects.	A	
highly variable clinical frame hinders a precise diagnosis which re-
sults	then	fully	dependent	on	the	examiner’s	experience.	Only	50%	
of	the	cases	of	probable	dementia	are	correctly	diagnosed	(Kloppel	
et	al.,	 2008).	 The	 AD	 diagnosis	 is	 confirmed	 by	 the	 detection	 of	
plaques	and	neurofibrillary	tangles,	possible	only	by	cerebral	biopsy	
or postmortem.

The large percentage of misdiagnoses has triggered the interest 
of	the	medical	community	in	quantifying	the	disease	degree,	a	task	
hardly obtained from the typical neuropsychological tests used in 
clinics.	Under	 this	 context,	 the	perspective	of	 using	neuroimaging	
techniques,	 for	 both	 early	 detection	 and	 confirmation,	 is	 very	 ap-
pealing and has generated a large body of research. In the clinical 
practice,	 however,	 neuroimaging	 techniques	 have	 had,	 until	 now,	
only	a	marginal	 role:	Their	main	use	 is	 to	exclude	other	pathologi-
cal	conditions	or	to	visualize	the	neurodegenerative	structural	pat-
tern.	 Recent	 reviews	 on	 the	NINCDS-	ADRDA	Alzheimer’s	 criteria	
(Dubois	et	al.,	2007,	2014)	recommend	using	MR	neuroimages	as	a	
supportive	diagnosis	tool	while	the	IWG-	2	criteria	suggest	the	use	
of	amyloid	PET	(Positron	Emission	Tomography)	imaging	as	evidence	
of	 Alzheimer’s	 pathology.	 Volumetry	 of	 the	 hippocampus	 and	 the	
medial	temporal	 lobe	(MTL)	has	gained	wide	acceptance	as	a	diag-
nostic	tool	and	biomarker	of	the	disease	progression,	yet	the	disease	
management is independent of these measures. It should be noted 
that	the	presence	of	atypical	AD	pathology	and	other	diseases,	such	
as	the	hippocampal	sclerosis,	compromises	the	reliability	of	the	data	
obtained with this technique.

Quantification of the volume loss and/or structural changes in 
brain areas has shown an improvement of the differential diag-
nosis	 between	 the	 AD	 and	 some	 atypical	 pathological	 subtypes	
(Whitwell	 et	al.,	 2012).	 Interestingly,	 this	 type	 of	 quantification	
does,	indeed,	resembles	the	anatomo-	functional	correlations	that	
neuroradiologists	 perform	 for	 the	 early	 stages	 of	 the	 disease,	
for	example,	 if	 there	 is	 some	evidence	of	 functional	 impairment,	
clinicians will search for structural abnormalities and changes in 
particular	brain	regions	such	as	the	hypothalamus.	Although	these	
changes	 form	part	of	 the	whole	clinical	picture,	 they	are	usually	
hard	to	quantify	as	they	are	masked	by	the	huge	brain	variability,	
the	 normal	 aging	 process,	 and	 the	 unpredictable	 progression	 of	
the disease.

1.1 | Pathological and clinical subtypes of AD

Although	 the	 disease	 progression	 has	 been	 traditionally	 assessed	
under	the	Braak	and	Braak	staging	scheme	 (Braak	&	Braak,	1991),	
several	 reports	 (Akatsu	 et	al.,	 2002;	 Armstrong,	 Nochlin,	 &	 Bird,	
2000;	Janocko	et	al.,	2012;	Murray	et	al.,	2014)	have	demonstrated	
a	very	variable	AD	clinical	picture:	Neither	the	progression	patterns	
nor the same anatomical areas are involved or follow a reproducible 
anatomic	sequence,	even	in	series	of	patients	belonging	to	compa-
rable	 social	 and	 cultural	 environments.	Approximately	 25%	of	AD	
brains	show	atypical	patterns	of	structural	damage,	usually	classified	
as	hippocampal	 sparing	and	 limbic	predominant	AD	 (Murray	et	al.,	
2011).	Furthermore,	AD	can	also	manifest	different	clinical	pictures,	
such	as	the	posterior,	logogenic,	and	frontal	variants	(IGW-	2).	Given	
that	the	AD	symptoms	may	be	confused	with	other	conditions,	there	
is	 a	 strong	 interest	 in	developing	objective	 tools	 that	 characterize	
the disease progression as well as the clinical variants. Due to their 
noninvasive	and	harmless	nature,	neuroimages	constitute	a	potential	
source	of	information.	Their	utility,	however,	remains	limited	as	men-
tioned	earlier.	Recently,	a	large	number	of	computational	techniques	
have	been	proposed,	aiming	at	quantitatively	analyzing	the	radiolog-
ical	information.	Aside	from	the	computational	requirements,	most	
of	these	techniques	produce	binary	outcomes,	of	the	type	of	a	dis-
ease–healthy	classification.	Such	a	categorical	 labeling	 is	generally	
not	very	useful	from	a	clinical	standpoint.	It	should	be	noted,	how-
ever,	that	some	groups	have	developed	techniques	to	assess	AD	risk	
deriving	continuous	metrics	from	binary	classifiers	(Casanova	et	al.,	
2013;	Davatzikos,	Xu,	An,	Fan,	&	Resnick,	2009;	Vemuri	et	al.,	2008).

Despite	this,	the	common	radiological	analysis	is	still	a	structural	
inspection followed by an abnormality detection which is hardly com-
plemented by these automatic techniques. Most of these methods 
do not directly quantify radiological observations and physicians end 
up	using	 their	experience	as	 the	basis	of	 the	diagnosis	process.	An	
accurate quantification of radiological findings then turns out to be a 
strong limitation for integrating these techniques to the radiological 
analysis	workflow.	A	simple	geometrical	measurement	is	apparently	
inadequate	as	it	excludes	the	inherent	biological	variability	that	hin-
ders the real structural differences induced by the clinical picture.

1.2 | Computational brain morphometry

Several studies report the use of sophisticated measurement tech-
niques	that	assess	anatomical	changes	in	areas	compromised	by	AD	
such as the cortical thickness or volumes of subcortical structures 
(Desikan	et	al.,	2009;	Van	der	Kouwe,	Benner,	Salat,	&	Fischl,	2008).	
The collection of methods that search these anatomical changes or 
other differences between groups of individual is known as brain 
morphometry. The brain morphometrical studies are divided into 
two	main	steps	(Mietchen	&	Gaser,	2009):

•	 A	 common	 spatial	 representation	 of	 the	 brain	 that	 reduces	 the	
inherent anatomical variability among subjects.

•	 A	corresponding	morphometrical	measure	and	statistical	analysis.
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Voxel-	based	 morphometry	 (VBM),	 proposed	 by	 Ashburner	 and	
Friston	 (Ashburner	&	Friston,	2000),	 is	by	far	the	most	common	ap-
proach used by the neuroscience research community. Other features 
besides	 the	 voxel	 values	 have	 been	 considered	 in	 morphometrical	
studies,	 giving	 place	 to	 specific	 techniques	 such	 as	 landmark-	based	
morphometry	 (DeQuardo	et	al.,	1999),	deformation-	based	or	tensor-	
based	morphometry	(Ashburner	et	al.,	1998),	and	surface-	based	mor-
phometry	(Pantazis,	Leahy,	Nichols,	&	Styner,	2004).

These morphometrical analyses require an accurate intersubject 
registration that guarantees the comparison of homologous struc-
tures	 across	 all	 subjects.	 However,	 this	 kind	 of	 one-	to-	one	 corre-
spondence	between	 subjects	may	not	 always	 be	 achieved,	mainly	
because of the inherent intersubject anatomical variability and the 
effects of brain pathologies. 1.3 Machine learning techniques.

The use of machine learning and elaborate data processing tech-
niques has become common for the analysis of neuroimages. These 
approaches train a classifier with different sets of features and as-
sign	a	label	to	unseen	brain	volumes	(Davatzikos,	Fan,	Wu,	Shen,	&	
Resnick,	2008;	Freeborough	et	al.,	1998).	A	recent	review	(Rathore,	
Habes,	 Iftikhar,	 Shacklett,	 &	 Davatzikos,	 2017)	 established	 three	
automatic	classification	categories	based	on	the	feature	extraction	
method	 for	 structural	 MRI:	 density	 maps-	based,	 cortical	 surface-	
based,	 and	 predefined	 region-	based.	 As	 pointed	 out	 by	 these	
authors,	most	 investigations	 in	the	 latter	category	use	only	hippo-
campus	features	as	changes	in	this	region	are	quite	systematic,	but	
these	 studies	usually	neglect	 subtle	 changes	or	 complex	anatomic	
patterns compromising multiple regions. The use of a particular ma-
chine	learning	approach	should	take	this	into	consideration,	that	is	to	
say,	the	algorithm	should	make	hidden	patterns	to	emerge.

Support	vector	machines	 (SVM)	are	 the	 typical	automatic	classi-
fiers,	a	technique	that	assumes	there	exists	a	feature	space	in	which	
two	classes	are	 linearly	 separable.	The	use	of	SVM	 in	neuroimaging	
research	has	been	 reported	 in	multiple	 (Cuingnet,	Chupin,	Benali,	&	
Colliot,	2010;	Cuingnet	et	al.,	2011;	Kloppel	et	al.,	2008;	Magnin	et	al.,	
2009;	Padilla	et	al.,	2012;	Tanoori,	Azimifar,	Shakibafar,	&	Katebi,	2011;	
Zhang,	Shen,	&	Alzheimer’s	Disease	Neuroimaging	Initiative,	2012).

The ensemble of classifiers is an alternative strategy that com-
bines sets of weak classifiers to generate a strong classifier. It has 
been suggested that given the data high dimensionality and the small 
size	 of	 the	 available	 datasets,	 this	 ensemble	 of	 classifiers	 shows	 a	
better	performance	than	global	classifiers	(Liu,	Zhang,	&	Shen,	2012).	
This makes this technique more suitable for the present investigation.

1.3 | The interpretation gap

Despite the large body of research devoted to propose automatic 
methods	that	classify	structural	MRI	cases,	there	is	no	so	far	an	ac-
cepted	standard	technique	in	the	clinical	practice	as	in	general,	for	
most	automatic	morphometry	techniques,	brain	areas	that	express	
differences are not always correlated with anatomical regions with 
functional	 meaning.	 In	 case	 of	 machine	 learning	 approaches,	 the	
obtained	 features	 usually	 have	 no	 biological	 interpretability,	 and	
despite	their	good	classification	results,	their	contribution	to	some	

understanding	of	 the	disease	progression	 remains	 limited.	Overall,	
a main drawback in physio- pathological terms is that they do com-
pare	brains,	but	 their	notion	of	distance	has	not	meaning	 in	 terms	
of	the	disease	progression.	Furthermore,	in	structural	terms,	these	
methods may constitute a support to the diagnosis but not a tool for 
exploration	of	a	spectrum	of	differences.

1.4 | Proposed approach

This paper introduces a structural metric that allowed us to estimate 
brain differences by comparing the intensity levels of functional 
brain	regions,	herein	understood	as	a	set	of	contiguous	anatomical	
regions sharing similar functions. The hypothesis underlying this ap-
proach	is	that	the	subtle	neurological	differences	between	AD	and	
NC	are	correlated	with	tissue	constituents	with	particular	cognitive	
functions,	a	feature	mirrored	by	the	composition	of	gray	level	inten-
sities in the MRI.

This proposal incorporates three guiding principles:

1. The patients do not follow a single unique direction when tran-
sitioning	from	NC	to	AD.	Instead,	each	patient	with	AD	is	assumed	
to	 drift	 away	 from	 a	 healthy	 state	 in	 a	 particular	 direction,	 that	
is,	NC	cases	 form	a	 relatively	compact	cluster,	whereas	AD	tends	
to separate toward more than one distinct pathological states.

2. An	 anatomo-functional	 correlation	 should	 be	 used	 for	 patient	
management.	To	do	this,	a	method	that	quantifies	differences	be-
tween contiguous anatomical brain regions with specific func-
tional meaning is proposed. This is achieved at the same level 
experts	work	in	normal	clinical	practice.

3. The difference between regions is estimated by a true distance 
between	histograms	 that	effectively	quantize	 the	 frequency	 in-
formation of a gray scale.

2  | METHODS

The basis for the method is the quantitative measurement of the 
anatomical differences between individual regions of the brain. The 
process	 can	be	 roughly	divided	 in	 three	 stages:	brain	partitioning,	
region	 characterization,	 and	 pattern	 extraction.	 Additionally,	 the	
most significant regions in a classification task reveal the structural 
pattern of the disease.

2.1 | The brain parcellation

It	is	well	acknowledged	that	AD	tends	to	affect	particular	regions	of	
the	brain.	Furthermore,	typical	changes	have	been	locally	described	
in	AD,	for	example,	strong	changes	in	hippocampus	volume.	As	the	
disease	turns	out	to	be	 localized	and	associated	with	certain	func-
tions,	 it	 is	 then	 reasonable	 to	 expect	most	 important	 changes	 are	
concentrated in these regions.

In	this	work,	the	Harvard–Oxford	brain	atlas	(Eickhoff	et	al.,	2005)	
is used as the basic brain parcellation. The atlas covers 48 cortical 
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regions	per	hemisphere	and	17	subcortical	structural	areas,	giving	a	
total of 113 regions. The brain volumes are registered to the atlas by 
an	affine	 transformation	calculated	using	 the	FSL	 (FMRIB	Software	
Library)	 linear	 registration	 tool	 Flirt	 (Jenkinson,	Bannister,	Brady,	&	
Smith,	 2002;	 Jenkinson	&	 Smith,	 2001).	 This	 registration	 approach	
obviously	results	 in	slightly	displaced	intersubject	anatomic	regions,	
yet it is herein assumed this is not relevant in terms of the distribution 
of gray levels within these regions. Such claim may be supported by 
the	fact	that	overlap	between	partitioned	brains	is	at	least	97%.1

By	 assuming	 neighboring	 regions	 are	 associated	 with	 similar	
functions,	it	is	then	likely	that	AD	disease	compromises	sets	of	con-
tiguous regions rather than delimited ones. The aforementioned dis-
placement should in consequence affect marginally the distribution 
of low- level features such as the intensity which is the base of the 
herein	proposed	characterization.

2.2 | Region characterization

Ultimately,	the	objective	of	our	analysis	was	to	be	able	to	quantify	the	
level	of	similarity	or	dissimilarity	between	two	subjects.	Furthermore,	
it	is	expected	that	this	distance	is	related	to	the	diagnoses	given	by	
the	expert	neurologists,	that is,	two	NC	subjects	should	have	a	higher	
similarity	between	them	than	an	NC	and	an	AD	subject.

In	this	work,	the	difference	between	intensity	histograms	of	each	
anatomical	region	is	measured	(Figure	1).	These	histograms	may	be	
interpreted as the probability distributions of the neuronal density 
of each region as intensities are directly related with the composi-
tion of the particular tissue.

2.2.1 | Region similarity via Earth Mover’s Distance

Histogram	comparison	is	a	common	task	in	many	computer	vision-	
related	 problems	 such	 as	 image	 retrieval,	 color	 analysis,	 or	 3D	
object	 recognition	 (Ling	 &	 Okada,	 2007).	 Although	 a	 bin-	to-	bin	
distance,	 such	 as	 the	 Kullback–Leibler	 Divergence	 (KL)	 or	 the	

chi-	squared	distance,	is	widely	used,	these	measurements	are	very	
sensitive to slight region misalignments. This has been overcome 
by	 the	Earth	mover’s	distance	 (EMD)	 (Rubner,	Tomasi,	&	Guibas,	
1998),	 an	 actual	 metric	 between	 probability	 distributions	 that	
compares how the probability mass of two histograms is distrib-
uted	along	the	range	of	a	random	variable.	Before	any	comparison,	
all histograms are shifted so that the center of mass is aligned to 
the central bin of the histogram. This procedure aims to eliminate 
the differences by the constant background level when comparing 
regions.

EMD calculates the minimum cost of transforming one histogram 
into	another	 (Rubner,	Tomasi,	&	Guibas,	2000).	The	EMD	is	equiv-
alent	 to	solve	a	 linear	optimization	problem	 in	which	certain	units	
of the S = {S1,	…,	Sn} histogram have to be moved to fill the m bins 
of histogram C = {C1,	…,	Cm},	as	illustrated	in	Figure	2	with	a	simple	
example	of	the	calculation	of	EMD	between	two	histograms	p and q.

The movement of one unit from bin i ∊ S to bin j ∊ C has an asso-
ciated cost pij. The solution consists in a set of movements 

{
x∗
ij

}n,m

i,j=1
 

that form C	and	minimize	the	total	movement	cost.	The	optimization	
problem	can	be	written	in	terms	of	the	amount	of	“earth,”	in	this	case	
units xij,	that	is	moved	from	bin	i ∊ S to bin j ∊ C,	as	follows:

In	 this	case,	 the	cost	of	moving	one	unit	 is	 set	 to	 the	absolute	
distance	between	bins,	that is, pij = |i	–	j	|.	Given	the	solution	

{
x∗
ij

}n,m

i,j=1
,	

the EMD between S and C	is	the	normalized	total	cost:

When	the	compared	histograms	have	the	same	integral,	as	in	this	
paper,	the	problem	is	symmetric	and	the	EMD	is	a	metric	equivalent	
to	the	Wasserstein’s	distance.

1Experiments	performed	by	the	authors	showed	this	figure	for	the	OASIS	database.

min
x

n∑
i=1

pij xij

subject to:
m∑
j=1

xij≤Si for i∈
�
1, … ,n

�

n∑
i=1

xij≥Ci for j∈
�
1, … ,m

�

xij≥0 ∀ij

EMD
�
S,C

�
=
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x∗
ij
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i=1

m�

j=1

�i− j�xij

F IGURE  1 The	initial	step	to	recognize	patterns	is	to	segment	equivalent	anatomical	regions	(left).	After	the	region	volumes	are	extracted	
(center),	further	analysis	is	performed	over	the	grayscale	histogram	(right)
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2.3 | Population metrics

The presented pipeline calculates distances between sets of regions 
from	any	pair	of	subjects.	However,	comparison	between	regions	re-
quires	a	(unknown)	reference.	As	there	is	not	an	explicit	representa-
tion	of	the	data	“center	of	mass,”	the	medoid	of	the	control	group	has	
been chosen as this center. The medoid is defined as the element of 
a set with the minimal mean distance to the other population mem-
bers,	that is, for a given set A and a distance function δ the medoid 
x is defined as:

2.4 | Region selection

As	previously	mentioned	in	Section	2.1,	AD	does	not	affect	equally	
all the brain regions. It is important then to sift regions that might 
contain	redundant,	misleading,	or	confusing	information	for	the	final	
analysis.	 Unbiasedly	 speaking,	 the	 importance	 of	 the	 regions	was	
quantitatively assessed by measuring their usefulness in two clas-
sification	tasks:	separation	of	patients	with	Alzheimer’s	disease	and	
mild cognitive impairment from control subjects.

The	most	relevant	regions	are	set	by	an	ADABoost	(Adaptative	
Boost)	classifier	(Freund	&	Schapire,	1997)	trained	with	the	distances	
of	 each	 region	 to	 the	CN	medoid.	 The	ADABoost	 is	 an	 ensemble	
of meta- algorithms that iteratively updates the weights of various 
weak	classifiers,	giving	more	importance	to	samples	misclassified	in	
earlier rounds.

Simple	thresholds	of	the	distance	to	the	CN	medoid	have	been	
used	as	weak	classifiers.	As	there	are	considerably	more	CN	than	AD	
subjects,	the	RUSBoost	strategy	is	used	(Seiffert,	Khoshgoftaar,	Van	
Hulse,	&	Napolitano,	2010)	(Random	Unit	Sampling	Boost),	a	varia-
tion	of	ADABoost	 that	 takes	 into	account	 the	class	 imbalances	by	

randomly sampling the input during the training step. Once the clas-
sifiers	have	been	trained,	 it	 is	possible	to	calculate	the	relative	im-
portance of each feature as the weighted sum of mislabeled classes 
for each predictor.

3  | E XPERIMENTAL SETUP

The	 region	 extracting	 method	 was	 assessed	 using	 a	 subset	 of	 the	
OASIS	 database	 (Marcus	 et	al.,	 2007).	 The	 group	 consisted	 of	 136	
brain	MR	cases,	from	which	66	were	the	control	group	(CN),	50	corre-
sponded	to	mild	cognitive	impairment	(MCI),	and	20	were	patients	di-
agnosed	with	mild	Alzheimer’s	disease.	All	patients	were	right-	handed.	
The	age	range	of	both	groups	was	60–80	years	and	the	distribution	by	
gender is shown in Table 1.

The brain volumes in the database were acquired with 1.5 T 
Vision	 scanners	 (Siemens,	 Erlangen,	 Germany),	 using	 T1-	weighted	
magnetization-	prepared	rapid	gradient-	echo	(MP-	RAGE)	sequences.	
Images were spatially warped into the 1988 atlas space of Talairach 
and	Tournoux	(Buckner	et	al.,	2004),	averaged,	skull-	stripped,	and	fi-
nally,	gain-	field	corrected	to	obtain	a	single,	high-	contrast	MP-	RAGE	
image	per	subject.	For	more	detailed	information	about	this	process,	
see	Marcus	et	al.	(2007).

Classification performance was assessed via a receiver operating 
characteristic	curve	(ROC).	Due	to	the	limited	size	of	the	dataset,	the	
ROC	was	calculated	using	a	leave-	one-	out	scheme,	that is, iteratively 
training with the whole set but one and then using the resulting clas-
sifier to classify the case set aside.

3.1 | Testing different populations

Generalization	of	 the	presented	method	was	 tested	by	perform-
ing	 the	analysis	 in	 an	 independent	database,	 an	 issue	commonly	
avoided when assessing automated neuroimaging methods. 
Specifically,	 the	 analysis	 was	 carried	 out	 with	 the	 MIRIAD	 da-
tabase	 (Malone	et	al.,	 2013)	 using	 the	 classifier	 trained	with	 the	
OASIS	database.

The	MIRIAD	database	is	composed	of	69	brain	MR	images	from	23	
healthy	controls	and	46	subjects	diagnosed	with	probable	Alzheimer’s	
disease.	As	described	in	 (Malone	et	al.,	2013),	 images	were	acquired	
with	a	1.5	T	Signa	MRI	scanner	(GE	Medical	systems,	Milwaukee,	WI,	
USA),	 using	 a	T1-	weighted	 inversion	 recovery-	prepared	 fast	 spoiled	
gradient	 recalled	 (IR-	FSPGR)	 sequence.	 Images	 were	 warped	 into	
the	 Talairach	 and	 Tournoux	 atlas	 and	 skull-	stripped	 using	 the	 FSL	
(Jenkinson,	 Beckmann,	 Behrens,	Woolrich,	&	 Smith,	 2012)	 package.	

medoid
(
S
)
=argmin

x∈A

∑

y∈A

δ (x,y)

F IGURE  2  In	this	case,	the	EMD	between	p and q is the cost 
of	moving	one	unit	from	one	bin	to	the	next	divided	by	the	total	
mass:	1/3.	Notice	that	the	function	is	symmetric,	that is,	EMD	(p,	
q)	=	EMD	(q,	p)

Group N Age Gender (F/M) CDR MMSE

CN 66 70.76	±	5.58 48/18 0 29.12	±	1.12

MCI 50 72.80	±	5.03 28/22 0.5 26.04	±	3.49

AD 20 74.30	±	4.33 13/20 1 20.75	±	3.65

AD,	Alzheimer’s	disease;	MCI,	mild	 cognitive	 impairment;	OASIS,	Open	Access	Series	of	 Imaging	
Studies;	CDR,	Clinical	Dementia	Rating;	MMSE,	Mini-mental	State	Examination.

TABLE  1 Age	and	gender	of	subjects	in	
OASIS	subset
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The	distribution	of	age,	gender,	and	clinical	scores	of	the	used	data	is	
presented in Table 2.

The difference measurements have been implemented using 
MATLAB	(2010),	running	on	a	Linux	PC	with	2	Intel	Quad	Core	i7	at	
3.07	GHz	and	24	GB	of	RAM.	The	most	time-	consuming	part	of	the	
algorithm	is	the	calculation	of	the	EMD,	which	takes	in	average	6	s	
for	64-	bin	histograms.

4  | RESULTS

4.1 | Classification results

The	resulting	ROC	curves	are	shown	in	Figure	3,	from	which	two	common	
classification	performance	measurements	are	computed,	the	area	under	
the	curve	(AUC)	and	the	equal	error	rate	(EER),	being	this	last	measure	
the	threshold	point	at	which	false-	positive	(FP)	and	false-	negatives	(FN)	
type	errors	are	equal.	The	EER	is	0.1	and	the	AUC	is	0.92	when	classifying	
between	CN	and	AD	cases	of	the	OASIS	dataset,	while	classification	be-
tween	CN	and	MCI	shows	the	EER	is	0.3	and	the	AUC	is	0.74.	By	compar-
ison,	previous	works	performing	a	classification	between	CN	and	AD	with	
the	same	experimental	setup	obtained	an	EER	of	0.86	(Rueda,	Gonzalez,	
&	Romero,	2014)	and	0.8	(Toews,	Wells,	Collins,	&	Arbel,	2010)	(AUC	was	
not	reported),	that is, the present strategy outperforms both methods.

4.2 | Interpopulation results

The	classifier	trained	with	the	OASIS	database	was	assessed	for	the	
MIRIAD	database,	aiming	to	test	the	generalization	of	this	method.	

This	experiment	 resulted	 in	a	 sensitivity	of	85%	and	 specificity	of	
91%.	 These	 results	 show	 a	 good	 overall	 performance	with	 a	 high	
accuracy.	The	errors	consist	mostly	of	false	positives	(seven	cases),	
whereas	the	number	of	false	negatives	remains	relatively	low	(two	
cases).

4.3 | Region selection

As	RUSBoost	uses	random	sampling,	the	most	relevant	regions	were	
selected by averaging the importance of the regions for the total 
number	of	iterations	of	the	validation	scheme.	The	Harvard–Oxford	
Atlas	segmentation,	with	96	cortical	regions	(48	per	hemisphere)	and	
17	subcortical	regions,	was	used	for	a	coarse	extraction	of	regions.	
The	most	relevant	regions	to	discern	between	controls,	AD,	and	MCI	
patients	are	shown	in	Tables	3	and	4,	respectively.

Inspecting	the	regions	ordered	by	relevance,	 it	 is	evident	that,	 in	
the	case	of	CN/AD	classification,	the	discerning	power	is	concentrated	
in few regions: The top 10 most relevant features summed more than 
66.5%	of	the	relevancy	and	the	most	relevant	region	(right	hippocam-
pus)	amounts	to	a	relevancy	of	15.51%.

Provided	that	anatomical	changes	by	MCI	are	not	expected	to	
be	so	marked,	differences	are	subtle	and	more	regions	need	to	be	
taken	 into	 account	 to	detect	 them,	 in	other	words,	 importance	 is	
more spread across the regions and patterns turn out to be more 
complex.

It	is	worthy	to	mention	that	relevance	is	mostly	“additive”	that	is	
to	say	a	region	with	little	relevancy	is	in	any	case	informative,	but	this	
information	is	redundant	and	shared	by	other	regions.	In	this	case,	

Group N Age Gender (F/M) CDR MMSE

CN 23 69.67	±	7.06 11/12 0 29.39	±	0.84

AD 46 69.34	±	7.18 27/19 1.01	±	0.36 19.20	±	4.01

AD,	Alzheimer’s	disease;	MIRIAD,	Minimal	Interval	Resonance	Imaging	in	Alzheimer’s	disease.

TABLE  2 MIRIAD	database	subject	
distribution

F IGURE  3 Receiver operating characteristic curves for both 
experiments	with	OASIS	database,	the	gray	dots	correspond	to	the	
classification instances where the two types of error are equal

TABLE  3 Top 10 most relevant regions for the classification 
between	control	subjects	and	patients	with	Alzheimer’s	disease	
(AD)

Region Importance (%)

Right Hippocampus 15.51

Right Planum temporale 13.35

Left Hippocampus 8.40

Left Thalamus 7.16

Right Paracingulate gyrus 4.83

Right Middle	temporal	gyrus,	
anterior division

4.38

Left Insular	cortex 4.17

Right Putamen 3.59

Left Front	orbital	cortex 2.71

Right Amygdala 2.39
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the classifier will assign relevance to those regions that add value 
to the classification task. This statement is illustrated by the distri-
butions	of	 the	 two	hippocampi	 in	Figure	4:	Although	both	 regions	
show	similar	distribution	trends	and	strong	interclass	separation,	the	
right	hippocampus	is	more	relevant	than	the	left	one,	which	shows	
almost half of the importance in Table 3. It is likely that this differ-
ence reflects a cerebral dominance trend. This difference appears 
during	the	classifier	training	phase:	The	weak	classifier,	based	on	the	
left	hippocampus,	mostly	confirms	the	 results	of	 its	 right	counter-
part,	 that	 is,	 as	 the	 same	cases	are	discriminated	by	both	 left	 and	
right	 weak	 classifiers,	 RUSBoost	 considers	 the	 former	 redundant	
as not much additional information is added by it and its weight is 
decreased	 in	 the	 ensemble	 of	 classifiers.	 Because	 of	 this,	 regions	
showing important changes along the whole population are ranked 

higher,	whereas	those	regions	useful	to	classify	particular	cases	are	
ranked lower.

When	analyzing	 the	box	plot	 graphic	of	 the	distances	 to	 the	
medoid of the most relevant regions and their opposite hemi-
sphere	 equivalences	 (shown	 in	 Figure	4),	 there	 are	 strong	 ob-
servable	differences	between	NC,	which	form	relatively	compact	
groups,	 and	 AD	 subjects,	 which	 tend	 to	 be	more	 scattered	 and	
diverge	 from	NC,	while	 the	MCI	group	 falls	between	 them.	This	
trend	 is	 particularly	 remarkable	 in	 the	 amygdala,	 hippocampus,	
planum	temporale,	and	thalamus,	where	the	NC	and	AD	distribu-
tions are well separated.

A	good	 indicator	 of	 the	 validity	 of	 the	 present	methodology	 is	
the	observation	 that	although	all	 regions	are	 treated	equally,	with-
out	making	any	a	prior	assumptions,	 the	 regions	selected	as	highly	
relevant	are	acknowledged	by	clinicians	as	characteristic	of	the	AD	
changes	in	terms	of	diagnosis	and	evolution,	especially	the	hippocam-
pus,	whose	role	as	a	biomarker	of	the	disease	progression	is	widely	
accepted.	 The	 present	 metrics,	 in	 addition,	 quantify	 different	 pat-
terns of the disease and allows us to establish a distance between 
these differences.

5  | DISCUSSION

This paper introduces a novel automatic strategy that detects 
characteristic structural brain patterns associated with the pres-
ence	 of	 the	 Alzheimer’s	 disease	 in	 two	 public	 brain	MR	 datasets.	
The process begins by applying a publicly available registration tool 
(Jenkinson	&	Smith,	2001;	Jenkinson	et	al.,	2002)	to	align	all	volumes	
to	a	brain	atlas	(Eickhoff	et	al.,	2005).	The	regional	 intensity	distri-
bution differences between subjects are then estimated using the 
EMD. These intersubject anatomic features were used in a related 
binary classification task to establish the contribution of each region 

TABLE  4 Top 10 most relevant regions for the classification 
between control subjects and patients with mild cognitive 
impairment

Region Importance (%)

Left Amygdala 6.35

Right Hippocampus 5.41

Left Hippocampus 4.78

Right Planum temporale 3.56

Right Heschl’s	gyrus 3.24

Left Inferior	frontal	gyrus,	pars	
triangularis

3.10

Right Middle	temporal	gyrus,	anterior	
division

2.95

Right Amygdala 2.55

Left Paracingulate gyrus 2.40

Left Parahippocampal	gyrus,	
anterior division

2.18

F IGURE  4 Results of the distances 
to the medoid for the most relevant 
regions together with their contralateral 
equivalent

Left Right

0 2 4 6 0 2 4 6
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to the discrimination between healthy and unhealthy individuals. 
The underlying hypothesis behind this method is that any regional 
comparison shows the relative loss of neuronal tissue which is the 
main characteristic of any neurodegenerative disease. The method 
uses	distances	between	estimations	of	the	intensity	distribution,	as-
suming the neural density correlates with the gray levels of the MR 
image. Some side advantages of the presented methodology are its 
simplicity,	reproducibility,	and	interpretability.

Classical	 voxel	 or	 deformation-	based	 strategies	 has	 been	 able	
to	 establish	 statistical	 anatomical	 intergroup	differences,	 but	 they	
show	limitations	finding	the	exact	compromised	brain	regions	along	
an	experimental	group	as	 the	analysis	 considers	every	voxel	 inde-
pendently.	Analyses	 have	 evolved	 from	 these	 local	 approaches	 to	
the regional concept of identifying scale- invariant salient features 
(Toews	et	al.,	2010).	These	sets	of	features	have	been	found	to	be	
group-	related	and	suitable	biomarkers,	but	not	useful	for	finding	out	
anatomo- physiological correlations that enhance the understanding 
of	a	particular	disease.	 In	contrast,	 the	approach	herein	described	
can be seen as an improvement over current methods as is clinically 
interpretable by standing out actual patterns of the disease. This 
idea	is	illustrated	in	Figure	5	which	shows	different	quantified	pat-
terns of the disease using the proposed metrics.

Figure	5	shows	the	median	per	group	of	the	distances	to	the	CN	
medoid	for	each	region.	This	visualization	allows	us	to	observe	a	pro-
gression pattern in the different compromised regions.

This figure also suggests that equivalent regions in the two hemi-
spheres could not show the same progression rate and then the level 
of discrimination between subjects is better when the left and right 
equivalent	 regions	are	taken	separately,	a	claim	corroborated	with	
additional	 classification	 experiments	 in	which	 results	 deteriorated	
when	the	left	and	right	regions	were	combined	(data	not	shown).

It should be noted that the main goal of the present research 
was not to simply develop a fully automatic classification process 
but rather to find a strategy to automatically highlight regions char-
acterizing	 the	 disease.	 Nevertheless,	 the	 presented	 approach	 did	
effectively	separate	the	different	groups.	To	put	this	in	context,	the	

classification	between	controls	and	patients	with	AD	achieved	90%	
sensitivity and specificity while the best performing methods out 
of	10	compared	in	Cuingnet	et	al.	(2011)	using	a	different	database	
reported	up	to	81%	sensitivity	and	95%	specificity.	Similar	or	slightly	
lower results were found for methods relying on tissue segmenta-
tion	(Davatzikos	et	al.,	2008;	Fan,	Resnick,	Wu,	&	Davatzikos,	2008;	
Westman,	 Aguilar,	 Muehlboeck,	 &	 Simmons,	 2013;	 Zhang,	Wang,	
Zhou,	 Yuan,	 &	 Shen,	 2011),	 elastic	 deformations	 (Magnin	 et	al.,	
2009),	 semiautomatic	 segmentation	 of	 the	 hippocampus	 (Barnes	
et	al.,	 2004),	 or	 combinations	 of	 one	 or	 more	 of	 them	 (Farhan,	
Fahiem,	 &	 Tauseef,	 2014;	 Kloppel	 et	al.,	 2008;	 Plant	 et	al.,	 2010;	
Teipel	et	al.,	2007;	Wolz	et	al.,	2011).

On	the	other	hand,	an	 issue	regarding	 this	methodology	 is	 the	
use	 of	 a	 rigid	 registration,	 instead	 of	 the	 usual	 elastic	match	 per-
formed by most of methods. This decision aims to introduce simplic-
ity	 and	 reproducibility.	 Furthermore,	 the	method	attempts	 to	 find	
out	those	brain	areas	with	intensity	differences	or	neuronal	loss,	a	
task for which the anatomical regions may have some displacement 
as the important measurement is the distribution of gray levels. In 
the	 present	 investigation,	 the	 exact	 quantification	 of	 the	 overlap	
could	only	be	measured	by	a	set	of	experts	delineating	all	regions.	
However,	a	rough	overlapping	estimation	with	the	Dice	coefficient	
between the different brains was computed as.

In	practice,	the	high	level	of	agreement	seen	in	Table	5	suggests	
the overlapped brain area is high enough to guarantee that the dis-
tribution	of	 intensities	 is	 representative,	 even	when	 some	 regions	
displacements	may	be	present.	As	measured	differences	depend	on	

F IGURE  5 The directions of these 
polar graphics correspond to the eight 
most relevant regions in the classification 
task:	1.	amygdala,	2.	hippocampus,	 
3.	planum	temporale,	4.	Heschl’s	gyrus,	
5.	inferior	frontal	gyrus,	6.	thalamus,	
7.	paracingulate	gyrus,	and	8.	middle	
temporal	gyrus	(anterior	division)

TABLE  5 Dice score by overlapping the different database 
brains after the rigid registration

OASIS MIRIAD

OASIS 0.99	±	0.0030 0.93	±	0.0057

MIRIAD 0.93	±	0.0057 0.96	±	0.0062

MIRIAD,	 Minimal	 Interval	 Resonance	 Imaging	 in	 Alzheimer’s	 disease;	
OASIS,	Open	Access	Series	of	Imaging	Studies.
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the	number	of	intensities,	the	results	are	sufficiently	robust	to	prob-
able small misalignments.

Finally,	 future	 work	 should	 include	 evaluation	 with	 larger	 da-
tabases to confirm what has been observed in the present study. 
Likewise,	the	method	should	be	assessed	with	different	databases,	
yet a preliminary analysis was carried out in the present investiga-
tion	using	a	different	database.	 In	such	a	 task,	a	classifier	with	no	
further training found a high level of sensitivity despite the strong 
gender	wise,	class	imbalance	(i.e.,	the	NC	to	AD	ratios)	and	sample	
size	 differences.	 It	 is	 worthy	 to	 mention	 that	 the	 two	 databases,	
training	and	testing,	were	acquired	with	equipment	 from	different	
manufacturers with their own proprietary acquisition protocols.
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