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Abstract
Purpose: This work presents an automatic characterization of the Alzheimer’s dis-
ease describing the illness as a multidirectional departure from a baseline defining 
the control state, being these directions determined by a distance between 
functional-equivalent anatomical regions.
Methods: After a brain parcellation, a region is described by its histogram of gray 
levels, and the Earth mover’s distance establishes how close or far these regions are. 
The medoid of the control group is set as the reference and any brain is characterized 
by its set of distances to this medoid.
Evaluation: This hypothesis was assessed by separating groups of patients with mild 
Alzheimer’s disease and mild cognitive impairment from control subjects, using a sub-
set of the Open Access Series of Imaging Studies (OASIS) database. An additional ex-
periment evaluated the method generalization and consisted in training with the 
OASIS data and testing with the Minimal Interval Resonance Imaging in Alzheimer’s 
disease (MIRIAD) database.
Results: Classification between controls and patients with AD resulted in an equal 
error rate of 0.1 (90% of sensitivity and specificity at the same time). The automatic 
ranking of regions resulting is in strong agreement with those regions described as 
important in clinical practice. Classification with different databases results in a sen-
sitivity of 85% and a specificity of 91%.
Conclusions: This method automatically finds out a multidimensional expression of 
the AD, which is directly related to the anatomical changes in specific areas such as 
the hippocampus, the amygdala, the planum temporale, and thalamus.
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1  | INTRODUC TION

The increased life expectancy and aging of the general population 
have made of Alzheimer’s disease (AD) a growing public health 

concern. AD is nowadays the most common form of dementia 
and it is expected that by the year 2050, there will be approx-
imately 135 million patients suffering from different stages of 
AD (Alzheimer’s Disease International, 2013). This means that 
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roughly one in 85 persons worldwide will develop the disease 
(Brookmeyer, Johnson, Ziegler-Graham, & Arrighi, 2007), suffer a 
diminished quality of life, and require constant assistance for the 
rest of their life.

Despite high human and monetary costs, our AD understand-
ing is at present limited. There is neither a clear disease model nor 
a plausible physio-pathological explanation about the underlying 
progression. In consequence, AD treatment and management are 
not designed toward planning a personalized therapy or to delay 
the disease progress but rather to merely treat symptoms, that is, 
the physician response is purely reactive. AD is commonly diag-
nosed when a physician detects cognitive impairment or memory 
complaints, based on the patient’s clinical history and a battery of 
neuropsychological tests measuring different cognitive aspects. A 
highly variable clinical frame hinders a precise diagnosis which re-
sults then fully dependent on the examiner’s experience. Only 50% 
of the cases of probable dementia are correctly diagnosed (Kloppel 
et al., 2008). The AD diagnosis is confirmed by the detection of 
plaques and neurofibrillary tangles, possible only by cerebral biopsy 
or postmortem.

The large percentage of misdiagnoses has triggered the interest 
of the medical community in quantifying the disease degree, a task 
hardly obtained from the typical neuropsychological tests used in 
clinics. Under this context, the perspective of using neuroimaging 
techniques, for both early detection and confirmation, is very ap-
pealing and has generated a large body of research. In the clinical 
practice, however, neuroimaging techniques have had, until now, 
only a marginal role: Their main use is to exclude other pathologi-
cal conditions or to visualize the neurodegenerative structural pat-
tern. Recent reviews on the NINCDS-ADRDA Alzheimer’s criteria 
(Dubois et al., 2007, 2014) recommend using MR neuroimages as a 
supportive diagnosis tool while the IWG-2 criteria suggest the use 
of amyloid PET (Positron Emission Tomography) imaging as evidence 
of Alzheimer’s pathology. Volumetry of the hippocampus and the 
medial temporal lobe (MTL) has gained wide acceptance as a diag-
nostic tool and biomarker of the disease progression, yet the disease 
management is independent of these measures. It should be noted 
that the presence of atypical AD pathology and other diseases, such 
as the hippocampal sclerosis, compromises the reliability of the data 
obtained with this technique.

Quantification of the volume loss and/or structural changes in 
brain areas has shown an improvement of the differential diag-
nosis between the AD and some atypical pathological subtypes 
(Whitwell et al., 2012). Interestingly, this type of quantification 
does, indeed, resembles the anatomo-functional correlations that 
neuroradiologists perform for the early stages of the disease, 
for example, if there is some evidence of functional impairment, 
clinicians will search for structural abnormalities and changes in 
particular brain regions such as the hypothalamus. Although these 
changes form part of the whole clinical picture, they are usually 
hard to quantify as they are masked by the huge brain variability, 
the normal aging process, and the unpredictable progression of 
the disease.

1.1 | Pathological and clinical subtypes of AD

Although the disease progression has been traditionally assessed 
under the Braak and Braak staging scheme (Braak & Braak, 1991), 
several reports (Akatsu et al., 2002; Armstrong, Nochlin, & Bird, 
2000; Janocko et al., 2012; Murray et al., 2014) have demonstrated 
a very variable AD clinical picture: Neither the progression patterns 
nor the same anatomical areas are involved or follow a reproducible 
anatomic sequence, even in series of patients belonging to compa-
rable social and cultural environments. Approximately 25% of AD 
brains show atypical patterns of structural damage, usually classified 
as hippocampal sparing and limbic predominant AD (Murray et al., 
2011). Furthermore, AD can also manifest different clinical pictures, 
such as the posterior, logogenic, and frontal variants (IGW-2). Given 
that the AD symptoms may be confused with other conditions, there 
is a strong interest in developing objective tools that characterize 
the disease progression as well as the clinical variants. Due to their 
noninvasive and harmless nature, neuroimages constitute a potential 
source of information. Their utility, however, remains limited as men-
tioned earlier. Recently, a large number of computational techniques 
have been proposed, aiming at quantitatively analyzing the radiolog-
ical information. Aside from the computational requirements, most 
of these techniques produce binary outcomes, of the type of a dis-
ease–healthy classification. Such a categorical labeling is generally 
not very useful from a clinical standpoint. It should be noted, how-
ever, that some groups have developed techniques to assess AD risk 
deriving continuous metrics from binary classifiers (Casanova et al., 
2013; Davatzikos, Xu, An, Fan, & Resnick, 2009; Vemuri et al., 2008).

Despite this, the common radiological analysis is still a structural 
inspection followed by an abnormality detection which is hardly com-
plemented by these automatic techniques. Most of these methods 
do not directly quantify radiological observations and physicians end 
up using their experience as the basis of the diagnosis process. An 
accurate quantification of radiological findings then turns out to be a 
strong limitation for integrating these techniques to the radiological 
analysis workflow. A simple geometrical measurement is apparently 
inadequate as it excludes the inherent biological variability that hin-
ders the real structural differences induced by the clinical picture.

1.2 | Computational brain morphometry

Several studies report the use of sophisticated measurement tech-
niques that assess anatomical changes in areas compromised by AD 
such as the cortical thickness or volumes of subcortical structures 
(Desikan et al., 2009; Van der Kouwe, Benner, Salat, & Fischl, 2008). 
The collection of methods that search these anatomical changes or 
other differences between groups of individual is known as brain 
morphometry. The brain morphometrical studies are divided into 
two main steps (Mietchen & Gaser, 2009):

•	 A common spatial representation of the brain that reduces the 
inherent anatomical variability among subjects.

•	 A corresponding morphometrical measure and statistical analysis.
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Voxel-based morphometry (VBM), proposed by Ashburner and 
Friston (Ashburner & Friston, 2000), is by far the most common ap-
proach used by the neuroscience research community. Other features 
besides the voxel values have been considered in morphometrical 
studies, giving place to specific techniques such as landmark-based 
morphometry (DeQuardo et al., 1999), deformation-based or tensor-
based morphometry (Ashburner et al., 1998), and surface-based mor-
phometry (Pantazis, Leahy, Nichols, & Styner, 2004).

These morphometrical analyses require an accurate intersubject 
registration that guarantees the comparison of homologous struc-
tures across all subjects. However, this kind of one-to-one corre-
spondence between subjects may not always be achieved, mainly 
because of the inherent intersubject anatomical variability and the 
effects of brain pathologies. 1.3 Machine learning techniques.

The use of machine learning and elaborate data processing tech-
niques has become common for the analysis of neuroimages. These 
approaches train a classifier with different sets of features and as-
sign a label to unseen brain volumes (Davatzikos, Fan, Wu, Shen, & 
Resnick, 2008; Freeborough et al., 1998). A recent review (Rathore, 
Habes, Iftikhar, Shacklett, & Davatzikos, 2017) established three 
automatic classification categories based on the feature extraction 
method for structural MRI: density maps-based, cortical surface-
based, and predefined region-based. As pointed out by these 
authors, most investigations in the latter category use only hippo-
campus features as changes in this region are quite systematic, but 
these studies usually neglect subtle changes or complex anatomic 
patterns compromising multiple regions. The use of a particular ma-
chine learning approach should take this into consideration, that is to 
say, the algorithm should make hidden patterns to emerge.

Support vector machines (SVM) are the typical automatic classi-
fiers, a technique that assumes there exists a feature space in which 
two classes are linearly separable. The use of SVM in neuroimaging 
research has been reported in multiple (Cuingnet, Chupin, Benali, & 
Colliot, 2010; Cuingnet et al., 2011; Kloppel et al., 2008; Magnin et al., 
2009; Padilla et al., 2012; Tanoori, Azimifar, Shakibafar, & Katebi, 2011; 
Zhang, Shen, & Alzheimer’s Disease Neuroimaging Initiative, 2012).

The ensemble of classifiers is an alternative strategy that com-
bines sets of weak classifiers to generate a strong classifier. It has 
been suggested that given the data high dimensionality and the small 
size of the available datasets, this ensemble of classifiers shows a 
better performance than global classifiers (Liu, Zhang, & Shen, 2012). 
This makes this technique more suitable for the present investigation.

1.3 | The interpretation gap

Despite the large body of research devoted to propose automatic 
methods that classify structural MRI cases, there is no so far an ac-
cepted standard technique in the clinical practice as in general, for 
most automatic morphometry techniques, brain areas that express 
differences are not always correlated with anatomical regions with 
functional meaning. In case of machine learning approaches, the 
obtained features usually have no biological interpretability, and 
despite their good classification results, their contribution to some 

understanding of the disease progression remains limited. Overall, 
a main drawback in physio-pathological terms is that they do com-
pare brains, but their notion of distance has not meaning in terms 
of the disease progression. Furthermore, in structural terms, these 
methods may constitute a support to the diagnosis but not a tool for 
exploration of a spectrum of differences.

1.4 | Proposed approach

This paper introduces a structural metric that allowed us to estimate 
brain differences by comparing the intensity levels of functional 
brain regions, herein understood as a set of contiguous anatomical 
regions sharing similar functions. The hypothesis underlying this ap-
proach is that the subtle neurological differences between AD and 
NC are correlated with tissue constituents with particular cognitive 
functions, a feature mirrored by the composition of gray level inten-
sities in the MRI.

This proposal incorporates three guiding principles:

1.	 The patients do not follow a single unique direction when tran-
sitioning from NC to AD. Instead, each patient with AD is assumed 
to drift away from a healthy state in a particular direction, that 
is, NC cases form a relatively compact cluster, whereas AD tends 
to separate toward more than one distinct pathological states.

2.	 An anatomo-functional correlation should be used for patient 
management. To do this, a method that quantifies differences be-
tween contiguous anatomical brain regions with specific func-
tional meaning is proposed. This is achieved at the same level 
experts work in normal clinical practice.

3.	 The difference between regions is estimated by a true distance 
between histograms that effectively quantize the frequency in-
formation of a gray scale.

2  | METHODS

The basis for the method is the quantitative measurement of the 
anatomical differences between individual regions of the brain. The 
process can be roughly divided in three stages: brain partitioning, 
region characterization, and pattern extraction. Additionally, the 
most significant regions in a classification task reveal the structural 
pattern of the disease.

2.1 | The brain parcellation

It is well acknowledged that AD tends to affect particular regions of 
the brain. Furthermore, typical changes have been locally described 
in AD, for example, strong changes in hippocampus volume. As the 
disease turns out to be localized and associated with certain func-
tions, it is then reasonable to expect most important changes are 
concentrated in these regions.

In this work, the Harvard–Oxford brain atlas (Eickhoff et al., 2005) 
is used as the basic brain parcellation. The atlas covers 48 cortical 
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regions per hemisphere and 17 subcortical structural areas, giving a 
total of 113 regions. The brain volumes are registered to the atlas by 
an affine transformation calculated using the FSL (FMRIB Software 
Library) linear registration tool Flirt (Jenkinson, Bannister, Brady, & 
Smith, 2002; Jenkinson & Smith, 2001). This registration approach 
obviously results in slightly displaced intersubject anatomic regions, 
yet it is herein assumed this is not relevant in terms of the distribution 
of gray levels within these regions. Such claim may be supported by 
the fact that overlap between partitioned brains is at least 97%.1

By assuming neighboring regions are associated with similar 
functions, it is then likely that AD disease compromises sets of con-
tiguous regions rather than delimited ones. The aforementioned dis-
placement should in consequence affect marginally the distribution 
of low-level features such as the intensity which is the base of the 
herein proposed characterization.

2.2 | Region characterization

Ultimately, the objective of our analysis was to be able to quantify the 
level of similarity or dissimilarity between two subjects. Furthermore, 
it is expected that this distance is related to the diagnoses given by 
the expert neurologists, that is, two NC subjects should have a higher 
similarity between them than an NC and an AD subject.

In this work, the difference between intensity histograms of each 
anatomical region is measured (Figure 1). These histograms may be 
interpreted as the probability distributions of the neuronal density 
of each region as intensities are directly related with the composi-
tion of the particular tissue.

2.2.1 | Region similarity via Earth Mover’s Distance

Histogram comparison is a common task in many computer vision-
related problems such as image retrieval, color analysis, or 3D 
object recognition (Ling & Okada, 2007). Although a bin-to-bin 
distance, such as the Kullback–Leibler Divergence (KL) or the 

chi-squared distance, is widely used, these measurements are very 
sensitive to slight region misalignments. This has been overcome 
by the Earth mover’s distance (EMD) (Rubner, Tomasi, & Guibas, 
1998), an actual metric between probability distributions that 
compares how the probability mass of two histograms is distrib-
uted along the range of a random variable. Before any comparison, 
all histograms are shifted so that the center of mass is aligned to 
the central bin of the histogram. This procedure aims to eliminate 
the differences by the constant background level when comparing 
regions.

EMD calculates the minimum cost of transforming one histogram 
into another (Rubner, Tomasi, & Guibas, 2000). The EMD is equiv-
alent to solve a linear optimization problem in which certain units 
of the S = {S1, …, Sn} histogram have to be moved to fill the m bins 
of histogram C = {C1, …, Cm}, as illustrated in Figure 2 with a simple 
example of the calculation of EMD between two histograms p and q.

The movement of one unit from bin i ∊ S to bin j ∊ C has an asso-
ciated cost pij. The solution consists in a set of movements 

{
x∗
ij

}n,m

i,j=1
 

that form C and minimize the total movement cost. The optimization 
problem can be written in terms of the amount of “earth,” in this case 
units xij, that is moved from bin i ∊ S to bin j ∊ C, as follows:

In this case, the cost of moving one unit is set to the absolute 
distance between bins, that is, pij = |i – j |. Given the solution 

{
x∗
ij

}n,m

i,j=1
, 

the EMD between S and C is the normalized total cost:

When the compared histograms have the same integral, as in this 
paper, the problem is symmetric and the EMD is a metric equivalent 
to the Wasserstein’s distance.

1Experiments performed by the authors showed this figure for the OASIS database.
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x
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F IGURE  1 The initial step to recognize patterns is to segment equivalent anatomical regions (left). After the region volumes are extracted 
(center), further analysis is performed over the grayscale histogram (right)
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2.3 | Population metrics

The presented pipeline calculates distances between sets of regions 
from any pair of subjects. However, comparison between regions re-
quires a (unknown) reference. As there is not an explicit representa-
tion of the data “center of mass,” the medoid of the control group has 
been chosen as this center. The medoid is defined as the element of 
a set with the minimal mean distance to the other population mem-
bers, that is, for a given set A and a distance function δ the medoid 
x is defined as:

2.4 | Region selection

As previously mentioned in Section 2.1, AD does not affect equally 
all the brain regions. It is important then to sift regions that might 
contain redundant, misleading, or confusing information for the final 
analysis. Unbiasedly speaking, the importance of the regions was 
quantitatively assessed by measuring their usefulness in two clas-
sification tasks: separation of patients with Alzheimer’s disease and 
mild cognitive impairment from control subjects.

The most relevant regions are set by an ADABoost (Adaptative 
Boost) classifier (Freund & Schapire, 1997) trained with the distances 
of each region to the CN medoid. The ADABoost is an ensemble 
of meta-algorithms that iteratively updates the weights of various 
weak classifiers, giving more importance to samples misclassified in 
earlier rounds.

Simple thresholds of the distance to the CN medoid have been 
used as weak classifiers. As there are considerably more CN than AD 
subjects, the RUSBoost strategy is used (Seiffert, Khoshgoftaar, Van 
Hulse, & Napolitano, 2010) (Random Unit Sampling Boost), a varia-
tion of ADABoost that takes into account the class imbalances by 

randomly sampling the input during the training step. Once the clas-
sifiers have been trained, it is possible to calculate the relative im-
portance of each feature as the weighted sum of mislabeled classes 
for each predictor.

3  | E XPERIMENTAL SETUP

The region extracting method was assessed using a subset of the 
OASIS database (Marcus et al., 2007). The group consisted of 136 
brain MR cases, from which 66 were the control group (CN), 50 corre-
sponded to mild cognitive impairment (MCI), and 20 were patients di-
agnosed with mild Alzheimer’s disease. All patients were right-handed. 
The age range of both groups was 60–80 years and the distribution by 
gender is shown in Table 1.

The brain volumes in the database were acquired with 1.5 T 
Vision scanners (Siemens, Erlangen, Germany), using T1-weighted 
magnetization-prepared rapid gradient-echo (MP-RAGE) sequences. 
Images were spatially warped into the 1988 atlas space of Talairach 
and Tournoux (Buckner et al., 2004), averaged, skull-stripped, and fi-
nally, gain-field corrected to obtain a single, high-contrast MP-RAGE 
image per subject. For more detailed information about this process, 
see Marcus et al. (2007).

Classification performance was assessed via a receiver operating 
characteristic curve (ROC). Due to the limited size of the dataset, the 
ROC was calculated using a leave-one-out scheme, that is, iteratively 
training with the whole set but one and then using the resulting clas-
sifier to classify the case set aside.

3.1 | Testing different populations

Generalization of the presented method was tested by perform-
ing the analysis in an independent database, an issue commonly 
avoided when assessing automated neuroimaging methods. 
Specifically, the analysis was carried out with the MIRIAD da-
tabase (Malone et al., 2013) using the classifier trained with the 
OASIS database.

The MIRIAD database is composed of 69 brain MR images from 23 
healthy controls and 46 subjects diagnosed with probable Alzheimer’s 
disease. As described in (Malone et al., 2013), images were acquired 
with a 1.5 T Signa MRI scanner (GE Medical systems, Milwaukee, WI, 
USA), using a T1-weighted inversion recovery-prepared fast spoiled 
gradient recalled (IR-FSPGR) sequence. Images were warped into 
the Talairach and Tournoux atlas and skull-stripped using the FSL 
(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) package. 

medoid
(
S
)
=argmin

x∈A

∑

y∈A

δ (x,y)

F IGURE  2  In this case, the EMD between p and q is the cost 
of moving one unit from one bin to the next divided by the total 
mass: 1/3. Notice that the function is symmetric, that is, EMD (p, 
q) = EMD (q, p)

Group N Age Gender (F/M) CDR MMSE

CN 66 70.76 ± 5.58 48/18 0 29.12 ± 1.12

MCI 50 72.80 ± 5.03 28/22 0.5 26.04 ± 3.49

AD 20 74.30 ± 4.33 13/20 1 20.75 ± 3.65

AD, Alzheimer’s disease; MCI, mild cognitive impairment; OASIS, Open Access Series of Imaging 
Studies; CDR, Clinical Dementia Rating; MMSE, Mini-mental State Examination.

TABLE  1 Age and gender of subjects in 
OASIS subset
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The distribution of age, gender, and clinical scores of the used data is 
presented in Table 2.

The difference measurements have been implemented using 
MATLAB (2010), running on a Linux PC with 2 Intel Quad Core i7 at 
3.07 GHz and 24 GB of RAM. The most time-consuming part of the 
algorithm is the calculation of the EMD, which takes in average 6 s 
for 64-bin histograms.

4  | RESULTS

4.1 | Classification results

The resulting ROC curves are shown in Figure 3, from which two common 
classification performance measurements are computed, the area under 
the curve (AUC) and the equal error rate (EER), being this last measure 
the threshold point at which false-positive (FP) and false-negatives (FN) 
type errors are equal. The EER is 0.1 and the AUC is 0.92 when classifying 
between CN and AD cases of the OASIS dataset, while classification be-
tween CN and MCI shows the EER is 0.3 and the AUC is 0.74. By compar-
ison, previous works performing a classification between CN and AD with 
the same experimental setup obtained an EER of 0.86 (Rueda, Gonzalez, 
& Romero, 2014) and 0.8 (Toews, Wells, Collins, & Arbel, 2010) (AUC was 
not reported), that is, the present strategy outperforms both methods.

4.2 | Interpopulation results

The classifier trained with the OASIS database was assessed for the 
MIRIAD database, aiming to test the generalization of this method. 

This experiment resulted in a sensitivity of 85% and specificity of 
91%. These results show a good overall performance with a high 
accuracy. The errors consist mostly of false positives (seven cases), 
whereas the number of false negatives remains relatively low (two 
cases).

4.3 | Region selection

As RUSBoost uses random sampling, the most relevant regions were 
selected by averaging the importance of the regions for the total 
number of iterations of the validation scheme. The Harvard–Oxford 
Atlas segmentation, with 96 cortical regions (48 per hemisphere) and 
17 subcortical regions, was used for a coarse extraction of regions. 
The most relevant regions to discern between controls, AD, and MCI 
patients are shown in Tables 3 and 4, respectively.

Inspecting the regions ordered by relevance, it is evident that, in 
the case of CN/AD classification, the discerning power is concentrated 
in few regions: The top 10 most relevant features summed more than 
66.5% of the relevancy and the most relevant region (right hippocam-
pus) amounts to a relevancy of 15.51%.

Provided that anatomical changes by MCI are not expected to 
be so marked, differences are subtle and more regions need to be 
taken into account to detect them, in other words, importance is 
more spread across the regions and patterns turn out to be more 
complex.

It is worthy to mention that relevance is mostly “additive” that is 
to say a region with little relevancy is in any case informative, but this 
information is redundant and shared by other regions. In this case, 

Group N Age Gender (F/M) CDR MMSE

CN 23 69.67 ± 7.06 11/12 0 29.39 ± 0.84

AD 46 69.34 ± 7.18 27/19 1.01 ± 0.36 19.20 ± 4.01

AD, Alzheimer’s disease; MIRIAD, Minimal Interval Resonance Imaging in Alzheimer’s disease.

TABLE  2 MIRIAD database subject 
distribution

F IGURE  3 Receiver operating characteristic curves for both 
experiments with OASIS database, the gray dots correspond to the 
classification instances where the two types of error are equal

TABLE  3 Top 10 most relevant regions for the classification 
between control subjects and patients with Alzheimer’s disease 
(AD)

Region Importance (%)

Right Hippocampus 15.51

Right Planum temporale 13.35

Left Hippocampus 8.40

Left Thalamus 7.16

Right Paracingulate gyrus 4.83

Right Middle temporal gyrus, 
anterior division

4.38

Left Insular cortex 4.17

Right Putamen 3.59

Left Front orbital cortex 2.71

Right Amygdala 2.39
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the classifier will assign relevance to those regions that add value 
to the classification task. This statement is illustrated by the distri-
butions of the two hippocampi in Figure 4: Although both regions 
show similar distribution trends and strong interclass separation, the 
right hippocampus is more relevant than the left one, which shows 
almost half of the importance in Table 3. It is likely that this differ-
ence reflects a cerebral dominance trend. This difference appears 
during the classifier training phase: The weak classifier, based on the 
left hippocampus, mostly confirms the results of its right counter-
part, that is, as the same cases are discriminated by both left and 
right weak classifiers, RUSBoost considers the former redundant 
as not much additional information is added by it and its weight is 
decreased in the ensemble of classifiers. Because of this, regions 
showing important changes along the whole population are ranked 

higher, whereas those regions useful to classify particular cases are 
ranked lower.

When analyzing the box plot graphic of the distances to the 
medoid of the most relevant regions and their opposite hemi-
sphere equivalences (shown in Figure 4), there are strong ob-
servable differences between NC, which form relatively compact 
groups, and AD subjects, which tend to be more scattered and 
diverge from NC, while the MCI group falls between them. This 
trend is particularly remarkable in the amygdala, hippocampus, 
planum temporale, and thalamus, where the NC and AD distribu-
tions are well separated.

A good indicator of the validity of the present methodology is 
the observation that although all regions are treated equally, with-
out making any a prior assumptions, the regions selected as highly 
relevant are acknowledged by clinicians as characteristic of the AD 
changes in terms of diagnosis and evolution, especially the hippocam-
pus, whose role as a biomarker of the disease progression is widely 
accepted. The present metrics, in addition, quantify different pat-
terns of the disease and allows us to establish a distance between 
these differences.

5  | DISCUSSION

This paper introduces a novel automatic strategy that detects 
characteristic structural brain patterns associated with the pres-
ence of the Alzheimer’s disease in two public brain MR datasets. 
The process begins by applying a publicly available registration tool 
(Jenkinson & Smith, 2001; Jenkinson et al., 2002) to align all volumes 
to a brain atlas (Eickhoff et al., 2005). The regional intensity distri-
bution differences between subjects are then estimated using the 
EMD. These intersubject anatomic features were used in a related 
binary classification task to establish the contribution of each region 

TABLE  4 Top 10 most relevant regions for the classification 
between control subjects and patients with mild cognitive 
impairment

Region Importance (%)

Left Amygdala 6.35

Right Hippocampus 5.41

Left Hippocampus 4.78

Right Planum temporale 3.56

Right Heschl’s gyrus 3.24

Left Inferior frontal gyrus, pars 
triangularis

3.10

Right Middle temporal gyrus, anterior 
division

2.95

Right Amygdala 2.55

Left Paracingulate gyrus 2.40

Left Parahippocampal gyrus, 
anterior division

2.18

F IGURE  4 Results of the distances 
to the medoid for the most relevant 
regions together with their contralateral 
equivalent

Left Right

0 2 4 6 0 2 4 6

Middle Temporal Gyrus,
anterior division

Paracingulate Gyrus

Thalamus

Inferior Frontal Gyrus,
pars triangularis

Heschl’s Gyrus
(includes H1 and H2)

Planum Temporale

Hippocampus

Amygdala

Distance to CN medoid

Group

mild AD

MCI

CN
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to the discrimination between healthy and unhealthy individuals. 
The underlying hypothesis behind this method is that any regional 
comparison shows the relative loss of neuronal tissue which is the 
main characteristic of any neurodegenerative disease. The method 
uses distances between estimations of the intensity distribution, as-
suming the neural density correlates with the gray levels of the MR 
image. Some side advantages of the presented methodology are its 
simplicity, reproducibility, and interpretability.

Classical voxel or deformation-based strategies has been able 
to establish statistical anatomical intergroup differences, but they 
show limitations finding the exact compromised brain regions along 
an experimental group as the analysis considers every voxel inde-
pendently. Analyses have evolved from these local approaches to 
the regional concept of identifying scale-invariant salient features 
(Toews et al., 2010). These sets of features have been found to be 
group-related and suitable biomarkers, but not useful for finding out 
anatomo-physiological correlations that enhance the understanding 
of a particular disease. In contrast, the approach herein described 
can be seen as an improvement over current methods as is clinically 
interpretable by standing out actual patterns of the disease. This 
idea is illustrated in Figure 5 which shows different quantified pat-
terns of the disease using the proposed metrics.

Figure 5 shows the median per group of the distances to the CN 
medoid for each region. This visualization allows us to observe a pro-
gression pattern in the different compromised regions.

This figure also suggests that equivalent regions in the two hemi-
spheres could not show the same progression rate and then the level 
of discrimination between subjects is better when the left and right 
equivalent regions are taken separately, a claim corroborated with 
additional classification experiments in which results deteriorated 
when the left and right regions were combined (data not shown).

It should be noted that the main goal of the present research 
was not to simply develop a fully automatic classification process 
but rather to find a strategy to automatically highlight regions char-
acterizing the disease. Nevertheless, the presented approach did 
effectively separate the different groups. To put this in context, the 

classification between controls and patients with AD achieved 90% 
sensitivity and specificity while the best performing methods out 
of 10 compared in Cuingnet et al. (2011) using a different database 
reported up to 81% sensitivity and 95% specificity. Similar or slightly 
lower results were found for methods relying on tissue segmenta-
tion (Davatzikos et al., 2008; Fan, Resnick, Wu, & Davatzikos, 2008; 
Westman, Aguilar, Muehlboeck, & Simmons, 2013; Zhang, Wang, 
Zhou, Yuan, & Shen, 2011), elastic deformations (Magnin et al., 
2009), semiautomatic segmentation of the hippocampus (Barnes 
et al., 2004), or combinations of one or more of them (Farhan, 
Fahiem, & Tauseef, 2014; Kloppel et al., 2008; Plant et al., 2010; 
Teipel et al., 2007; Wolz et al., 2011).

On the other hand, an issue regarding this methodology is the 
use of a rigid registration, instead of the usual elastic match per-
formed by most of methods. This decision aims to introduce simplic-
ity and reproducibility. Furthermore, the method attempts to find 
out those brain areas with intensity differences or neuronal loss, a 
task for which the anatomical regions may have some displacement 
as the important measurement is the distribution of gray levels. In 
the present investigation, the exact quantification of the overlap 
could only be measured by a set of experts delineating all regions. 
However, a rough overlapping estimation with the Dice coefficient 
between the different brains was computed as.

In practice, the high level of agreement seen in Table 5 suggests 
the overlapped brain area is high enough to guarantee that the dis-
tribution of intensities is representative, even when some regions 
displacements may be present. As measured differences depend on 

F IGURE  5 The directions of these 
polar graphics correspond to the eight 
most relevant regions in the classification 
task: 1. amygdala, 2. hippocampus,  
3. planum temporale, 4. Heschl’s gyrus, 
5. inferior frontal gyrus, 6. thalamus, 
7. paracingulate gyrus, and 8. middle 
temporal gyrus (anterior division)

TABLE  5 Dice score by overlapping the different database 
brains after the rigid registration

OASIS MIRIAD

OASIS 0.99 ± 0.0030 0.93 ± 0.0057

MIRIAD 0.93 ± 0.0057 0.96 ± 0.0062

MIRIAD, Minimal Interval Resonance Imaging in Alzheimer’s disease; 
OASIS, Open Access Series of Imaging Studies.
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the number of intensities, the results are sufficiently robust to prob-
able small misalignments.

Finally, future work should include evaluation with larger da-
tabases to confirm what has been observed in the present study. 
Likewise, the method should be assessed with different databases, 
yet a preliminary analysis was carried out in the present investiga-
tion using a different database. In such a task, a classifier with no 
further training found a high level of sensitivity despite the strong 
gender wise, class imbalance (i.e., the NC to AD ratios) and sample 
size differences. It is worthy to mention that the two databases, 
training and testing, were acquired with equipment from different 
manufacturers with their own proprietary acquisition protocols.
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