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Multi-Source Ensemble Learning for the Remote
Prediction of Parkinson’s Disease in the
Presence of Source-Wise Missing Data

John Prince , Fernando Andreotti , and Maarten De Vos

Abstract—As the collection of mobile health data be-
comes pervasive, missing data can make large portions of
datasets inaccessible for analysis. Missing data has shown
particularly problematic for remotely diagnosing and
monitoring Parkinson’s disease (PD) using smartphones.
This contribution presents multi-source ensemble learning,
a methodology which combines dataset deconstruction
with ensemble learning and enables participants with
incomplete data (i.e., where not all sensor data is avail-
able) to be included in the training of machine learning
models and achieves a 100% participant retention rate.
We demonstrate the proposed method on a cohort of 1513
participants, 91.2% of which contributed incomplete data
in tapping, gait, voice, and/or memory tests. The use of
multi-source ensemble learning, alongside convolutional
neural networks (CNNs) capitalizing on the amount of
available data, increases PD classification accuracy from
73.1% to 82.0% as compared to traditional techniques.
The increase in accuracy is found to be partly caused
by the use of multi-channel CNNs and partly caused by
developing models using the large cohort of participants.
Furthermore, through bootstrap sampling we reveal that
feature selection is better performed on a large cohort of
participants with incomplete data than on a small number
of participants with complete data. The proposed method is
applicable to a wide range of wearable/remote monitoring
datasets that suffer from missing data and contributes to
improving the ability to remotely monitor PD via revealing
novel methods of accounting for symptom heterogeneity.

Index Terms—Missing data, Parkinson’s disease,
multi-source learning, convolutional neural networks,
ensemble learning, feature selection, bootstrap statistics,
mobile-Health.
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I. INTRODUCTION

PARKINSON’S disease (PD) is the second most common
neurodegerative disease after Alzheimer’s disease and its

prevalence is estimated to double over the next two decades
[22]. Correct and timely diagnosis of PD is essential in order to
properly treat symptoms prior to deterioration whilst also alle-
viating the long-term financial burden the disease management
places on healthcare systems worldwide [7].

The current gold-standard of diagnosing and monitoring PD
is the Unified Parkinsons Disease Rating Scale (UPDRS) which
is performed in-clinic by movement disorder specialists [9].
However, the UPDRS is widely known to suffer from both inter-
and intra-rater subjectivity often leading to high levels of false-
positive diagnoses [1], [11]. The diagnosis procedure is further
complicated as symptom prevalence is highly heterogeneous in
the PD population in that two people with similar UPDRS scores
may exhibit different motor symptoms [21], [29].

Many studies have shown the ability to identify disease dif-
ferentiating digital biomarkers in gait, dexterity, tremor, and
voice tests [6], [16], [24], [36]. Unfortunately, the vast majority
of these studies have been performed in-clinic, using different
experimental protocols, different sensors, and have had small
cohorts. Indeed, a recent review found that 77% of such studies
had a cohort of under 30 participants [29]. As such, the specific
biomarkers from each study lack scalability as they are yet to
be validated on a large cohort.

Due to the subjectivity of the UPDRS system and limited data
of current studies, the use of wearable sensors to identify digital
biomarkers that are capable of objective disease quantification
are now widely being sought [19], [31]. The use of smartphones
to monitor PD in a non-clinical environment overcomes many
of the challenges of PD quantification. Smart-phones contains
many sensor types (accelerometer, touchscreen, microphone)
therefore afford the opportunity of extracting digital biomarkers
relating to multiple motor symptoms. Additionally, tests are
able to be completed on a daily basis without the requirement
of going to a hospital.

Several observational studies have been initiated using smart-
phones for data collection and have yielded ‘big’ datasets from
cohorts of far greater sizes [3], [39]. These studies allow vol-
unteers to download a smartphone application and contribute
measurement data in multiple test types (gait, dexterity, voice,
and tremor) and demographic data including symptom severity.
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However, these datasets suffer from many sources of noise that
has restricted their large-scale findings from being considered
clinically relevant [34]. As the tests are completed in remote
environments they often suffer from the influence of inconsis-
tent environmental conditions and improper test completion. As
such, disease classification accuracy using data collected from
remotely collected datasets has been dramatically lower than
when the same tests are completed in a clinical-environment
[20]. It has been recommended that more sophisticated machine
learning techniques be applied to larger cohorts in a bid to im-
prove remote classification results.

The largest limitation of smartphone based datasets is the
large quantity of missing data and poor volunteer retention rates.
As participants are able to contribute data in multiple test types,
it is commonly found that the vast majority of participants only
complete a subset of tests [20], [26], [40]. Due to the hetero-
geneous nature of PD symptoms, the research community is
particularly interested in determining the relationship between
the different motor symptoms. When a dataset contains missing
tests from many participants, it is commonly called a source-
wise missing dataset, where the terms source and test are inter-
changeable. Source-wise missing datasets commonly occur and
are especially prominent in datasets being collected in remote
environments [2], [39].

Imputation techniques are commonly employed in the case of
missing data [25]. However, in the case of source-wise missing
medical data, imputation is highly inappropriate. If a source is
missing then the complete set of associated features is missing,
therefore, a large number of features must be imputed from other
sources which may contain no mutual information to the missing
source, resulting in the imputations being poorly representative
of their intended values [38]. An alternative approach in source-
wise missing data is to discard all observations with incomplete
data [2], [20]. Although this guarantees a complete dataset, it is
wasteful of potentially relevant data, especially if a large number
of observations have incomplete data. In a recent study of re-
motely monitoring PD, 48.4% of the available participants were
discarded from the study due to incomplete source data [40].

In this research we present a method to compensate for
source-wise missing data via combining a dataset deconstruc-
tion technique with ensemble learning. We demonstrate how a
data retention rate of 100% can be achieved even if a majority
of observations have incomplete data. We apply our method to
the large, remotely collected, and mostly incomplete dataset for
the purpose of PD classification. We compare the classification
ability of our method to that of the current means of compensat-
ing for source-wise missing data and show that the inclusion of
additional data can improve classification and feature selection.
We further illustrate the potential of learning deep convolutional
neural network classifiers for this application. This became only
possible because of the size of the dataset, which is an order of
magnitude larger than the classical “complete” datasets.

II. MATERIALS AND METHODS

A. Dataset Description

The data used throughout this research was collected as part
of the mPower study [10]. Healthy controls (HCs) and PD

Fig. 1. The domain assignment procedure. A participant has con-
tributed a specific combination of the four sources. This combination of
sources is represented as a binary vector and the participant is subse-
quently assigned to the decimal integer domain which the binary vector
represents as highlighted in red.

subjects enrolled into the study via downloading and providing
consent through an iPhone (Apple Inc., Cuppertino, USA)
application. Due to PD being most prominent in people over the
age of 50 years old, we only include PD and HC participants 50
years or older in this analysis. Moreover, since the participant
retention rate is low in the mPower study, in this work we
focus in the data provided 24 hours following the completion
of their first source, resulting in 1,513 subjects [26]. The
mPower application allowed participants to complete regular
self-assessed severity surveys and a one-off demographics
survey in addition to four different activities intended to test for
the presence or severity of PD.

The tapping activity takes the form of the alternate finger
tapping (AFT) test which is commonly used in-clinic to assess
dexterity [22]. This activity requested the participant place their
iPhone on a flat surface and alternately tap two on-screen buttons
using two fingers for 20 seconds. In the walking activity par-
ticipants were asked to place their iPhone in their front trouser
pocket and to walk in a straight line for 20 steps, turn around,
and then walk back along the same route. The voice activity
asked participants to make a sustained /a/ (‘Aaaaah’) phona-
tion into their iPhone microphone for 10 seconds. The memory
activity was the only activity intended to assess non-motor char-
acteristics of PD. During the memory activity, a grid of flowers
appeared on the iPhone screen and a number of flowers were il-
luminated in a random pattern. Participants were asked to recall
the pattern in which the flowers were illuminated. During each
activity instance this process was repeated for up to five levels
with the grid of flowers and the number being illuminated at each
level increasing. During these activities tri-axial accelerometer
and gyroscope, touchscreen (for tapping) and microphone data
(voice test) were collected.

B. Dataset Deconstruction and Model Framework

Individual participants were able to contribute with any of the
S sources (here S = 4 : tapping, walking, voice, and memory) in
any given combination, thus the database comprises 2S possible
combination of the available tests. Each different combination
of sources may be represented as a binary vector, I[1...S], where
I[i] = 1 demonstrates that the ith source has been contributed.
In this research, a participant is assigned a binary source vector
based on which sources were contributed. The binary source
vector determines which domain a participant belongs to. A
demonstration of the domain assignment process for a partici-
pant in the mPower dataset is given in Fig. 1. Via assigning each
participant to a domain, we have subsequently partitioned the
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initial source-wise missing dataset into 2S smaller but complete
domains; a process herein called dataset deconstruction. A de-
gree of overlap exists with regards to which sources are present
between certain domains. For example, in Fig. 1 it is evident
that domains 7, 13, and 15 contain the same sources (in addition
to at least one other source) as present in domain 5. The ability
for data representation to be shared across domains presents the
opportunity to apply multi-task learning (M-TL) wherein multi-
ple learning tasks are solved simultaneously [28]. Indeed, M-TL
has been applied using this dataset deconstruction technique but
there are several limitations to its implementation [38]. The first
limitation is that the number of participants in each domain is
inconsistent which results in the number of participants used
to train and test each of the M-TL models also being highly
inconsistent. Thus, the results of a M-TL model when tested on
each domain could be confounded by (i) the number of partici-
pants in the domain (ii) the characteristics of these participants,
or (iii) the sources present each domain. These confounding
factors make the M-TL results difficult to interpret.

To overcome these limitations, we note two special cases
of the dataset deconstruction. Firstly, we focus on the single
source dofmains where only a single source is present; in the
mPower dataset these are domains 1, 2, 4, and 8 which corre-
spond to the memory, voice, walking, and tapping individual
source domains respectively. For each single source domain, all
participants who contributed the source are eligible to be used
to develop the individual source model, regardless of which do-
main they have been assigned to. The example participant in
Fig. 1 would therefore be eligible to develop models for the tap-
ping, walking, and voice single source domains. Subsequently,
even participants with incomplete source data can be used in
developing the individual source models thus ensuring a 100%
participant retention rate. A participant with missing data who
completed n sources (0 < n ≤ S) is eligible to be used in de-
veloping n individual source models. Secondly, we note that
the participants with complete source data (domain 15) are the
only participants eligible to be used in developing all of the
individual source models. Consequently, participants with com-
plete source data will be assigned as a test group against which
all individual source models will be tested. Furthermore, the
individual source models can be fused into all possible combi-
nations through the use of source ensembles. All models created
through source ensembles can also be tested on the participants
with complete source data.

We can now formally define our model framework. Via de-
constructing the source-wise missing dataset, we are able to
develop S individual source models using all participants, even
those with missing data. The participants with complete source
data are excluded from the training/validation of the individual
source models and are reserved to act as a test set against which
all individual source models, and their 2S combinations, may
be tested. Having created a consistent test set for all models, the
results of all models will be directly comparable to one another,
thus removing the aforementioned confounding factors. In the
mPower dataset, we identified 1,380 participants with incom-
plete source data who form the training and validation set. The

TABLE I
DEMOGRAPHIC DATA OF PARTICIPANTS WITH INCOMPLETE DATA

CONTRIBUTIONS WHO FORM THE TRAINING AND VALIDATION
SET FOR EACH SOURCE

instances and demographics of the training and validation par-
ticipants are given in Table I. We identified 133 participants (87
PD/ 46 HC, age 62.9 ± 7.6, 71% Male) with complete source
data who are assigned as the test set. Each participant in the test
set contributed one instance in each of the sources. The effects
of sex are assumed to be negligible on test performance as has
been previously suggested on the mPower dataset [5], [26].

C. Individual Source Model Development

1) Feature Based Classifiers: We utilized three classifiers
that require an explicit feature set to be extracted in order to
develop the individual source models. From the tapping activity
we extracted features from the raw touchscreen data and from
the corresponding accelerometer waveforms. The touchscreen
features pertain to rhythm, spatial variability, and fatigue whilst
a widely used set of signal based features are extracted from the
accelerometer waveforms [18], [39].

From the walking activity we extracted the same set of
signal based features as in the tapping activity from the tri-
axial accelerometer and gyroscope. As the raw waveforms are
known to contain segments of noise or periods of no movement,
features were only extracted from sections of the signal that
were identified as gait as determined by a gait-segmentation
algorithm [4].

Features were extracted from the voice recordings using the
publicly available Matlab (Mathworks, USA) toolbox developed
by [37]. These features utilize both temporal and frequency
based metrics and have proven capable of detecting dysphonic
PD participants in remote environments [36].

The memory activity provided only three features; total score,
number of levels attempted, and number of incorrect responses.

The tapping, walking, voice, and memory activities provided
97, 180, 326, and 3 features respectively. We developed three
feature based classifiers for each individual source. Two of these
classifiers are commonplace in the prediction of PD; logistic
regression (LR) and random forests (RF). We also implement
a state-of-the-art Deep Neural Network (DNN) on this feature
set. All DNNs consisted of five layers with 200, 300, 50, 32,
and 1 layer respectively. All activation functions were rectified
linear units (ReLU) due to their ability to improve training time
whilst avoiding the vanishing gradient problem [13], [17].

During the training and validation of the LR models, we
implemented least absolute shrinkage and selection operator
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(LASSO) feature selection on the training data:

arg min
β

1
2
||y − Xβ||22 + λ||β||1 (1)

where X is the design matrix, || · ||1 is the the �1-norm regu-
larization term which induces sparsity within β, and λ1 is the
regularization coefficient. The resulting dense feature set (all
features whose β �= 0) is extracted from the validation set and
used for prediction.

2) Convolutional Neural Network Classifier: In addition
to the three feature based base classifiers, we also implement
Convolutional Neural Networks (CNNs). CNNs are widely con-
sidered to be the state-of-the-art machine learning techniques
and have received little attention in the field of PD classification
to date due to the generally small size of PD datasets [27]. CNNs
do not require the definition of an explicit feature set but rather
are capable of automatically learning features, or filters, directly
from raw data. Furthermore, these filters are translationally in-
variant making CNNs particularly well suited to noisy raw data
as in the mPower database.

Of the four activities in the mPower database, the tapping,
walking, and voice activities present data suitable to be used as
inputs to a CNN (i.e. raw time series). In the tapping activity,
we use the raw tri-axial accelerometer waveforms (sampling
frequency fs = 100 Hz) alongside the touchscreen pixel coordi-
nate data. As the touchscreen data is unevenly sampled we use
linear interpolation to create waveforms of equal length to the
accelerometer waveforms [27]. In the walking activity the tri-
axial accelerometer and tri-axial gyroscope signals were used as
the raw input (fs = 100 Hz). In the voice activity the raw voice
recording signal was used (fs = 42 kHz). All waveforms, exclud-
ing the interpolated tapping touchscreen waveform, underwent
zero-mean unit-variance normalization.

The architecture of the multi-channel CNN used on all ac-
tivity types is shown in Fig. 2. While additional benefit might
be obtained by using different network structures for the differ-
ent sources, we opted for a generic general framework. Here,
the concept of a variable first receptive field width is exploited
across the two convolutional branches [33]. When using con-
volutional filters of a large width, the frequency components of
the data are better captured. Conversely, using filters of a small
width better capture temporal aspects of the signal. Thus, the
width of the first convolutional filter in each of the two channels
is different so as to capture both temporal and frequency com-
ponents of the data. Alternative CNN architectures use small
receptive fields but require many more layers and convolutional
operations in order to capture the frequency components of the
data [10], [35]. Our architecture utilises �2-norm regularization,
max-pooling, and batch normalisation layers as extra means of
preventing overfitting, parameter reduction, and reduce training
time respectively.

All CNN and DNN networks were developed using using
Keras with a Tensorflow (Google Inc., California) back-end us-
ing Adam optimization and model loss was calculated through
binary cross-entropy [12]. All neural network models were im-
plemented using a Dell (Dell Inc., TX ) T640s computer with
256GB of RAM and a NVIDIA (Santa Clara, CA) 1080 TI

Fig. 2. The multi-channel CNN architecture used on the voice, walking,
and tapping source data. Here fs is the signal sampling frequency, n is
the number of filters, w is the width of the filters, s is the stride length of
convolutions, and p max-pool size.

GPU. The training run-time of the CNN models ranged from six
(tapping and walking) to ten hours (voice). The python scripts
used to train and validate all CNN models are available at the au-
thors GitHib repository (www.github.com/johnPrinceOx/Multi-
Source_Ensemble_Learning_Neural_Networks).

3) Individual Source Model Evaluation: The classifiers
developed for each individual source were trained and vali-
dated using the individual source domains (Table I). During the
training and validation of each classifier we performed repeated
stratified 10-fold cross validation. Prior to being separated into
folds, the data is balanced so as to have equal number of PD
to HC participants. In the feature based classifiers the training
and validation sets are normalized to zero mean-unit variance
using the means and standard deviations of the training feature
set so as to avoid data leakage. The accuracy of each classifier
is reported for the training and validation set. As the test set is
imbalanced, when the individual source models are applied to
the test set we also report the F1-score (harmonic average) in
addition to the classification accuracy.

D. Ensemble Learning Approaches

Ensemble learning, often called classifier fusion, enables the
predictions of multiple algorithms to be fused into a single pre-
diction [23]. Often, the single ensemble prediction outperforms
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Fig. 3. Schematic of the classifier and source ensemble procedures.
There are B base classifiers within each source. Ri is the response
from the ith classifier. A classifier ensemble is implemented on the re-
sponses from all B classifiers from a single source. A source ensemble
is performed on all responses from all classifiers from the S sources.

each of the ‘base’ algorithms due to the ensemble accounting
for variability within the base algorithms prediction ability [15].

We present two forms of ensemble learning (classifier and
source) which enable two types of variability to be accounted
for simultaneously.

1) Classifier Ensemble: Via performing a classifier ensem-
ble within each individual source, we assessed whether the clas-
sification ability of an ensemble of multiple classifiers outper-
forms each individual base classifier.

We use two popular classifier ensemble learning algorithms:
majority voting and mean probability [14], [30]. Suppose we
would like to ensemble the responses of B base classifiers for a
single observation, we denote an ensemble learner F as:

R = F(R1 , ..., RB ) (2)

where Ri is the response of the ith classifier and R is the en-
semble response. Majority voting is implemented on the binary
responses of each classifier and is defined as:

F =

{
1 if

∑B
i=1 Ri ≥ B

2

0 if
∑B

i=1 Ri < B
2

(3)

Majority voting therefore returns the binary response that oc-
curs most frequently between the base classifiers for a single
observation. The mean probability ensemble is performed on
the ‘soft’ response of each classifier and is defined as:

F =

{
1 if

∑ B
i = 1 P (Ri =1)

B ≥ 0.5
0 otherwise

(4)

The mean probability ensemble therefore returns a response
based on the average probability of all classifiers for a single
observation. A schematic of the classifier ensemble strategy is
demonstrated in Fig. 3.

The first classifier ensemble was formed using the three fea-
ture based classifiers (LR + RF + CNN). The second classifier
ensemble was formed using both the feature based and the CNN
classifiers (LR + RF + DNN + CNN). This enables any differ-
ence between the CNN classifier to be directly compared against

a purely feature based approach. We report the accuracy and F1-
score of all classifier ensembles for each source individually.

2) Multi-Source Ensemble: In addition to classifier ensem-
bles, we also implement source ensembles. Source ensembles
serve two purposes in this research. The first purpose is to ac-
count for the source-wise missing data. As we have developed
models for each source individually, source ensembles allow us
to fuse these individual source models in all possible combi-
nations; allowing all individual source models to be fused and
implemented on the test participants. The second purpose is to
account for the heterogeneity of symptom prevalence in PD. It
is common for PD to manifest itself differently across the pop-
ulation. Thus, a participant may show mild to severe symptoms
in one source but not in any others whereas another participant
of equal PD severity may show mild to severe symptoms in a
different source. Through source ensembles we can consolidate
our classification predictions from multiple sources into a sin-
gle prediction which accounts for symptoms in all sources; thus
accounting for symptom heterogeneity.

When implementing a source ensemble on all S sources, and
assuming that B base classifiers are trained for each source, we
redefine our majority voting ensemble learner as:

F =

{
1 if

∑B×S
i=1 Ri ≥ B×S

2

0 if
∑B×S

i=1 Ri < B×S
2

(5)

and the mean probability ensemble learner as:

F =

{
1 if

∑ B ×S
i = 1 P (Ri =1)

B×S ≥ 0.5
0 otherwise

(6)

A schematic of the source ensemble strategy is demonstrated
in Fig. 3. It is important to note that we do not perform source
ensembles on the response of the classifier ensemble. Rather,
we use the response of each classifier from all sources. This
approach ensures the maximum amount of classifier variability
is present during the source ensemble.

We firstly perform source ensembles using a single base clas-
sifier from each source; thus localising the results of source
ensembles without the influence of classifier ensembles. This
enables us to compare the effects of classifier and source en-
sembles. Finally, we perform source ensembles using multiple
base classifiers from all sources. As in the pure classifier en-
semble, this is performed initially using only the feature based
base classifiers across all sources, followed by using all feature
based and CNN base classifiers across all sources.

E. Model Comparison Approaches

We implement two alternative approaches for multi-source
classification against which multi-source ensemble learning is
compared. Both alternative approaches also present a platform
for assessing the importance of features from all sources.

1) Complete Dataset Learning: This is the approach most
commonly used in the case of incomplete multi-source datasets.
We select the participants with complete source data (i.e. from
the test set) and discard all participants with missing data. Clas-
sification models are developed using only the participants with
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complete source data. As we are also interested in which features
across all sources are most pertinent in the classification pro-
cedure, we implement LASSO and Sparse-Group LASSO [32].
The latter introduces regularization at the feature and source
level. When implementing LASSO during Complete Dataset
Learning, the design matrix X in Equation 1 is:

Xc = [XT
c ,XW

c ,XV
c ,XM

c ] (7)

where XT
c ,XW

c ,XV
c , and XM

c are the tapping, walking, voice,
and memory design matrices of the Nc participants who con-
tributed all sources respectively and Xc ∈ Rp×Nc is the com-
plete multi-source feature matrix containing p features.

The same complete design matrix (Xc) is used during Sparse-
Group LASSO, which is defined as:

arg min
β

1
2
||y − Xβ||22 + λ1 ||β||1 + λ2

S∑
i=1

√
pi ||βi ||2 (8)

where λ1 and λ2 determine the quantity of regularization at the
feature and source levels respectively and pi is the number of
features in the ith source.

We report the top 10 highest weighted features from both the
LASSO and SG-LASSO methods. As this section is focused on
the influence of the feature selection process, we only implement
a LR model. Using the identified features from both methods,
we train and validate LR models and report the classification
accuracy.

2) Incomplete Dataset Learning: In this approach, we im-
plement a two-stage feature selection technique starting with the
participants in each of the individual source domains. Firstly,
within each of the individual source domains, we determine the
highest weighted features using LASSO. Feature selection is
occurring at the feature level within each individual source, we
are therefore able to use the large number of participants with
incomplete data. We denote the features selected by LASSO
from the ith individual source as βi . The non-zero weighted
features are selected from each source are concatenated to give
the feature weighting vector for all sources:

βISL = [βT , βW , βV , βM ] (9)

From βISL , we report the features with the highest weight-
ings. In the second step, all of the features in βISL are selected
from Xc yielding:

XISL = Xc(βISL ) (10)

such that the features we have selected using the large number of
participants with incomplete data have now been applied to the
smaller number of participants with complete data. We conclude
the second feature selection process via applying SG-LASSO
on XISL .

The highest weighted features from Complete Dataset Learn-
ing can be compared against those selected in the Incomplete
Dataset Learning approach and allows us to determine if fea-
ture selection and model development is better performed at the
feature or source level.

As in the Complete Dataset Learning approach, we report
the top 10 highest weighted features from both the LASSO and

TABLE II
CROSS-VALIDATION ACCURACIES (%) OF THE INDIVIDUAL SOURCE MODELS
ON THE TRAINING PARTICIPANTS. CORRESPONDING METHODS: SECTION II-C

SG-LASSO methods and report the classification accuracy of
the subsequent LR models.

F. Effects of Sample Size on Feature Confidence

To further assess the influence of performing feature selec-
tion using participants with incomplete data, we investigate the
effect sample size has on feature distributions. Here we examine
whether using a large sample size, as in the Incomplete Dataset
Learning technique, provides a more robust platform to perform
feature selection than in the traditional approaches, such as the
Complete Dataset Learning technique.

We utilise bootstrap sampling on the training and validation
participants, using variable sample sizes. Bootstrap sampling
is a non-parametric statistical technique that enables statistical
measures to be estimated from a randomly sampled subset of the
data [8]. To perform the bootstrap, we randomly sample nSamp
participants with replacement from the Ni participants with in-
complete source data. This subset of participants is known as
the bootstrap sample. The feature set contributed by the boot-
strap sample, fbs , is selected and statistical measures from each
feature is calculated. Statistical measures calculated from the
bootstrap sample, E(fbs), are formally referred to bootstrap
statistics. The process of selecting a bootstrap sample and calcu-
lating the corresponding bootstrap statistics is repeated B times.
Consequently, for each bootstrap statistic, we have complied B
estimates of the true statistical value.

It follows that if the bootstrap sample size is small, or the
original population data contains a large degree of noise, the
resulting bootstrap statistics will not be representative of the
true value of the statistical measure. It is for this reason that
performing bootstrapping using many sample sizes is beneficial
in our study of feature selection. At each sample size we can
determine whether the estimated feature values from a bootstrap
sample are representative of the true feature values of the entire
population. This allows us to decide whether a given sample
size is appropriate to undergo feature selection.

We present a visualization of how feature distributions vary
with sample size via calculating the mean and standard deviation
as bootstrap statistics using B = 10, 000 bootstrap samples at
each sample size.

III. RESULTS

A. Individual Source Model Performances

In Table II we present the classification accuracy for each clas-
sifier in each of the individual source models. For the balanced
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TABLE III
RESULTS OF THE INDIVIDUAL SOURCE MODELS WHEN IMPLEMENTED ON

THE TEST PARTICIPANTS. CORRESPONDING METHODS: SECTION II-C

TABLE IV
RESULTS OF THE CLASSIFIER ENSEMBLE IN EACH INDIVIDUAL SOURCE
WHEN IMPLEMENTED ON THE TEST PARTICIPANTS. CORRESPONDING

METHODS: SECTION II-D1

validation set, the mean and standard deviation results are shown
for the repeated 10-fold stratified cross validation. The classi-
fication accuracy and corresponding F1 scores of these models
when applied to the test set are provided in Table III.

B. Ensemble Model Performances

1) Classifier Ensemble: In Table IV we show the results
of performing the classifier ensemble on the test set within each
individual source. Results are divided into two types (i) feature
based classifiers only and (ii) feature and CNN based classifiers
together. For each, we provide the accuracy and F1 for both
ensemble algorithms.

2) Multi-Source Ensemble: In the top portion of Table V,
we provide the results of performing a source ensemble (across
all four sources) on the test set for each classifier separately.
In the bottom portion of Table V we provide the accuracy and
F1-score resulting from models which combine both classifier
and source ensembles.

C. Model and Feature Selection Comparisons

Table VI provides the classification accuracy of the Complete
Dataset Learning and Incomplete Dataset Learning techniques.

TABLE V
CLASSIFICATION PERFORMANCES (%) OF THE SOURCE ENSEMBLES FOR
EACH INDIVIDUAL CLASSIFIER AND FOR THE COMBINED CLASSIFIER AND

SOURCE ENSEMBLE. CORRESPONDING METHODS: SECTION II-D2

TABLE VI
THE COMPARISON OF THE CLASSIFICATION ACCURACY (%) OF THE THREE

APPROACHES. CORRESPONDING METHODS: SECTION II-E

Fig. 4. A 606 × 606 correlation matrix showing the inter- and intra-
source feature Spearman’s Rho correlations using the 133 participants
with complete source data. M: Memory, V: Voice, G: Gait, and T: Tapping.

Recall that in Complete Dataset Learning, only the participants
with complete source data have been used for selecting features
to be utilised during model development. There are Nc = 133
participants with complete source data and a total of p = 606
features across the four sources thus Xc ∈ R606×133 . Fig. 4
demonstrates the inter- and intra-source feature correlations of
Xc . Conversely, recall that Incomplete Dataset Learning entails
learning features from participants with missing source data and
applying these features to the participants with complete source
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TABLE VII
THE TOP 10 FEATURES SELECTED BY THE DIFFERENT FEATURE SELECTION APPROACHES. RECALL THAT COMPLETE DATASET LEARNING USES A SMALL
NUMBER PARTICIPANTS WITH COMPLETE SOURCE DATA, WHEREAS INCOMPLETE DATASET LEARNING USES A LARGE NUMBER OF PARTICIPANTS WITH
INCOMPLETE SOURCE DATA. CORRESPONDING METHODS: SECTION II-E. T: TAPPING, W: WALKING, V: VOICE, M: MEMORY. THE FEATURE NAMES AND

DEFINITIONS ARE PROVIDED IN SUPPORTING DOCUMENT 1

Fig. 5. Demonstration of how three feature distributions vary with sam-
ple size. There are 10,000 bootstrap samples taken at each sample size.
The solid line shows the mean of the mean of each bootstrap sample.
The shaded area show the mean standard deviation of each bootstrap
sample. Corresponding methods: Section II-F.

data. During Incomplete Dataset Learning, the dimensions of the
design matrices undergoing LASSO in Equation 1 for the tap-
ping, walking, voice, and memory sources are XT ∈ R97×1323 ,
XW ∈ R180×624 , XV ∈ R326×1072 , and XM ∈ R3×39 respec-
tively.

Table VII provides the 10 features with the highest weights
as determined via LASSO and SG-LASSO during the Com-
plete Dataset Learning and the Incomplete Dataset Learning
techniques. Supporting Document 1 provides an exhaustive de-
scription of each feature in Table VII. Finally, Fig. 5 shows how
three features from the voice, walking, and tapping activities
respectively vary with sample size.

IV. DISCUSSION AND CONCLUSION

Common techniques for analyzing datasets with large quanti-
ties of missing data often result in a significantly smaller subset
of the data being analyzed. In this research we have presented
a novel method for compensating for source-wise missing data

through the combined use of dataset deconstruction and ensem-
ble learning. Our approach ensures a 100% participant reten-
tion rate without the need to perform imputation. Unlike previ-
ous work, our method identifies a consistent set of participants
against which all models can be tested making the results highly
interpretable. Due to the inclusion of a high number of partic-
ipants and the robust fusion of multiple classification models,
we find our method yields higher disease classification accura-
cies when used for remote detection of PD and to also be more
appropriate at feature selection than traditional methods.

We developed 12 feature based classifiers and three CNN
classifiers. Four of the feature based classifiers utilised a state-
of-the-art DNN. Interestingly, we find that the DNN often gives
consistent accuracies with the traditional feature based classi-
fiers. This is indicative that the feature set is the limiting factor
during classification as opposed to the classification technique.
In the three sources where CNNs were developed, the CNN
consistently outperformed the traditional feature based classi-
fiers on both the training and test participants. The improvement
seen by using CNNs is attributed to the translationally invariant
nature of the filters identified from a large number of training in-
stances. As the training sample size is large for all CNNs we can
be confident that the resulting filters are robust at a population
level and less likely to cause overfitting than in the traditional
feature based approaches. This is the first study to the authors
knowledge to implement a consistent CNN architecture on mul-
tiple types of smartphone sensor data for the purpose of PD
classification. These findings are consistent with the hypothesis
that more sophisticated machine learning models used in tandem
with a large cohort will improve remote PD classification [5].

The purpose of applying a classifier ensemble was to ac-
count for variability between classifiers thus providing addi-
tional means for accounting for the noise and uncertainty that is
inherent in the mPower dataset. The initial classifier ensemble
made use of only the feature based classifiers. Although the en-
semble often causes a small increase in performance within each
separate source, the feature based classifier ensemble often fell
short of the classification accuracy achieved by the respective
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source’s CNN for all ensemble techniques. The tapping activity
benefits the least from the use of classifier ensembles. Indeed,
the highest accuracy of the tapping classifier ensemble is equal
to that of the standalone CNN accuracy, with the mean probabil-
ity ensemble performing worse than the stand alone CNN. This
result is attributed to conflicting classifier responses alongside
classifier uncertainty - wherein the soft responses of each classi-
fier is close to 0.5. The second ensemble made use of the feature
based classifiers and the CNN classifier and in many cases re-
ported accuracies higher than all base classifiers, including the
respective source’s CNN. Once more this is suggestive that the
CNN is correctly classifying different subjects to the feature
based classifiers on account of it using the convolutional based
filters for classification as opposed to the hand-crafted feature
set.

The benefit of the source ensemble approach is far more
apparent than that of the classifier ensembles. When using a
single classifier from multiple sources, the source ensemble
outperforms the majority of single source classifiers. The cause
of the improvement seen in the source ensemble approach is
two-fold: (i) it accounts for the noise and variation within each
of individual source models and (ii) it accounts for participants
showing symptom heterogeneity wherein symptoms are only
present in some sources.

The final ensemble approach demonstrated that the com-
bined affect of source and classifier ensembles outperform all
other ensemble approaches. We again find that ensembles at
the source and classifier level show the highest classification
accuracy when using both feature and CNN based classifiers.
This finding is intuitive given that the classifier and source en-
semble, when using the feature and CNN based classifiers, are
accounting for the multiple types of noise and variability.

To test the efficacy of multi-source ensemble learning, we
performed two types of comparative studies. We firstly imple-
mented Complete Dataset Learning, the most common approach
for datasets where source-wise missing data occurs. Here, mod-
els that are trained and validated on the participants with com-
plete data showed an increase in classification accuracy when
compared to single source models. We also note that of the 1,513
participants used in this research, only 133 (8.8%) had complete
source data. As such, when we employ Complete Dataset Learn-
ing we are discarding 91.2% of participants. This is the standard
approach used in the literature and is clearly a highly inefficient
use of data [20], [40]. The second comparative study entailed an
inspection on the influence of feature selection. During Incom-
plete Dataset Learning we performed feature selection within
each source individually using the large number of participants
with incomplete data and applied these features to the partic-
ipants with complete data for classification. A single neuron
model (LR) was used throughout the comparative studies as
a means of assessing the feature selection capabilities of both
methods. If more complex models, such as a random forest or a
DNN, the classification accuracy may be modified by the inher-
ent capability of these classifiers to perform feature selection.
We found that this feature selection approach yielded higher
classification accuracy than the Complete Dataset Learning
Approach.

The inter-source feature relationship was inspected in sev-
eral manners. Fig. 4 demonstrates the features between sources
show very little correlation although within individual sources
correlations exist. This lack of inter-source feature correlation
explains why the use of SG-LASSO yields very similar results
to that of traditional LASSO. Indeed, during the optimization
of Equation 8, the value of λ2 tended to be very close to zero.
This indicates that regularization occurs almost entirely at the
feature level, and is virtually non-existent at the source level.
This finding is further demonstrated by the similarity between
features selected during the LASSO and SG-LASSO techniques
in Table VII. The top ten features selected by the LASSO and
SG-LASSO approaches (Table VII) show a high degree of over-
lap for both Complete and Incomplete Dataset Learning which
further confirms the lack of inter-source feature correlations.
It is also interesting to note that no features from the memory
activity were in the top 10 highest weighted features in any
approach. Indeed, only ‘Total Memory Score’ was selected by
all approaches but received very low weightings in the feature
selection process.

Finally, we explored how sample size affects feature distribu-
tions, and consequently how sample size affects the confidence
of feature selection. In Fig. 5 it can be seen that feature val-
ues at small sample sizes are often transient, showing variable
behaviour that is not representative of the population. How-
ever, with larger sample sizes the feature distributions reach a
pseudo-steady state and show little variation. Fig. 5(a) is an ex-
ample of a voice feature that is selected by both the Incomplete
Dataset Learning and the Complete Dataset Learning processes
(Table VII). At sample sizes above 100 the feature distributions
are stable and consistently differ between the disease groups.
Fig. 5(b) is an example of a tapping feature that is selected
during Complete Dataset Learning, but not during Incomplete
Dataset Learning. It is evident that at small sample sizes the
feature values between the two groups appear to be large, but
with the inclusion of more samples this difference is greatly
reduced. Finally, in Fig. 5(c) we show the behaviour of the
common and interpretable ‘Number of Taps’ feature from the
tapping activity. Not only does this feature consistently show
a difference between the disease groups, but it shows a grad-
ual change of mean feature value. We attribute the variation of
these feature distributions with sample size to high levels of
noise in the feature set. Via the inclusion of more participants,
our bootstrap estimates are less susceptible to noise and there-
fore provide better population estimates. As such, we believe
the features identified using the large sample size during In-
complete Dataset Learning are more robust and scalable than
those identified by Complete Dataset Learning.

A limitation of the presented work is the assumption that
all tests to have been completed correctly on the first attempt.
Although mostly a correct assumption, we expect that some
tests used in this research were entirely noise and contain no
relevant information. We intend to alleviate the influence of
this limitation via the inclusion of longitudinal test instances.
Another limitation is that the efficacy of multi-source ensemble
learning on a dataset where inter-source relationships exist was
not evaluated. Feature selection at the source level generally
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improves classification ability where inter-source correlations
exist. Our future work intends to further assess multi-source
ensemble learning (where feature selection only occurs at the
feature level) via implementation on additional datasets wherein
inter-source correlations are present. Additional future work will
focus on utilising multi-source ensemble learning in creating a
disease severity score. This entails applying the method to the
longitudinal data and determining whether an objective multi-
source composite score can be created that correlates with PD
severity. Inclusion of the longitudinal data in the mPower dataset
would increase the number of test instances by an order of
magnitude; therefore creating an additional and substantial set
of data to further test the potential of multi-source ensemble
learning.
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