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Abstract

Single-cell transcriptomic studies are identifying novel cell
populations with exciting functional roles in various in vivo
contexts, but identification of succinct gene marker panels for
such populations remains a challenge. In this work, we intro-
duce COMET, a computational framework for the identifi-
cation of candidate marker panels consisting of one or more
genes for cell populations of interest identified with single-
cell RNA-seq data. We show that COMET outperforms other
methods for the identification of single-gene panels and
enables, for the first time, prediction of multi-gene marker
panels ranked by relevance. Staining by flow cytometry assay
confirmed the accuracy of COMET’s predictions in identifying
marker panels for cellular subtypes, at both the single- and
multi-gene levels, validating COMET’s applicability and accu-
racy in predicting favorable marker panels from transcrip-
tomic input. COMET is a general non-parametric statistical
framework and can be used as-is on various high-throughput
datasets in addition to single-cell RNA-sequencing data.
COMET is available for use via a web interface (http://www.
cometsc.com/) or a stand-alone software package (https://
github.com/MSingerLab/COMETSC).
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Introduction

Single-cell transcriptomic technologies have enabled the exciting

discovery of novel cell populations within various in vivo contexts

(Paul et al, 2015; Satija et al, 2015; Baron et al, 2016; Shekhar et al,

2016; Singer et al, 2016; Villani et al, 2017; Jia et al, 2018; Kernfeld

et al, 2018; Vento-Tormo et al, 2018; Chapuy et al, 2019; Kurtulus

et al, 2019; Spallanzani et al, 2019). Following the discovery of a

new cell population of interest based on full transcriptome analysis

(of typically a few thousand genes), follow-up studies require

succinct gene marker panels by which the cells of interest can be

distinguished from the general cell population (Fig 1). For example,

isolation of the cell population of choice by flow cytometry assay

enables advancement from initial identification via high-throughput

transcriptomics to comprehensive functional studies and enables

validation of the transcriptomic observations with independent

methods.

While the identification of succinct marker panels is a critical

step in the transition from initial identification of a cell population

to functional exploration and characterization, current techniques

used in the literature for the identification of candidate marker

panels are substantially limited because they rely on statistical tests

designed for other purposes (such as gene differential expression),

do not consider gene combinations, and rely on extensive manual

curation. A broadly used technique for candidate marker panel

annotation from single-cell RNA-seq data consists of generating a

ranked list of genes based on their upregulation in the cluster of

choice and/or expression fold-change estimates (Paul et al, 2015;

Satija et al, 2015; Baron et al, 2016; Shekhar et al, 2016; Kernfeld

et al, 2018; Vento-Tormo et al, 2018; Kurtulus et al, 2019; Luecken

& Theis, 2019). Extensive manual curation is then required to evalu-

ate genes at the top of the list for their ability to provide good classi-

fiers and for their ability to pair with each other to enable favorable

multi-gene marker panels (we use the phrase “favorable panel”

throughout this manuscript to describe panels that are expected to
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achieve good accuracy). A substantial limitation in the use of such

techniques is that they do not directly test for a gene’s ability to

isolate a given cell population from a background, but rather assess

the extent to which the gene’s expression landscape is significantly

different from the given background. We show the limitations of

methods testing for upregulation rather than classification potential

in Fig 3.

The construction of successful marker panels frequently requires

utilizing expression information of multiple proteins or mRNA mole-

cules. The identification of multi-gene marker panels is used for the

identification and/or isolation of various cell types (e.g., CD3+CD4+

will identify CD4+ T cells) and cellular subtypes (e.g.,

CD3+CD4+CD44�CD62L+ will identify naı̈ve CD4+ T cells). Impor-

tantly, the genes constructing a successful multi-gene panel may or

may not be favorable as single-gene markers (Appendix Fig S1A).

While it is essential to enable the identification of multi-gene

marker panels from single-cell RNA-seq data, development of

computational tools that provide useful guidance to researchers

(e.g., by producing a ranked list of candidate marker panels) is diffi-

cult for several reasons. Notable hurdles include the scale and hard-

ness of the algorithmic problem (Appendix Fig S1B and Materials

and Methods) and limited availability of experimental reagents for

various purposes (e.g., antibodies for flow or in situ staining, probes

for FISH). The latter requires that a marker panel prediction frame-

work be broad by suggesting multiple (ranked) candidate marker

panels to the user, to be assessed for reagent availability and accu-

racy. Nonetheless, the need within the community to transition

from exciting observations at the high-throughput single-cell RNA-

seq level to functional, visualization, and perturbation efforts calls

for the development of a computational framework which mitigates

the challenges and generates an informative ranking of candidate

multi-gene marker panels.

In this work, we introduce COMET (COmbinatorial Marker

dEtection from single-cell Transcriptomics), a computational frame-

work to identify candidate marker panels that distinguish a set of

cells (e.g., a cell cluster) from a given background. COMET

implements a direct classification approach for single genes and

utilizes its unique single-gene output to generate exact and/or

heuristic-derived predictions for multi-gene marker panels. We

show that COMET’s predictions are robust and accurate on both

simulated and publicly available single-cell RNA-seq data. We

experimentally validate COMET’s predictions of single- and multi-

gene marker panels for the splenic B-cell population as well as

splenic B-cell subpopulations by flow cytometry assay, showing that

COMET provides accurate and relevant marker panel predictions for

identifying cellular subtypes. COMET is available to the community

as a web interface (http://www.cometsc.com/) and open-source

software package (https://github.com/MSingerLab/COMETSC). We

conclude that COMET is an efficient and user-friendly tool for identi-

fying marker panels to assist in bridging the gap between transcrip-

tomic characterization and functional investigation of novel cell

populations and subtypes.

Results

The COMET algorithm

To identify single- and multi-gene candidate marker panels from

high-throughput single-cell RNA-seq data, we developed the COMET

framework. COMET takes in as input (i) a gene-by-cell expression

matrix (raw counts or normalized), (ii) a cluster assignment for

each cell, (iii) 2-dimensional visualization coordinates (e.g., from

UMAP, for visualization of plotting), and (iv) an optional input of a

gene list over which to conduct the marker panel search, and

outputs a separate directory for each cluster that includes ranked

lists of candidate marker panels (a separate list for each panel size)

along with informative statistics and visualizations (Appendix Fig

S2A).

COMET implements the XL-minimal HyperGeometric test

(XL-mHG test) (Eden et al, 2007; preprint: Wagner, 2015a) to bina-

rize gene expression data in a gene-specific and cluster-specific
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Figure 1. The COMET framework objective and output.

Following the identification of a cell population of interest from single-cell high-throughput data (e.g., single-cell RNA-seq), COMET provides a ranking of favorable single- and
multi-gene marker panels along with useful statistics and visualizations. The identification of marker panels for a population of interest is important to conduct follow-up
functional studies such as isolation, visualization, and perturbation of the population.
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manner, assessing for each gene G and cluster K, the extent to which

gene G could be a good marker for cluster K. For each gene, G, given

a cell cluster of choice, K, we use the XL-mHG test to determine an

expression threshold by which to binarize the expression values of

G, such that enrichment of cells from K is maximized (Fig 2A,

Appendix Fig S2B, and Materials and Methods). Expression values

above the threshold will be set to 1 (the gene is considered

“expressed” to a sufficient extent in the cell), while values below the

threshold will be set to 0 (the gene is considered “not expressed” in

the cell). Genes are also tested for their potential to be used as nega-

tive markers in this framework by conducting the above analysis on

a gene G’s negated expression (Materials and Methods).

We opted to use the XL-mHG test because it is a non-parametric,

rank-based test for gene enrichment that has desirable properties for

the purpose of marker discovery. First, the XL-mHG test does not

make hard distributional assumptions on the gene expression data

(unlike, e.g., likelihood ratio tests applied in hurdle or zero-inflated

Poisson models which make linearity assumptions). Second,

requirements on the specificity and sensitivity achieved by a marker

gene can be tuned within the XL-mHG framework using the X and L

parameters to control the minimum number of true positives (X)

and the maximum number of false positives (L-X) for a selected

threshold (preprint: Wagner, 2015a). We set the default parameters

for X and L within COMET to be 15% of the size of the cluster of

interest and twice the size of the cluster of interest, respectively

(Materials and Methods). The optimal values for these parameters

may change in different contexts, and they can be easily set by the

user (setting X to 0 and L to the number of cells results in no
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Figure 2. Attributes and performance of the COMET Algorithm.

A An illustration of the binarization procedure applied by COMET to each gene in a cluster-specific manner via the non-parametric XL-mHG test (preprint: Wagner,
2015a). For each gene, an expression threshold of maximal classification strength for the given cluster is annotated with the XL-mHG test. The XL-mHG P-value
measures the significance of the chosen threshold index. This threshold index is then matched to an expression cutoff which is used to binarize gene expression
values.

B The assessment and ranking of multi-gene marker panels by COMET utilize matrix multiplications. Following the binarization of gene expression at the single-gene
level, the (i) true-positive and (ii) false-positive rates for all gene combinations considered can be derived from two matrix multiplications (Materials and Methods).
Illustrated here is the matrix multiplication to annotate true-positive rates for 2-gene marker panels. The true-positive and false-positive values are then used to
compute hypergeometric enrichment P-values for all pairs.

C, D Marker panel predictions by COMET align closely between the heuristic approach and exact computation. Results displayed are a representative example,
computed from analysis COMET’s performance when analyzing the follicular B-cell cluster (Fig 5A). (C) Running time can be improved with a proper choice in
heuristic core size to maintain accuracy of results. The number of missed combinations in the top 2,000 ranked combinations is plotted against the time of
computation for the 2-gene and 3-gene cases for a variety of heuristic core sizes to determine accuracy versus runtime. The leveling off of the number of missed
combinations provides a good place to set the heuristic core size for best speed-up and accuracy; COMET’s current default is 50. (D) The COMET generated rankings
of each of the top 2,000 combinations for 2-gene (left) and 3-gene (right) panels are plotted against each combination’s ranking from COMET’s heuristic approach
when using different sizes for the gene set heuristic core (Materials and Methods). At a core size of 25 (using the top-ranking 25 single genes as the heuristic core)
or larger, results align very closely between the heuristic and exact approaches.
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restrictions on the true-positive and false-positive rates, and is the

original mHG test). COMET outputs a ranked list of candidate

single-gene markers by integrating the XL-mHG P-values and the

log fold change of gene expression into a simple scoring metric

(Materials and Methods). In addition to this ranking, COMET

provides the true-positive and true-negative rates for each marker

candidate and generates an informative plot by which to identify

genes that are outliers in their specificity-to-sensitivity ratio

(Appendix Fig S2A).

Construction of marker panels that include multiple genes is

frequently required to isolate/identify a cell population of interest

with high precision. We opted to utilize the binarization in expres-

sion achieved for each gene (in a cluster-specific manner) by the

XL-mHG test to assess the performance of multi-gene marker panels

in isolating the cell cluster of interest. COMET computes for all gene

combinations of a given size (of 2–4 genes) the true-positive and

true-negative rates the given combination would achieve by using

matrix multiplications on the binarized expression matrices (Fig 2B

and Materials and Methods). This matrix-multiplication procedure

enables an efficient computation of the needed statistics across all

possible gene combinations for a given marker panel size (com-

puted for combinations of size 2–4 genes), to achieve a ranking of

relevant multi-gene candidate marker panels. A ranking of the

candidate multi-gene marker panels is done based on enrichment of

cells expressing the entire gene panel in the cell cluster of choice

(hypergeometric enrichment P-value) combined with a “Cluster

Clear Score” (CCS) which we define as follows:

CCS ¼
X

C2CnfKg
TNafter

C � TNbefore
C

where TNbefore
C is the true-negative percent in cluster C for the

single gene in the panel with the lowest P-value when considered

as a single-gene marker (the “lead” gene) and TNafter
C is the true-

negative percent in cluster C for the panel (after addition of the

remaining genes in the panel). The CCS measure is an estimate of

the extent to which using multiple markers has improved precision

as compared to use of any single marker within the panel, and is

meant to assist the user in identifying marker panels that signifi-

cantly improve accuracy when used in combination. COMET

outputs a ranked list of candidate marker panels for each marker

panel size, along with informative statistics and plotted visualiza-

tions (e.g., Appendix Fig S3 for a three-gene panel).

While an exhaustive search is required to ensure obtaining the

optimal solution(s) and hence an accurate ranking of candidate

multi-gene marker panels (Materials and Methods), such may not

be feasible for inputs consisting of many genes (e.g., the entire gene

list) and/or many cells. To increase efficiency in computation time

such that input size is not a limiting factor, we implemented a

heuristic within COMET to rank multi-gene candidate marker

panels. The user can opt to use either the exhaustive or heuristic

approach based on the number of genes searched across for marker

panels (input (4)), the number of cells in the expression matrix (in-

put (1)), and the computational resources available. COMET’s

heuristic defines a “core” set of genes as the top N genes in the

single-gene marker panel ranking and assesses combinations of

those core genes with all genes given as input (N is set to 50 by

default and can be changed by the user). For a gene marker panel of

size m, the heuristic considers all combinations in which at least

(m�1) genes are from the core set (Materials and Methods; for the

4-gene case, all of the genes in the marker panel will be from the

core set). We validated that the rankings generated by our heuristic

approach align well with those generated by an exhaustive ranking,

while significantly reducing running time (Fig 2C and D).

COMET was designed as a general framework and can be applied

to any type of high-throughput data (including non-single-cell data),

using any kind of normalization and clustering based on user prefer-

ence (COMET can also be applied successfully to raw counts).

Normalization of the input expression matrix and clustering is left

to the user to allow for maximum flexibility. The gene list over

which marker panel candidates are assessed can be the entire gene

list or a subset of genes (e.g., all surface genes or a list of genes for

which favorable antibodies or probes are available). Contrary to

other methods that pool information across all genes to infer param-

eters (e.g., hurdle models or zero-inflated Poisson hierarchical

models), COMET treats each gene independently and can therefore

be applied to user-specified gene lists as described above.

COMET is robust and accurate in identifying favorable markers

To test COMET’s performance in identifying favorable marker

panels, we assessed COMET’s performance on Monte Carlo simula-

tions as well as publicly available single-cell RNA-seq datasets.

Here, we define a marker to be favorable if it can likely be used to

efficiently sort out cells from the cluster of interest via, for instance,

flow cytometry assay. We generated Monte Carlo simulations using

both synthetic gene expression data (generated using a Gaussian

distribution) and synthetic gene counts data (generated using a

negative binomial distribution) for one gene in many cells (Fig 3A

and B, and Appendix Fig S4). COMET was compared to several gene

differential expression (DE) tests frequently used to identify single-

gene marker panels (Finak et al, 2015; Satija et al, 2015; Ntranos

et al, 2019). Common gene DE tests included in the comparison are

Welch’s t-test, the Wilcoxon rank-sum test (and its generalization

the Kruskal–Wallis test), the Kolmogorov–Smirnov test, and the

likelihood ratio test on a logistic regression model where cell cluster

(1 if the cell belongs to the cluster of interest, 0 otherwise) is

regressed against an intercept only or both an intercept and the

expression value of the gene in that cell (Materials and Methods).

Simulations showed that the COMET procedure detects good mark-

ers and discards poor markers regardless of sample size, contrary to

other tests whose power increases rapidly with sample size (Fig 3B

and Appendix Fig S4). The X and L parameters of the XL-mHG test

play an important role in this favorable behavior.

To some extent, the binarization of gene expression imple-

mented in COMET can be related to a classification task. To assess

COMET’s performance compared to standard classification proce-

dures, we performed Monte Carlo simulations on cell-by-gene

expression matrices. Two distinct simulation procedures were

used, including a simple Gaussian generative model for gene

expression data and a noisy Poisson–Gamma generative model for

gene count data (Materials and Methods). Synthetic expression

data were generated for two cell clusters (one of which is the clus-

ter of interest) and many genes pertaining to three categories: good

markers (genes which separate well the two clusters), poor mark-

ers (e.g., markers of cell subclusters, measurement outliers), and
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non-markers (genes with similar expression across both clusters)

(Appendix Fig S5A, Materials and Methods). Recent literature

mentions the use of Logistic Regression (LR) in gene DE analysis

(Ntranos et al, 2019), while Random Forests (RF) have been used

for a variety of tasks in genomics (Irrthum et al, 2010). We used

each of XL-mHG test, LR, and RF to construct a ranking of poten-

tial markers and compared the methods’ rankings to the optimal

ranking (known from the simulation) using the Scaled Sum of

Ranks (SSR) metric. We defined SSR to determine the extent to

which the good markers are ranked at the top of the list (Materials

and Methods). An SSR score of 1 reflects a ranking in which all

good markers are ranked at the top of the list, in higher places

than any of the poor markers and the genes with similar expres-

sion across clusters. We compared the SSR scores across the LR,

RF, and XL-mHG classification methods and observed that poor

markers had a detrimental effect on the identification of good

single-gene markers by LR and RF, while the XL-mHG test was

robust to the quantity and expression rates of poor markers in the

data (Fig 3C and Appendix Fig S5). The X and L parameters play

an important role in protecting COMET against the selection of
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Figure 3. COMET accurately and efficiently computes marker panels for cell populations.

A, B The XL-mHG test outperforms various differential expression tests in identifying favorable marker genes to be used as markers from simulated datasets (A,
Materials and Methods), with respect to both robustness to small effect sizes (B, left) and sensitivity to sample size (B, right). B, left: When varying the magnitude of
the difference between the means of the expression distributions for the cluster of interest (K) compared to the background (C) (termed here “effect size”, see
illustration in (A)), common DE tests drop below 0.05 significance level at small effect sizes (of approximately 0.4), while the XL-mHG test reaches significance only
at approximately 3.6. Identification of favorable marker genes requires achieving satisfactory sensitivity and specificity rates which would not be achievable in
cases of small effect sizes (due to the large overlap across the compared distributions). Hence, the XL-mHG test performs better than commonly used DE tests in
that it does not assign significant P-values to genes that are differentially expressed but would be poor markers due to small effect sizes. B, right: When varying the
total number of cells simulated in clusters K and C (termed here “sample size”, see illustration in (A)) for a fixed and small effect size of 1, common DE tests pick up
the small difference in expression as significant once the sample sizes become large (and the detection power increases), while the XL-mHG test does not reach
significance and would not consider such genes as potential markers. The small effect size in this example simulates a poor marker for which desirable sensitivity
and specificity rates could not be achieved, and this is controlled in the XL-mHG test by the X and L parameters.

C The XL-mHG test outperforms logistic regression and tree ensemble classifiers (including random forest and extra trees) in identifying favorable genes to be used as
markers from simulated datasets (noisy Poisson–Gamma generative model, see Materials and Methods). The scaled sum of ranks (SSR) metric indicates the ability
of a method to rank highly good marker genes, with a value of SSR = 1 indicating optimal ranking.

D COMET accurately identifies established markers for cell subpopulations in mouse spleen. Shown are the rankings of established marker genes for immune
populations generated by different methods used for single-gene marker identification. Data are taken from the spleen tissue of the MCA (Han et al, 2018).

Data information: Error bars indicate one standard deviation across 100 simulation runs (thresholded below at 0 and above at 1).
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genes which constitute poor markers for the cluster of interest yet

enjoy a strong predictive power (such as subcluster markers).

To evaluate COMET’s ability to identify novel surface single-gene

markers from real data, we evaluated COMET’s prediction of cell

surface markers for splenic cell populations and focused on the B-

cell population due to its abundance and well-established marker

set. Single-cell data for the spleen tissue from the Mouse Cell Atlas

(Han et al, 2018) were processed using COMET for a curated list of

murine cell surface proteins (Chihara et al, 2018) (a default gene list

used by COMET unless specified by the user). We compared the

rankings of known single-gene markers obtained by COMET for the

spleen data from the Mouse Cell Atlas to other differential expres-

sion tests (Welch’s t-test, Wilcoxon rank-sum test, likelihood ratio

test, and MAST hurdled t-test). COMET performs well in identifying

known single-gene markers for the different cell populations identi-

fied in spleen (Fig 3D), serving as a validation that COMET distin-

guishes well across different cell types for which established

markers are annotated. The well-established B-cell markers (Nadler

et al, 1981, 1983) CD19 and CD20 (Ms4a1) ranked 2nd and 3rd in the

COMET output, respectively (Fig 4A–C and Table EV1). Flow

cytometry-based assay confirmed that the additional top-ranking

candidates Ly-6D and CD79b co-stain well with CD19, confirming

the accuracy of COMET’s predictions for single-gene marker panels

(candidates for validation chosen by antibody availability) (Fig 4C

and D). These candidates also showed limited co-staining with

known T-cell marker CD3 (Meuer et al, 1983), showing their speci-

ficity as B-cell markers (Appendix Fig S7). Indeed, COMET predicted

the combination of Ly-6D+CD3� to be a favorable 2-gene marker

panel which is validated by flow cytometry staining (Appendix Fig

S8). When comparing COMET’s performance to that of other meth-

ods for identifying single-gene markers, we found that COMET’s

rankings were slightly higher from that of other methods for the two

well-established B-cell markers Cd19 and Ms4a1 (CD20), and

slightly higher or comparable with respect to the two markers we

validated by flow cytometry (Ly6d and Cd79b) (Table EV1). Having

all methods tested be comparable with respect to the identification

of single-gene markers for B-cell markers by all methods is expected

given that identifying markers for a distinct cell type is a relatively

simple task. Our results show that COMET can utilize single-cell

transcriptomic data to predict highly specific cell surface markers

for cell populations.

COMET identifies novel marker panels for cellular subtypes

We envision a primary use for COMET in the identification of candi-

date marker panels for subpopulations of a given cell type. To

assess COMET’s ability to predict successful marker panels for cell

subpopulations, we experimentally validated COMET’s predictions

for one of four splenic B-cell clusters identified in mouse spleen in

the Tabula Muris dataset (Tabula Muris Consortium, 2018)

(Fig 5A). Splenic B-cell populations typically include ~65–90%

follicular B cells, which are identified by expression of CD23 as a

cell surface marker. Additionally, the splenic B-cell population

includes 5–15% marginal zone B cells which can be identified by

expression of CD21 as a cell surface marker (Pillai et al, 2005;

Allman & Pillai, 2008). We assigned these two main subtypes of B-

cell splenic populations to Tabula Muris clusters 0 (follicular B cells)

and 2 (marginal zone B cells) by using the established markers and

subtype-specific gene signatures (Fig 5B and Appendix Fig S9).

Focusing on the follicular B-cell cluster, we validated using flow

cytometry assay that the most highly ranked single-gene markers

predicted in the COMET output (CD55 (rank 1), CD62L (Sell, rank

2), and CXCR4 (rank 3), see Table EV2) co-stain well with the estab-

lished marker CD23 (ranked 4) (Fig 5C and D, and Appendix Fig

S9A and B). When comparing COMET’s performance to that of other

methods for identifying single-gene markers for the follicular B-cell

cluster, we found that COMET’s ranking of Cxcr4 was significantly

higher than the ranking of any other methods (rankings by other

methods ranged from 12 to 53, for Wilcoxon rank-sum test and

LRT, respectively, see Table EV2) and was comparable for the other

validated markers (Cd55 and Sell). Our results show that COMET

can predict with accuracy highly specific surface markers for

subpopulations of an established cell type from single-cell transcrip-

tomic data.

An important aspect of identifying marker panels for cell

subtypes involves accurate prediction of marker panels that consist

of more than one gene, to enable high accuracy of subtype isola-

tion/targeting when a single-gene marker may not be sufficient to

predict a cell cluster. We therefore tested COMET’s ability to predict

accurate marker combinations for the follicular B-cell subpopulation

(the specific high-ranking combinations to validate were determined

by antibody availability). COMET predicted the combination

(CD62L+CD44�) for the isolation of follicular B cells, which ranked

22 with favorable true-positive and false-positive predictions

(Fig 6A). We observed that staining of CD62L+CD44� yields a

significantly cleaner population of follicular B cells (defined as

CD23+) than CD62L alone (Fig 6C). We tested by flow cytometry a

second highly ranked two-gene combination for follicular B-cell

identification and observed an improvement in using the combina-

tion predicted, CD55+CD62L+, rather than either CD62L+ or

CD55+ alone (Fig 6B and D, and Appendix Fig S10). Importantly,

the combinations for validation were selected by their COMET rank-

ing as well as by antibody availability. The combinations assessed

ranked 22 (CD62L+CD44�) and 38 (CD62L+CD55+). Hence, gene

combinations that rank at such levels and have available antibodies

are candidates for being good gene marker panels for subpopula-

tions identified by single-cell transcriptomics. Taken together, we

have shown that COMET is an applicable tool for the prediction of

single- and multi-gene surface marker panels for cell populations

and subtypes.

Discussion

The fast-increasing number of single-cell RNA-seq datasets being

generated and analyzed is revealing novel cell types and subtypes in

a variety of systems. Propelled by the exciting findings to date,

multiple consortia have formed to identify and characterize novel

cellular types and subtypes in comprehensive structured efforts

(Regev et al, 2017; Adlung & Amit, 2018; HTAN: Mapping Tumors

across Space and Time, 2019). Advancing from a high-throughput

characterization to deep functional studies of such novel popula-

tions requires the annotation of succinct marker panels to enable

isolation, visualization, and perturbation. In this work, we intro-

duced COMET, a powerful framework to identify succinct marker

panels that distinguish a selected subset of cells from a given
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background. In difference from currently used techniques for identi-

fication of single-gene markers, COMET takes a direct classification

approach and generates ranked lists of multi-gene marker panels.

We have demonstrated in this work that COMET can utilize single-

cell RNA-seq data to identify favorable marker panels for isolation

of cell types and cell subtypes by flow cytometry assay. Importantly,

A

C D

B

Figure 4. COMET identifies favorable markers for splenic B cells.

A–C COMET outputs for the splenic B-cell population from the MCA dataset (Han et al, 2018). (A) COMET output of the top 10 ranked candidate marker genes. (B, C)
COMET plots the expression of a gene across all cells (right) and the binarized values of gene expression following binarization (red: expressed; blue: not expressed)
by the XL-mHG threshold (left). Shown are COMET visualization outputs for CD19 (B) and Ly-6D, CD20, and CD79b (C).

D Flow cytometry analysis comparing the protein level staining of CD19, an established marker for B cells (Nadler et al, 1983), with three top-ranking marker genes in
the COMET output confirms that COMET’s top-ranking candidate markers are favorable for flow cytometry staining of B cells. The genes to validate were selected
based on availability of trustable antibodies (SP = single positive). Bars and error bars indicate the mean and standard deviation. ****P < 0.0001; n = 4 biological
replicates; unpaired, two-tailed t-test.
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A

C

D

B

Figure 5. COMET identifies favorable markers for splenic follicular B cells.

A Clustering and t-SNE visualization of splenic B cells as generated by Tabula Muris (Tabula Muris Consortium, 2018).
B Expression of follicular B-cell marker CD23 and marginal zone B-cell marker CD21 in the splenic B-cell dataset from Tabula Muris as visualized by COMET.
C Expression of the three top-ranking markers for follicular B-cell output by COMET, CD55, CD62L, and CXCR4, as visualized by COMET.
D Flow cytometry analysis comparing the protein level staining of CD23, an established marker for follicular B cells, with the three top-ranking marker genes in the

COMET output confirms that COMET’s top-ranking candidate markers are favorable for flow cytometry staining of the follicular B-cell subtype. The genes to validate
were selected based on availability of trustable antibodies (SP = single positive). Bars and error bars indicate the mean and standard deviation. ****P < 0.0001;
n = 6 biological replicates; unpaired, two-tailed t-test.
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our validation that COMET’s predicted marker panels for B cells and

B-cell subtypes can be used in flow cytometry assay to isolate the

population of choice emphasizes that transcriptomic data can be

utilized via COMET to identify favorable marker panels at the

protein level.

A main contribution within the COMET tool is the introduction

of a framework for identifying multi-gene combinations that consti-

tute favorable marker panels. Although the problem of finding an

optimal multi-gene marker panel is computationally intractable (as

we prove in Materials and Methods), we introduce within the

COMET framework an efficient method to conduct an exhaustive

search (for small marker panels, utilizing the efficiency of matrix

multiplications) as well as heuristics which scale to larger sizes of

marker panels and gene inputs, and are shown to achieve accurate

performance. Importantly, the COMET framework is non-parametric

for both the single- and multi-gene cases, enabling identification of

non-linear relationships when searching for marker panels. COMET

is also highly flexible in the gene space within which the search for

markers is conducted (e.g., restricting the search space to genes for

which favorable antibodies exist). Additional notable features of the

COMET framework are the direct assessment of a gene’s classifi-

cation potential using informative statistics, and the direct assess-

ment of negative markers (genes that are not expressed in the cell

cluster of choice) as single markers or as part of a multi-gene panel

(validated examples of a panels with a positive and negative marker

are seen in Fig 6C and Appendix Fig S8). We observed COMET to

work well across a range of technologies and sequencing depths

(from an average count of 547 genes per cell in the microwell-seq

MCA dataset to an average count of 1,825 genes per cell in the

Smart-Seq2 Tabula Muris dataset).

While the COMET framework enables the identification of

marker panels from high-throughput transcriptomic data, there are

several outstanding challenges that COMET does not currently

address. In predicting marker panels from transcriptomic data, an

underlying assumption made is that genes correlate well between

their transcriptional and protein/cell surface abundance. Due to

factors such as mRNA stability, translation efficiency, protein stabil-

ity, and protein transport, we know that this assumption is not

A

C D

B

Figure 6. COMET identifies favorable multi-gene marker panels for splenic follicular B cells.

A, B COMET outputs for two highly ranked 2-gene marker panels predicted by COMET to isolate the splenic follicular B-cell population, based on analysis of the Tabula
Muris dataset (Tabula Muris Consortium, 2018). Shown are binarized values of gene expression following binarization by the XL-mHG threshold for each gene
separately (left, middle) and when using both genes combined (right).

C, D Flow cytometry staining for the marker combinations CD62L+CD44� (C) and CD55+CD62L+ (D) confirms that COMET’s candidate multi-gene marker panels are
favorable for flow cytometry staining of splenic follicular B cells. Both marker combinations included a significantly higher frequency of follicular B cells (CD23+)
and a lower frequency of other B-cell subpopulations (DN and CD21+) than the single staining for CD62L+ and CD55+, respectively. (DN = double negative). The
marker combinations were selected based on availability of established antibodies. Bars and error bars indicate the mean and standard deviation. *P < 0.05;
**P < 0.01; ***P < 0.001; n = 6 biological replicates; unpaired, two-tailed t-test.
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always accurate. Additionally, antibody quality and specificity can

contribute to discrepancies between cellular mRNA levels and

surface protein detection rates with flow cytometry. As observed in

Fig 5D, the COMET ranks do not always perfectly correlate with

performance in flow cytometry (CXCR4 ranked 3rd but performs

better than ranks 1 and 2). It will be beneficial to incorporate within

COMET information regarding the extent to which the transcrip-

tional state of each gene correlates with its protein abundance, as

well as availability of validated antibodies. Incorporation of data

from, e.g., the Human Protein Atlas (Uhlén et al, 2015; The Human

Protein Atlas) could assist in this regard. When assessing multi-gene

marker combinations, COMET considers the “AND” relationship

between genes (cells expressing both gene A and gene B). Address-

ing “OR” logic between genes (cells expressing either gene A or gene

B) and constructing gene panels that incorporate a mixture of

“AND” and “OR” relationships across genes will be the subject of

future expansions of COMET. Last, exciting technological advances

are enabling the incorporation of tens and potentially hundreds of

genes to be used within marker panels (e.g., multi-colored flow

cytometry, CyTOF, and CITE-seq). Expanding the COMET frame-

work to explore both small and large marker panels would be favor-

able in this respect.

Along with its broad applicability to single-cell transcriptomics

data, the COMET framework can be utilized for other instances by

merely changing the input to the available software. The statistical

framework implemented in COMET conducts a ranked non-para-

metric search to identify single- and multi-feature marker panels that

best distinguish a specified subset of samples. Hence, the COMET

framework and tool can be used to identify marker panels from addi-

tional high-throughput datasets such as population RNA-seq data

and CpG site methylation data. Importantly, analysis of data from

technologies that measure both RNA and protein levels (e.g., Stoeck-

ius et al, 2017) can be trivially processed by COMET by providing an

input in which each of the measurements (RNA or protein) is a

“gene” in the expression matrix. Since each “gene” is assessed

within COMET in a non-parametric manner to produce a binariza-

tion of the data, protein and RNA measurements can be combined,

as well as any other “Omic” datasets. An additional use of the

COMET framework can be in the identification of markers for tran-

scriptional programs of interest (rather than cell clusters). Recent

works have highlighted the annotation of cellular transcriptional

programs (by, e.g., NNMF and topic modeling) as a means of identi-

fying important features of variance within single-cell RNA-seq data-

sets (preprint: Bielecki et al, 2018; Filbin et al, 2018; Jerby-Arnon

et al, 2018). COMET’s computational framework could be applied to

the identification of marker panels for transcriptional programs or

motifs of interest, by assigning cells as expressing or not expressing

a given program, and we expect it will be interesting to explore

marker annotation in that space.

We anticipate that the use of COMET will propel the transition

from novel characterization-focused observations (made via meth-

ods such as single-cell RNA-seq) to targeted studies that focus on

functional aspects of the identified findings. COMET is available to

the community as both a web interface (http://www.cometsc.com/)

and an open-source stand-alone Python package (https://github.

com/MSingerLab/COMETSC).

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

C57BL/6J, Mus musculus Jackson Laboratory Stock number: 000664

Antibodies

Armenian Hamster anti-CD3e (clone 145-2C11), monoclonal, 1:500 BioLegend Cat # 100335

Armenian Hamster anti-CD11c (clone N418), monoclonal, 1:500 BioLegend Cat # 117317

Rat anti-CD19 (clone 6D5), monoclonal, 1:500 BioLegend Cat # 115529

Rat anti-CD20 (clone SA275A11), monoclonal, 1:300 BioLegend Cat # 150403

Rat anti-CD21 (clone 7E9), monoclonal, 1:300 BioLegend Cat # 123421

Rat anti-CD23 (clone B3B4), monoclonal, 1:100 BioLegend Cat # 101613

Armenian Hamster anti-CD55 (clone RIKO-3), monoclonal, 1:300 BioLegend Cat # 131803

Rat anti-CD62L (clone MEL-14), monoclonal, 1:300 BioLegend Cat # 104419

Armenian Hmaster anti-CD79b (clone HM79-12), monoclonal, 1:300 BioLegend Cat # 132805

Rat anti-CXCR4 (clone L276F12), monoclonal, 1:300 BioLegend Cat # 146511

Rat anti-Gr-1 (clone RB6-8C5), monoclonal, 1:500 BioLegend Cat # 108407

Rat anti-Ly-6D (clone 49-H4), monoclonal, 1:300 BioLegend Cat # 138605

Chemicals, enzymes and other reagents

eBioscience eFluor 506 fixable viability dye Thermo Fisher Scientific Cat # 65-0866-14
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

Gibco ACK lysis buffer Fisher Scientific Cat # A1049201

FCS (newborn calf serum) Sigma-Aldrich Cat # N4637

DPBS Gibco Cat # 14190-250

Software

GraphPad Prism Version 8.1.0 https://www.graphpad.com/

FlowJo Version Version 10.5.3 https://www.flowjo.com/

Python Version 3.6 https://www.python.org/

R Version 3.5 https://www.r-project.org/

Other

LSR II BD Biosciences

LSRFortessa BD Biosciences

Multi-gene marker identification problem

We prove below that the general problem of identifying an opti-

mal multi-gene marker panel for a cell cluster of interest K is NP-

hard. Consider an instance in which any gene combination (e.g.,

Gi;Gj

� �
i; j 2 1; . . .; df gð Þ) satisfies TPcombination = Q, where TP is

the true-positive rate, for some constant Q 2 0; 1½ �. Hence, all

gene combinations are equivalent with respect to their true-posi-

tive rate, and we need to find the gene combination which maxi-

mizes the true-negative rate, restricted by some k (the maximum

number of genes allowed in the panel). Let C ¼ C1; . . .;Cdf g,
where Ci is the set of cells outside of the cluster of interest K that

do not express gene Gi i 2 1; . . .;df gð Þ. We want to find a set of

indices of size up to k such that the union over their sets in C

has maximal cardinality (in the best case, the cardinality of Kc,

the complement of K), in order to maximize the true-negative

rate of the gene combination chosen. Hence, the multi-gene

marker identification problem is polynomially reducible to the

maximum coverage problem which is NP-hard. Appendix Fig S1

demonstrates the scaling of the number of combinations in

increasing marker panel sizes.

XL-mHG test

We provide a brief description of the XL-mHG test and refer the

reader to the relevant references (Eden et al, 2007; preprint:

Wagner, 2015a) for more extensive details. The minimal

HyperGeometric (mHG) test is a rank-based non-parametric test

for determining gene enrichment. Consider a gene G expressed in

a set of n cells comprising two clusters K and C, where K denotes

the cluster of interest (in the case of more than one cluster, all

clusters but K are merged to form C: = Kc). Let {Xi}1 ≤ i ≤ n denote

the random variables indicating the expression of G in the cells

i = 1, . . ., n, and Cif g1� i�n 2 0; 1f gn (where 1 refers to cluster K

and 0 to cluster C) denote the cluster assignment of each cell. The

test starts by sorting the cluster assignments in decreasing order

of gene expression, i.e.,

S ¼ Cpð1Þ;Cpð2Þ; . . .;CpðnÞ
� �T

where Xp(1) ≥ Xp(2) ≥ . . . ≥ Xp(n). The test is based on the observa-

tion that, given a threshold on the sorted vector S that defines the

top of this vector, enrichment can be quantified using a HyperGeo-

metric (HG) test for that threshold. Instead of working with a fixed

threshold, the mHG test explores all possible thresholds t 2 0;n½ �
and calculates a HG P-value pHGtð Þ for each of them.

The mHG test statistic is defined as the smallest of these P-values

SmHG ¼ min
t

pHGtð Þ

In fact, the mHG test applied to gene G tests the null hypothesis

that there is no enrichment in cells from cluster K at the top of S

against the alternative hypothesis that enrichment exists and that

there is a threshold t* above which enrichment is the most signifi-

cant. A P-value for the mHG test can be computed efficiently using a

dynamic programming approach (Eden et al, 2007).

The XL-mHG test is a generalization of the mHG test, which

introduces two parameters X and L that limit the threshold search

space (preprint: Wagner, 2015a). X specifies the minimum number

of 1’s required to pass the chosen threshold, i.e., it provides a lower

bound on the number of true positives. L specifies the lowest cutoff

to be examined and provides thus a way to control the maximum

number of false positives (this maximum number is L–X). Together,

these parameters provide a flexible trade-off between the sensitivity

and robustness of the test, and prevent COMET from picking up dif-

ferentially expressed genes that are not relevant as markers due to

low specificity or sensitivity. When X = 0 and L = n, the XL-mHG

test reduces to the mHG test.

In COMET, X and L are set to X = 0.15|K| and L = 2|K| by default.

When searching for an expression cutoff to binarize gene expression

data, we require at least 15% (X) of cells in K to be above the cutoff

value and that the number of cells above the cutoff value does not

exceed twice the size of K (L). We consider the values (X = 0.15|K|

and L = 2|K|) to be biologically reasonable. We validated on simple

examples that they result in desirable properties for the test. In

particular, we compared (X = 0.15|K| and L = 2|K|) to other values

in simulated data including (X = 0, L = n) corresponding to the

basic mHG test (see Fig 3B and Appendix Fig SS4). In these plots, it

is shown that the basic mHG test does not enjoy these desirable
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properties; hence, X and L need to be picked carefully. While in this

manuscript we focus on parameters X = 0.15|K| and L = 2|K|

because we believe they provide good predictions of surface marker

panels, we emphasize that the user can change the values of X and

L when running COMET. The specific X and L values chosen do not

affect the performance of the COMET algorithm, but only the quality

of markers discovered by COMET. The choice of the ideal X and L

parameters for a given marker panel detection problem should be

set by the user based on their willingness to tolerate false positives

and false negatives.

Properties of the XL-mHG test

As a rank-based, non-parametric and flexible test, the XL-mHG

test has many desirable properties compared to standard differen-

tial expression (DE) tests used in single-cell transcriptomics. These

properties are shown in Fig 3 and Appendix Figs S4 and S5, and

constitute a key asset of the COMET framework. Specifically, in

Fig 3B we analyze the performance of the XL-mHG test compared

to other differential expression tests (Welch’s t-test, Wilcoxon

rank-sum test, Kolmogorov–Smirnov test, and likelihood ratio test

for logistic regression). Data are simulated for one gene in many

cells across two clusters: the cluster of interest and another cluster

including all the remaining cells (see Simulations subsection

below).

Figure 3B-left displays, for each test, the corresponding P-value

(averaged over several simulation runs) versus the difference in

means between the two simulated clusters (the cluster of choice and

the background cluster), where the number of cells simulated is

fixed. For the classic DE tests, the bigger the mean difference e, the
lower the P-value. We observe that the P-values for these tests drop

below the 0.05 significance level for e close to 0.4. Note that in this

case, the gene is indeed differentially expressed; however, it would

constitute a poor marker for the cluster of interest as its distribution

in this cluster overlaps too much with its distribution in the back-

ground cluster. The XL-mHG test, however, only picks up signifi-

cance for e close to 4. In that case, the expression distributions in

both clusters are much less overlapping, which makes the gene a

good marker candidate.

Figure 3B-right displays, for each test, the corresponding P-value

(averaged over several simulation runs) versus the sample size

(number of cells simulated from each cluster, where the cluster of

interest represents a fixed percentage of the total number of cells,

see Materials and Methods) for a fixed and small value of the dif-

ference in means between the cluster of interest and the background

cluster (e = 1). Note that in this case, the gene is effectively differen-

tially expressed across the clusters. For the classic DE tests, P-values

gradually decrease with sample size, since higher sample sizes

correspond to higher effect sizes, and hence a higher statistical

power for these tests. While the simulated gene distributions are

slightly different between the clusters, due to the small size of this

difference, e = 1, the gene should not be considered a good marker

because it would not achieve good specificity or sensitivity. Fortu-

nately, the XL-mHG P-values do not drop below significance level

for this gene regardless of sample size. This suggests that the XL-

mHG test will ignore poor markers regardless of sample size, which

is a desirable feature, especially when analyzing scRNA-seq datasets

which could be very large.

COMET algorithm

The COMET algorithm takes as input a gene-by-cell expression

matrix (normalized or raw counts), cluster assignments, and visual-

ization coordinates (Appendix Fig S2). Let X denote the full expres-

sion matrix (with n cells and p genes), where Xij corresponds to the

expression level of gene i in cell j. Let C ¼ C1; . . .;Ckf g be the set of

cell clusters present in the data. COMET will output for each cluster

a directory with ranked lists of marker panel candidates consisting

of 1, 2, 3, and/or 4 genes, along with informative statistics and visu-

alizations. COMET incorporates several parameters that are set to

default values as described below and can alternatively be input by

the user. Given a gene-by-cell expression matrix, COMET initially

reduces to selected genes (for example, if we are interested in

surface markers for live sorting of cells, it is beneficial to use the

default list of surface markers available on the COMET web inter-

face). Following this reduction, COMET runs an independent analy-

sis for each of the clusters present in the input file, identifying

marker candidate panels for each cluster separately. In each such

cluster-centered run, COMET utilizes the XL-mHG test to identify for

the given cluster, K 2 C (of size m), and each gene, G, the optimal

threshold and P-value. For each gene, a corresponding gene nega-

tion is created as a separate gene to be considered by negating the

expression of the original gene (multiplying all values by �1). This

gives us negations as free-standing genes not beholden to their posi-

tive counterparts. Any statistical analysis is run on all of these

genes, and if a negation is a good marker, it will show up highly in

the ranked list based on its individual performance in the panels.

Given the returned thresholds, a binary gene-by-cell expression

matrix A is generated, in which Aij = 1 if gene i’s expression in cell j

is above the chosen XL-mHG threshold for gene i (and Aij = 0 other-

wise). This discretization institutes a “slide-up” policy such that the

values for which the matrix element becomes 1 are anything above

the chosen expression threshold (e.g., if zero is chosen, we slide the

threshold up to just above zero). Note, that since there is an inde-

pendent run for each cluster, in which cluster-specific XL-mHG

thresholds are determined for each gene, the binary matrices gener-

ated are cluster-specific and differ across the different parallel runs

(one run for each cluster). The binary matrices generated are then

used to compute true-positive and false-positive statistics for each

gene. Importantly, the binarized matrices are used for assessing

gene combinations as described below.

COMET outputs a directory for each cluster. Within each cluster

directory, subdirectories are generated, one for each size of combi-

natorial marker panel computed (e.g., 1-, 2-, 3-, and 4-gene panels,

each within a different subdirectory). Within each subdirectory,

suggested marker panels are listed in a ranked order, along with

informative statistics such as the XL-mHG P-value, the XL-mHG

threshold, the expression log2 fold change, and the true-positive

and true-negative rates.

Computing and ranking 1-gene marker panels
Single-gene markers are assigned two ranks: the first by their

XL-mHG P-value (see above) and the second by their absolute log2

fold change of mean expression within and outside of the cluster of

interest K. A final aggregated rank is assigned to each gene as the

arithmetic average of both the XL-mHG P-value rank and the abso-

lute log2 fold change rank. We deemed this simple rank aggregation
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rule (Boulesteix & Slawski, 2009) relevant and parsimonious given

that the two rankings cannot be considered independent from one

another. The top-ranking genes are visualized for their continuous

expression as well as their binary assignments using the visualiza-

tion coordinates (e.g., t-SNE or UMAP) provided by the user. All

ranks are returned to the user. For the final rankings, a filter is

placed on single genes such that any gene with a true-positive rate

of < 15% is dropped. Values below 15% for an X value of 0.15 are

only possible when the threshold is slid up (as described above) to

skip a large number of expression values in the discretization step.

Additionally, COMET drops from its ranking negation genes with

true-negative rate below 50%. Three output files are then given to

the user. One contains the final rankings for all genes, another

contains the final ranking for only non-negations (positive markers),

and the last contains the statistics calculated for all single genes,

unranked and unfiltered to give the user access to all input genes.

Each file will also contain various other statistics, such as the t-test

P-value and the Wilcoxon rank-sum test P-value along with

true-positive-by-true-negative plots of the highest-ranking genes to

give the user a broad range of tools to be used in informing their

decisions.

Computing and ranking 2-gene marker panels
The binary expression matrix A is filtered based on the true-positive

rate, keeping genes with a true-positive rate equal to or higher than

15%. Let ~A denote the restriction of matrix A to such genes, and ~AjK
denote the restriction of matrix ~A to cells in cluster K. We further

define the matrices R ¼ ~A ~AT and RjK ¼ ~AjK ~AjK
T
. We call R the

matrix of positives, and R|K the matrix of positives in cluster K. The

i,j-th element of R (resp. R|K) is the number of cells (resp. cells in

cluster K) in which genes i and j are co-expressed. This procedure

only relies on the binarization obtained via the XL-mHG test for

single genes. No parametric form is assumed for the relationship

between the cell cluster labels and the binarized expression of single

genes and their combination (this statement holds for combinations

of an arbitrary number of genes).

Using the matrices R and R|K (along with the cluster size m), a

hypergeometric enrichment P-value can be computed for each 2-

gene combination. Gene marker panels are ranked by the hypergeo-

metric enrichment P-value as well as a “Cluster Clear Score” (CCS)

which evaluates the extent to which a panel cleans out contaminat-

ing clusters, as compared to using a single gene from the combina-

tion. The CCS value for a given gene pair is as follows:

CCS ¼
X

C2Cn Kf g
TNafter

C � TNbefore
C

where TNbefore
C is the true-negative percent in cluster C for the single

gene in the pair with the lowest P-value (the “lead” gene) and TNafter
C

is the true-negative percent in cluster C for the pair (after addition of

the second gene). The final COMET score given to 2-gene combina-

tions is a simple average between the hypergeometric rank (in

ascending P-value order) and the CCS rank. Only the top 1,000

hypergeometric test-ranked pairs are considered in the CCS. The CCS

favors gene combinations that “clean out” specific contaminating

clusters in an attempt to assist in finding solutions for clearing out

entire contaminating populations with the marker panel. If other

measures of ranking are preferred, users can use the global TP and

TN rates reported for each gene panel to construct alternative statis-

tics to rank by. All gene negations are treated as stand-alone genes

and will be fully incorporated in the pair output. Following ranking,

plots are generated for the top-ranking pairs, showing the binary

expression of each of the paired genes and their combination, for

efficient parsing of the results by the user (as shown in Fig 6). Each

“lead” gene is limited to appearing in at most 10 plots to avoid “take-

over” by a gene that ranks highly multiple times due to pairing with

many equivalent genes. Any one gene is allowed to appear at most

200 times in the output folder.

Computing and ranking 3-gene marker panels
The construction of the matrices of positives R and positives R|K in

cluster K in the 3-gene case is fairly similar in process to the pair

expression matrix. We opted for a matrix representation of the 3-

gene case for reasons of computational speed and memory. If we

consider the binarized expression matrix ~A (where ~n denotes the

number of cells and ~p denotes the number of genes), we can

construct a ~p2-by-~n matrix Q that includes the count expression for

each gene pair within a given cell by performing a row-wise AND

operation on two copies of the original ~A (for each two rows in orig-

inal matrix ~A). Then, Q ~AT is a ~p2-by-~p matrix where each entry

represents the number of positive cells for a three-gene combina-

tion. Two of these matrices are constructed, one for all cells within

the cluster K and one for all cells. This gives us everything necessary

to compute a hypergeometric P-value, true-positive rate, and true-

negative rate. Once each combination has these statistics computed,

the tool will filter out combinations in the output file that are either

redundant or useless. For example, any gene combination that is

repeated (e.g., combination BAC if combination ABC already exists)

can be removed or any combination with repeating genes (e.g.,

combination AAB) can also be removed. With these types of panels

removed, the resulting data consist only of unique 3-gene marker

panels. They are ranked by their hypergeometric P-value. These

combinations are only available on the software package, along

with an option to compute the 3-gene combinations via a heuristic

to enable significant speed-up in cases where the number of genes

and/or cells is large.

Computing and ranking 4-gene marker panels
For four genes, generating the matrices of counts for positives and

positives-in-cluster is similar to the three- and two-gene cases. We

consider the upper triangle of values of QQT, where Q is as defined

above. Duplicates and gene-repeating combinations are once again

filtered out, and the resulting entries contain unique 4 gene marker

panels. The 4 gene combinations are ranked by the P-value of the

hypergeometric test, with the true-positive and true-negative rates

computed and placed in the results table. The top-ranking thirty

combinations are plotted using the visualization coordinates

supplied by the user. Four-gene combinations are currently avail-

able only in the software package.

Automation and deployment of COMET
In order to enable easy access to the COMET, tool we set up an auto-

mated web interface in addition to the COMET software package.

All of the COMET software is freely available. The COMET web

interface is deployed onto an Amazon Web Services (AWS) platform

with the back end fully controlled by a Flask (Python) application

ª 2019 The Authors Molecular Systems Biology 15: e9005 | 2019 13 of 18

Conor Delaney et al Molecular Systems Biology



(Appendix Fig S11). A front-facing interface environment pulls in

the user’s files and dispenses them to the automation line. Each job

submitted is sent to a “Simple Queue” which stacks jobs on a first-

come, first-serve basis. Demo jobs are processed in a separate but

identical pipeline to ensure they do not take priority over real jobs.

A working environment on a different AWS instance polls the queue

for jobs, processing one at a time. Upon completion of a job, the

worker will send out an email to the user with a job ID (a thirty-

two-character UUID) which is then entered by the user on the

COMET website under the “Results” section to enable downloading

of the results. Files are stored in an “S3” bucket, which can store

large files, and are deleted after 4 days. Files can be accessed by any

user with the proper job ID so that sharing of results is simple.

Heuristic analysis
To reduce time of computation, we implemented heuristics for the

generation of ranked 2-gene, 3-gene, and 4-gene combinations.

The heuristic algorithm can be opted for use by the user in cases

of large gene or cell counts. In the heuristic approach, we chose a

heuristic core size, N, and compute 2-gene or 3-gene combina-

tions. This core size tells us the number of top-performing single

genes we will use to pair with all other genes, creating a new

search space. In the 2-gene case, we take the top N genes (based

on their XL-mHG P-value performance) and pair with all other

genes. In the 3-gene case, we first mimic the 2-gene case above

by finding all pairs between the top N genes and all other genes,

and then match those up with genes from the same list of N genes

to create the triplet. Varying the threshold value N allows us to

see which size of heuristic performed best in comparison with

running the full, non-heuristic search space of gene combinations

(see results from the splenic follicular B-cell cluster, as shown in

Fig 5A, analyzed in Fig 2C and D). For 4-gene combinations, the

heuristic is to take the top N genes and only create combinations

using genes in that list. In general, there is a certain threshold

level for each dataset that will yield the closest to fully correct

results while significantly speeding up the time of computation.

By default, COMET currently uses a heuristic core size of 50.

There are also heuristic core sizes for which the heuristic

performs poorly, namely at 5 (Fig 2D). Since the CCS ranking is

only computed for the first 1,000 gene pairs, there is a significant

shuffling of the expected and heuristic ranks at these low levels;

thus, it is necessary for users to stay at suitably high choice of

heuristic core size to maintain accurate results.

Simulations

Comparison of COMET to standard differential expression tests
All simulations are conducted in Python 3.6 using the Pandas,

Sklearn, NumPy, and SciPy core functions as well as the xlmhg

package (Eden et al, 2007; Wagner, 2015b). We consider a gene G

expressed in a population of n cells comprising two clusters K and

C, where K denotes the cluster of interest (p cells). In practice, we

would have C = Kc, where Kc denotes the complement set of K. Let

X1, X2, . . ., Xm (resp. Xm+1, Xm+2, . . ., Xn) be the random variables

corresponding to G’s expression level in K (resp. C). In these simula-

tions, we assume that Xif g1� i�m (resp. Xif gmþ1� i�n) are mutually

independent and identically distributed, and that the Xif g1� i�m and

the Xif gmþ1� i�n are independent. We further denote by Ci 2 0; 1f g

the variable indicating cluster membership of the ith cell, i = 1, . . .,

n, where 1 refers to cluster K and 0 refers to cluster C.

We compare the XL-mHG test (with default COMET parameters

X = 0.15|K| and L = 2|K|, where |K| denote the cardinal of set K) to

standard statistical tests that may be used in single-cell RNA

sequencing for gene differential expression (DE) analysis, including

Welch’s t-test (scipy.stats.ttest_ind with equal_var=FALSE), the

Wilcoxon rank-sum (WRS) test (scipy.stats.ranksums), and the

Kolmogorov–Smirnov (KS) test (scipy.stats.ks_2samp). We also

consider the likelihood ratio test (LRT) for the logistic regression

model (Ntranos et al, 2019)

CijXi �Bernoulli r b0 þ b1Xið Þð Þ

where r(�) is the logistic function defined as r(t) = 1/(1 + e�t).

The null model for the LRT is that cell membership to a cluster

does not depend on gene expression, i.e., b1 = 0. Logistic regres-

sions are performed using sklearn.linear_model.LogisticRegression.

We simulate gene expression values from a Gaussian model

(using numpy.random.normal) in Fig 3 and Appendix Fig S4. In

cluster K, we let Xif g1� i�m be independent Gaussian draws with

mean e and standard deviation 1, and in cluster C, we let

Xif gmþ1� i�n be independent Gaussian draws with mean 0 and stan-

dard deviation 5, where P = 0.1n. Gene G is differentially expressed

as soon as e 6¼ 0, yet it is considered a good marker when e is high

enough for the gene expression distributions in K and C to be well

separated (for example, when e ≥ 3). Results are averaged over 100

simulation runs, and reported error bars on these P-values corre-

spond to one empirical standard deviation over the 100 runs

(Appendix Fig S4).

We also simulate gene count data from a negative binomial

model (using numpy.random.negative_binomial) in Appendix Fig

S4. In cluster C, we let counts follow a negative binomial distri-

bution NB(m = 1, p = 0.1) where m denotes the number of

successes (extended to the reals) and p denotes the probability

of success in the standard negative binomial representation. For

cells in K, gene count values follow a NB(m = 5, p = 0.5) distri-

bution shifted by (4 + e), so that the difference in means

between the two clusters is precisely e. We still have P = 0.1n,

and results are averaged over 100 simulation runs (Appendix Fig

S4).

Comparison of COMET to classifiers
We compare the XL-mHG procedure (with default COMET parame-

ters X = 0.15 * |K| and L = 2|K|) to standard classifiers used in

single-cell transcriptomics for gene DE analysis or other related

tasks, including random forests and logistic regression. Recent liter-

ature mentions the use of LR in gene DE analysis (Ntranos et al,

2019), while RF have been used for a variety of tasks in genomics

(Irrthum et al, 2010).

Gaussian generative model

We first resort to a simple Gaussian simulation engine. We simulate

an n × p cell-by-gene Gaussian expression matrix (see Appendix Fig

S5), where n = 500 cells and p = 1,000 genes. Cells belong either to

the cluster of interest K (10% of cells) or the super-cluster C (90%

of cells). The gene structure is threefold: (i) x% of the genes are not

K markers (G1, . . ., Gr have Gaussian expression with mean 0 and
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standard deviation 1 in both clusters), (ii) 5% of the genes are good

K markers (H1, . . ., Hs have Gaussian expression with mean 1 and

standard deviation 1 in cluster C and mean 1 and standard deviation

1 in cluster K), and (iii) z% of the genes are poor K markers (I1, . . .,

It have Gaussian expression with mean expression lp and standard

deviation 1 in a random subset of w% of cells in K and with mean

expression 0 and standard deviation 1 in all other cells). Note that

z = (95–x). Poor markers can biologically correspond to measure-

ment outliers or markers for subclusters of the population of interest

(Appendix Fig S5).

The XL-mHG procedure, logistic regression, random forest, and

an extra trees classifier are applied to the dataset in order to rank the

genes in terms of their potential as markers for cluster K. Ranking for

the XL-mHG procedure is obtained using the XL-mHG P-value associ-

ated with each gene. For logistic regression, we use the likelihood

ratio test P-value using the same null model as described above. To

ensure comparability across simulation runs, random forest parame-

ters were set to the following standard values. The random forest

model (sklearn.Ensemble.RandomForestClassifier) was trained using

NT = 250 trees. Each tree uses a size-n bootstrap sample from the

original dataset, and a subset of genes of size
ffiffiffi
p

p
was used to split at

each node. Trees were grown until all leaves achieve Gini purity.

Gene ranking utilizes the Gini importance metric (see below). The

same parameters were used to train an extra trees classifier

(sklearn.Ensemble.ExtraTreesClassifier). An extra trees classifier dif-

fers from a random forest classifier in that candidate split points are

drawn uniformly at random from the range of each selected feature

at a given node, as opposed to deterministically chosen in random

forest.

A random forest is an ensemble of classification trees built

using a learning dataset of size n where each cell is labeled and

characterized by p genes. A node t defines a partition of the

sample space based on the binary test of one gene (or split, st),

selected from a random subset of all genes. In each tree, a recur-

sive learning procedure identifies at a given node t the split st for

which the partition of the nt node samples into tleft and tright maxi-

mizes the decrease

Di s; tð Þ ¼ i tð Þ � plefti tleft
� �� prighti tright

� �

of the Gini impurity measure i(�), and where pleft ¼ Ntleft=Nt and

pright ¼ Ntright=Nt.

It is then possible to evaluate the importance of gene G for

predicting cluster label by adding up the weighted impurity

decreases p(t)Di(st,t) for all nodes t where G is used, averaged over

all NT trees in the forest:

MDGðGÞ ¼ 1

NT

X

T

X

t2T:t stð Þ¼G

p tð ÞDi st; tð Þ

where p(t) is the proportion of samples reaching node t and t stð Þ is
the gene used in split st. We utilized this metric, christened Gini

Importance (or Mean Decrease Gini, MDG) (Louppe et al, 2013), to

rank the genes in our random forest simulations.

We define the scaled sum of ranks (SSR) as a metric to quantify

the performance of XL-mHG, RF, and LR at recovering good markers

from simulated data matrices. Note that genes H1, . . ., Hs are all

equally good markers, with no intrinsic ranking among them. For

example, if Ss denotes the symmetric group of 1; . . .; sf g, then for

any permutation p � Ss, the rankings r0 ¼ H1; . . .;Hs�1;Hsð Þ and

rp ¼ Hp 1ð Þ; . . .;Hp s�1ð Þ;Hp sð Þ
� �

are exactly equivalent. The SSR metric

is designed to respect this property (in the example, it gives an equal

score to both rankings r0 and rp). We compute the rank assigned to

each of H1, . . ., Hs by a given method (XL-mHG, RF, or LR), and

then sum up these ranks and divide by the optimal sum of ranks

s(s + 1)/2. In other words,

SSR Mð Þ ¼ 2

sðsþ 1Þ
Xs

j¼1

rank jjMð Þ

where M refers to the method used to rank the genes (XL-mHG,

RF, or LR). A good marker discovery procedure will recover most

of the markers and result in SSR values very close to 1, while a

suboptimal marker discovery procedure will result in higher SSR

values. Results in Fig 3C and Appendix Fig S5 are averaged over

20 simulation runs.

In Fig 3C and Appendix Fig S5B, poor markers constitute 10% of

the total number of genes and are expressed in 10% of cells in the clus-

ter of interest K. In Appendix Fig S5C, poor markers are expressed in

10% of cells in Kwith a mean expression value lp = 30. The XL-mHG

procedure outperforms RF and LR in detecting good markers from the

simulated gene expression matrix. While poor markers are suboptimal

for the purpose of correctly classifying the cells, logistic regression will

detect these genes if they induce a high fold change between the clus-

ter of interest K and the remaining cells in C. RF will leverage poor

markers as they canmarginally improve classification while still being

expressed in < 15% of cells in K.

Noisy Poisson–Gamma generative model

We confirm these results using a more complex generative model

for single-cell RNA-seq data, so as to capture the noise inherent to

transcriptomic datasets. UMI-based single-cell sequencing is subject

to two main types of technical (i.e., non-biological) variability: effi-

ciency noise and sampling noise (Grün et al, 2014; preprint: Wagner

et al, 2019). The efficiency noise captures the global cell-to-cell vari-

ation in sequencing efficiency. The sampling noise is related to low

detection rates of mRNA molecules in each cell and is well approxi-

mated using Poisson resampling. In the same spirit as in the previ-

ous simulation engine, we simulate an n × p cell-by-gene count

matrix (see Appendix Fig S6A, right), where n = 500 cells and

p = 1,000 genes. Cells belong either to the cluster of interest K (10%

of cells) or to the super-cluster C (90% of cells). The gene structure

is threefold: (i) x% of the genes are not K markers (this set of genes

is called N ), (ii) 5% of the genes are good K markers (this set of

genes is called G), and (iii) z% of the genes are poor K markers (this

set of genes is called P, and for each gene G 2P, G is expressed in a

random subset of q% of cells in K, denoted as K|G). Note that

z = (95–x).

The first step of our simulation procedure consists in generating

a cell-by-gene matrix of true counts (ground truth) using a hierarchi-

cal Poisson–Gamma model (Appendix Fig S6A, left). For each gene

g belonging to a particular gene type T (where T 2 fN ;G;Pg) in a

given cell population P (where P 2 K;C;Kjg
� �

), the mean expression

lPg of gene g is drawn from a Gamma(aTP, bTP) distribution. The true

transcript count Xgi for gene g 2 T in cell i 2 P is then drawn from a

PoissonðlPg Þ. The matrix X ¼ Xgi

� �
g;i

corresponds to the ground truth
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on top of which we will subsequently add technical noise

(Appendix Fig S6A, center). For each cell i 2 K ∪ C, an efficiency

scaling factor si is drawn from a Uniform([1�e, 1 + e]) distribution,

where e 2 (0,1) is a parameter. For a given gene g, the noisy version

of Xgi is obtained by resampling Zgi ~ Poisson(siXgi). The matrix

(Zgi)g,i represents the observed (noisy) cell-by-gene count matrix

that we use in our simulations to compare the XL-mHG procedure

to standard classifiers including RF, XT, and LR.

Simulations utilize the following parametrization (note that aPKjg

and z will vary across a range of values in Appendix Fig S6).

For every gene type T and cell population P, we set bTP = 0.1. We

set aGK ¼ 25, aGC ¼ 24, aNK ¼ aNC ¼ 24. For a given poor marker

gene g 2 P, we set aPKjg ¼ 210; aPKc
jg
¼ 24 where Kc

jg refers to the

complement cell set of K|g. We further set q = 10, e = 0.2, and

z = 10. Results are provided in Appendix Fig S6B and C and are

similar to the ones obtained using our simpler Gaussian simulation

engine. In particular, the XL-mHG procedure outperforms other clas-

sifiers in recovering good markers from the noisy scRNA-seq count

matrices (low SSR). This does not prevent RF and XT from being

good classifiers as shown by the low out-of-bag error achieved by

both tree ensemble methods.

Comparison of single-marker predictions for splenic
cell populations

To compare marker detection approaches, we used the Mouse Cell

Atlas spleen population (Han et al, 2018). Expression data, cluster

assignments, and t-SNE coordinates were downloaded from the

MCA Gallery (MCA—Mouse Cell Atlas). The gene-by-cell count

matrix was normalized by dividing each count by the sum of counts

in the cell and multiplying by the median gene count across cells.

Methods used for comparison to COMET included the t-test (SciPy),

Wilcoxon rank-sum test (SciPy), likelihood ratio test with a logistic

regression model (Sklearn, Python), MAST (R), and the XL-mHG

test. COMET was run using the cell surface gene list available on the

COMET web interface (Chihara et al, 2018). Each test besides MAST

was integrated into the statistics generated by COMET to give the

rankings for each test in a single data file, while MAST was run in a

separate R script. To choose marker genes, we used recommenda-

tions from an established table (BioLegend Essential Markers for

Phenotyping) to construct a short list of genes for each cell type

subpopulation. The subpopulations of monocytes, granulocytes, and

neutrophils showed poor marker results in all of the methods (poten-

tially due to small cluster sizes) and were removed from the analy-

sis.

Computation of gene signatures

Scores for gene signatures were calculated using Scanpy’s score_

genes method (Wolf et al, 2018), and code is available on our

GitHub (https://github.com/MSingerLab/COMETSC).

Identification of marker panels for splenic follicular B cells

B-cell subpopulation markers were determined using COMET on

the Tabula Muris (Tabula Muris Consortium, 2018) mouse spleen

dataset and the cell surface gene list available on the COMET

web interface (Chihara et al, 2018). Expression data, cluster

assignments, and t-SNE coordinates were downloaded from the

Tabula Muris website and trimmed to only include cells from the

B-cell clusters. COMET was run with its default parameters of X

and L.

Experimental materials and methods

Mice
6- to 8-week-old, female, wild-type C57BL/6J mice were purchased

from the Jackson Laboratory. Mice were housed under SPF condi-

tions. All experiments involving the use of laboratory animals were

approved by and carried out in accordance with the guidelines of

the Brigham and Women’s Hospital (BWH) Institutional Animal

Care and Use Committee (IACUC) (Boston, MA).

Immune cell isolation
1 Spleens were isolated from wild-type C57BL/6J mice.

2 Spleens were smashed using a 40-lm sterile filter (Fisher

Scientific) and spun down at 350 g, 4°C for 5 min.

3 Pellets were resuspended in 1 ml ACK lysis (Buffer from

Gibco) and incubated for 5 min at room temperature.

4 Cells were washed with 10 ml flow buffer (DPBS with 2%

FCS) and spun down at 350 g, 4°C for 5 min.

Flow cytometry
1 Single-cell suspensions were stained in 1 ml flow buffer (DPBS

with 2% FCS) at 4°C for 30 min with antibodies against cell

surface proteins in the concentrations listed in the Reagents

and Tools table.

2 Cells were washed with 10 ml flow buffer (DPBS with 2%

FCS) and spun down at 350 g, 4°C for 5 min.

3 Cells were ready for analysis on the flow cytometer. All

samples were run on a BD LSR II (BD Biosciences) or LSRFor-

tessa (BD Biosciences).

The flow cytometry data were analyzed with FlowJo software

(Tree Star) and Prism (GraphPad). The cells were gated for single

and viable lymphocytes and then analyzed for the respective expres-

sion of the surface molecules of interest.

Data availability

The computer code for COMET is available at https://github.com/

MSingerLab/COMETSC. FACS data generated in this study were

deposited in https://flowrepository.org/.

Expanded View for this article is available online.
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