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Abstract
Background: Medical images of cancer patients are usually evaluated qualitatively by clinical 
specialists which makes the accuracy of the diagnosis subjective and related to the skills of 
clinicians. Quantitative methods based on the textural feature analysis may be useful to facilitate such 
evaluations. This study aimed to analyze the gray level co‑occurrence matrix (GLCM)‑based texture 
features extracted from T1‑axial magnetic resonance (MR) images of glioblastoma multiform (GBM) 
patients to determine the distinctive features specific to treatment response or disease progression. 
Methods: 20 GLCM‑based texture features, in addition to mean, standard deviation, entropy, RMS, 
kurtosis, and skewness were extracted from step I MR images (obtained 72 h after surgery) and step 
II MR images  (obtained three months later). Responded and not responded patients to treatment 
were classified manually based on the radiological evaluation of step II images. Extracted texture 
features from Step I and Step II images were analyzed to determine the distinctive features for 
each group of responsive or progressive diseases. MATLAB 2020 was applied to feature extraction. 
SPSS version  26 was used for the statistical analysis. P  value  <  0.05 was considered statistically 
significant. Results: Despite no statistically significant differences between Step I texture features 
for two considered groups, almost all step II extracted GLCM‑based texture features in addition 
to entropy M and skewness were significantly different between responsive and progressive disease 
groups. Conclusions: GLCM‑based texture features extracted from MR images of GBM patients can 
be used with automatic algorithms for the expeditious prediction or interpretation of response to the 
treatment quantitatively besides qualitative evaluations.
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Introduction
A brain tumor, which can be benign or 
malignant, is an uncontrolled growth 
of cancerous cells in the brain. The 
structure of benign brain tumors is 
more homogenous without active cells, 
while malignant brain tumors are more 
heterogeneous in the structure and 
contain active cells.[1] Glioblastoma 
multiform  (GBM) tumor is one of the 
most invasive and common types of 
primary malignant brain tumors.[2] The 
current standard treatment for GBM 
tumors includes surgery followed by 
chemotherapy and concomitant 
radiotherapy in addition to adjuvant 
chemotherapy with temozolomide  (TMZ). 

TMZ is an oral alkylating agent used to 
treat GBM and astrocytoma tumors.[3]

For initial accurate detection of GBM 
tumors and also the evaluation of tumor 
response to the prescribed treatment, a 
contrast‑weighted T1 magnetic resonance 
imaging  (MRI) sequence is usually 
performed.[3] Contrast‑weighted T1 MRI 
is the main applicable sequence for 
brain lesions imaging due to the ease of 
performing, as well as, accurate depiction 
of the margins of tumors.[4] Furthermore, 
evaluation of the tumor growth or destruction 
process and the treatment outcome is done 
mostly using MR imaging. An increase in 
contrast or an abnormal decrease in signal 
intensity in contrast‑free imaging usually 
indicates disease progression.[3]
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However, radiologists or clinical specialists usually 
evaluate such images qualitatively and visually. The 
diagnosis and extraction of the tumor area in such a way 
is a tedious and time‑consuming task.[1,5] In addition, the 
accuracy of the diagnosis is subjective and depends mostly 
on the experience and skills of specialists.[1,5] Concerning 
these issues, quantitative assessment of MR images can be 
a good choice to improve the accuracy of detection and 
classification of brain tumors or to assess the response of 
the tumor to the delivered chemo or radiation therapy.[2,3]

Quantitative approaches commonly implement image 
texture analysis to detect brain abnormalities.[3] Texture 
analysis refers to a variety of mathematical techniques 
that can describe the gray surface patterns of an image 
or texture features.[6] Texture features provide a better 
description of the image and include information about 
the spatial distribution of changes in gray intensity 
levels.[7] Extraction of texture characteristics determines 
the homogeneity or similarity between different areas of an 
image. The extracted features contain information about an 
image that can be used as the input data for the automatic 
classification of images using the machine learning 
methods.[8]

The capability of quantitative techniques for brain tumor 
detection or to evaluate the treatment response and survival 
rate is shown in the literature. A  study by Parekh et  al.[9] 
proposed a multi‑parametric radiomics feature extraction 
algorithm for the tissue analysis. The proposed algorithm 
distinguished grade  IV brain tumors from Grade  II with 
93% sensitivity and 100% specificity. Furthermore, 
Kickingereder et  al.[10] showed the feasibility of using 
an artificial neural network algorithm for quantitatively 
evaluation of brain MR images to assess the treatment 
response. Moreover, Ion‑Margineanu et  al.[11] proposed an 
automatic pipeline for processing multi‑parametric MRI 
data of GBM patients treated with adjuvant therapy after 
surgery. Their proposed method was based on histogram 
and 3‑D texture features, extracted from the regions of 
interest delineated manually and semi‑manually. In another 
study, Ion‑Margineanu et  al.[12] used their previously 
proposed automatic algorithm to discriminate the treatment 
response or tumor progression quantitatively based on 
histogram and 3‑D texture features for 29 GBM patients. 
Cheddad and Tanougast[13] studied gray level co‑occurrence 
matrix  (GLCM)‑based texture features extracted from the 
MR images of 42 GBM patients and determined three 
textural features for predicting overall survival. Chen 
et al.[14] proposed a gradient‑based classification framework 
for glioma tumor detection and grading based on structural 
MR images. They used the histogram of oriented gradients 
algorithm and the support vector machine (SVM) classifier. 
The proposed method showed an accuracy of 86.3% and 
a sensitivity of 89.4% in glioma detection. The glioma 
grading performance of the proposed algorithm revealed 
an accuracy of 76.3% and a sensitivity of 83.7%. They 

concluded that the gradient‑based SVM classification 
algorithm could be a promising tool for automatically 
diagnosing and grading glioma tumors.

Concerning the mentioned introduction, this study aimed 
to determine the distinctive texture features between GBM 
patients who responded to the usual treatment regimes 
after surgery and patients with recurrence of the tumor. We 
focused on analyzing the textural features generated based 
on the GLCMs of T1‑weighted axial MR images obtained 
72 h and 3 months after surgery. The determined distinctive 
texture features or different combinations of these features 
can be used as training data for automatic machine learning 
or deep learning models. The automatic machine learning 
or deep learning algorithms trained by these features can 
be used to predict or classify the response to treatment 
or tumor relapse quantitatively, besides the qualitative 
evaluations which may be more subjective. The present 
study's significance and novelty are using a relatively large 
sample size and considering the percentage differences 
of GLCM‑based texture features at two follow‑up steps 
after surgery to assess the response to treatment or tumor 
relapse.

Material and Methods
Studied patients and data collection

After approving the protocol by the Institutional Ethics 
Committee, clinical records of brain tumor patients under 
treatment in the radiation oncology ward were evaluated. 
GBM patients eligible to be included in the study were 
defined. Inclusion criteria comprised of  diagnosed GBM 
tumor based on WHO measures,[15,16] the existence of 
the patient’s MR images  (at least: initial diagnosis, 72  h 
after surgery, and three months after surgery) in the 
hospital PACS system, and the patient’s informed consent. 
Concerning the inclusion criteria, 96 GBM patients were 
included in the study. All these patients were receiving 
adjuvant therapy after surgery. All images were anonymized 
before use.

Applied magnetic resonance imaging system and 
evaluated magnetic resonance images

The MR images were acquired using a clinical 1.5 
Tesla MRI system  (Siemens, Germany), by a brain coil 
for transmission and an 8‑channel head coil for signal 
reception. The imaging protocol consisted of conventional 
MRI  (C‑MRI). Obtained C‑MRI sequences included axial 
T1, T2, and FLAIR, sagittal and coronal T2, in addition 
to the routine brain with gadolinium  (axial T1+  contrast, 
sagittal T1+ contrast, and coronal T1+ contrast). A diffusion 
sequence was added for the patients with age ≥50 years.

From these C‑MRI sequences, axial T1‑weighted 3D 
gradient‑echo scans after contrast administration obtained 
72  h after surgery  (called step I images) and three months 
after surgery  (step II images) were used as high‑resolution 



Alibabaei, et al.: GLCM‑based texture features of GBM patients’ MR images

Journal of Medical Signals & Sensors | Volume 13 | Issue 4 | October-December 2023� 263

anatomical reference images for texture feature extraction. 
The used MR image acquisition parameters include Fast 
Field Echo (FFE), Repetition Time (TR)/ Time to Echo 
(TE): 0.019, flip angle: 90°, and acquisition voxel size: 
1.1 mm × 0.9 mm × 5.5 mm.

Preprocessing of magnetic resonance images

For each patient, the image slice with the maximum 
cross‑sectional area of the removed tumor vacancy from 
the first and second step images was selected by a radiation 
oncologist with enough work experience. These DICOM 
images were imported into the scientific software package 
MATLAB  (R2020, The Math Works, Inc., Natick, MA, 
USA) and preprocessed using an in‑house prepared code. 
Preprocessing comprised of registration of the selected step 
I and step II T1axial MR slices for each patient, segmenting 
the tumoral area, and grayscale discretizing. Affine model 
based on similarity initial condition algorithm was used for 
registration. Using the co‑registered images, the dimensions 
of the mask needed to segment the same tumoral 
area  (including surgery cavity and edema surrounding area 
or relapsed enhanced parts of tumor) from the two images 
of each patient were determined. Using this mask, the 
same areas from both selected slices of first and second 
follow‑up MR images were segmented. Discretization of 
grayscale intensities to 256 gray levels was carried out for 
these segmented images before texture feature extraction.

Feature extraction

Gray level co‑occurrence coefficients  (GLCMs) have 
been used in this study. The GLCM coefficients prepare a 
second‑order approach for generating the texture features 
of images. These coefficients show the conditional joint 
probabilities of all pairs with combinations of gray levels 
in the spatial window of interest given two parameters: 
Interpixel distance  (δ) and orientation  (θ). The probability 
measure is stated as:

( ) { }( )r ijP x = C | ,δ θ � (1)

Where Cij  (the co‑occurrence probability between gray 
levels i and j) is determined as:

ij
ij G

iji, j=1

P
C =  

PΣ
� (2)

where Pij indicates the number of occurrences of gray 
levels i and j within the given window, given a certain  (δ, 
θ) pair; and G is the quantized number of gray levels. The 
sum in the denominator illustrates the total number of gray 
level pairs (i, j) within the window.[4]

Using a prepared MATLAB code and graycomatrix syntax, 
GLCM coefficients were extracted from preprocessed 
segmented tumoral areas of Step I and II images for all 
included patients in four different directions (0°, 45°, 90°, and 
135°) with an interpixel distance of 1. Texture  (Haralick[17]) 
features  [mentioned in Table S1 of Supplementary Files] 

were generated based on extracted GLCMs. Moreover, 
six statistics of mean, standard deviation, RMS, entropy, 
skewness, and kurtosis were calculated directly for extracted 
GLCMs. Therefore, four vectors of texture features were 
configured each consisting of 26 extracted statistics. These 
four vectors were summed and averaged to have a unique 
vector of texture features. It should be mentioned that the 
direct calculated entropy feature is shown as entropy M in 
the whole text to be different of entropy feature generated 
using graycomatrix syntax.

Manually classification of patients

The included patients were classified manually by the 
radiation oncologist, and each patient was assigned to one 
of two considered clinical groups including responded and 
not responded to treatment  (responsive and progressive 
disease) groups.

Manually classification of patients and assigning them to 
each group of responsive or progressive disease was done 
based on the radiologic evaluation of follow‑up C‑MRI 
sequences using available guidelines to assess the treatment 
response of GBM patients (the MacDonald[21] and RANO[22] 
Criteria). A  summary of these criteria is presented in Table 
S2 of Supplementary Files. Using these measures and the 
method of Ion‑Margineanu et al. 2017,[12] the patients whose 
tumor vacancy in the step I images had been filled in the 
follow‑up images, and all measurable or nonmeasurable 
lesions had disappeared were assigned to the responsive 
disease group. Patients with progressive disease were 
determined as patients with an increase of ≥25% in the sum 
of the products of the perpendicular diameter of enhancing 
lesions compared to the smallest tumor measurement 
obtained either at baseline or best response. Concerning the 
mentioned measures, 49 patients were labeled as responded 
and 47 patients were labeled as nonresponded.

Analysis

The calculated step I GLCM‑based texture features and 
direct statistics of MR images for all included patients 
were compared to step II features of each responded 
and not responded group. Also, step II extracted 
textural features were compared between two groups 
of responded and nonresponded patients to define the 
distinctive features between the two considered groups. 
Moreover, percentage differences of extracted features 
between the two follow‑up steps for both responded and 
not responded patients were calculated and evaluated. 
The percentage differences (PD) were calculated using 
Eq. 3.

tep I featurestep II feature ‑ s  PD = ×100
step I feature � (3)

Statistical analysis was conducted using the SPSS software 
version 26 (IBM Corp. Released 2019. IBM SPSS Statistics 
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for Windows, Version 26.0. Armonk, NY: IBM Corp). The 
independent sample t‑test was used to compare the means 
of extracted features between responded and not responded 
groups and follow‑up steps. P  <0.05 was considered 
statistically significant. Figure 1 shows the flowchart of the 
present study.

Results
Demographic characteristics of 96 evaluated GBM patients 
and their treatment method are revealed in Table  1. 
C‑MRI sequences including T1 axial with contrast, T2, 
T2 FLAIR, ADC, and diffusion sequences for a responded 
and a not responded patient which are obtained 72  h after 

surgery (step I) and three months later (step II) are depicted 
in Figures 2 and 3, respectively. Figure  4 represents step I 
and II images of a sample patient registered using the affine 
model to determine the tumoral area and mask dimension 
for segmenting the same areas from two follow‑up MR 
images.

The mean  ±  standard deviations of 26 generated 
GLCM‑based texture features and statistics extracted 
from a segmented area of reference images of all included 
patients  (step I features), and second follow‑up images 
of responsive and progressive disease groups  (step II 
features) in addition to the P  values to compare means 

Figure 1: Flowchart of the study
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are reported in Table  2. Table  3 shows the P  values to 
compare the step II texture features between clinically 
responsive and progressive disease groups. Furthermore, 
Figure 5 shows the percentage differences of all extracted 
features for each group of responsive and progressive 
diseases.

Discussion
Reliable imaging assessment can be challenging for GBMs 
due to heterogeneous angiogenesis, cellular proliferation, 
cellular invasion, and apoptosis, which can cause different 
grades of necrosis, solid‑enhancing tumors, peritumoral 
tissue, and peritumoral edema. Therefore, the texture 
feature analysis techniques may be well suited to solving 
such image‑based problems of the accurate and expeditious 
interpretation of large‑quantity and complex data.[22] 
Radiomics is a high throughput process of image feature 
extraction that uses texture features to predict response 
and patient survival and to gather biological information 
about the disease.[25] The present study focused on 
analyzing GLCM‑based texture features extracted from two 

postsurgery MR images of GBM patients. To determine 
distinctive texture features specific to responded and not 
responded patients to delivered treatment, MR images of 
96 GBM patients were evaluated. A  MATLAB code was 
developed to extract GLCM‑based texture features from 
C‑MRI T1‑axial sequences  (step I: obtained 72  h after 
surgery and step II: three months later). Our work consisted 
in analyzing 20 texture features derived from GLCMs 
generated for one‑pixel displacement distance  (d  =  1) 
in four different directions as well as 6 direct statistics 

Table 1: Demographic characteristics of 96 glioblastoma 
multiform patients involved in the study and their 

treatment method
Characteristic Frequency (%) of patients
Mean patients age (years) 39.80±11.04
Age range (years) 6–71
Gender

Male 66 (68.8%)
Female 30 (31.3%)

Tumor pathology
GBM 100%

Treatment method
Surgery + radiotherapy + 
chemotherapy TMZ

96 (100%)

GBM – Glioblastoma multiform; TMZ – Temozolomide

Figure  2: C‑MRI sequences of an evaluated patient obtained 72  h after 
surgery  (step I) and three months later  (step II) show response to the 
treatment. C‑MRI: Conventional‑magnetic resonance imaging

Figure  3: C‑MRI sequences of an evaluated patient obtained 72  h after 
surgery  (step I) and three months later  (step II) illustrate the disease 
progression and tumor relapse after surgery. C‑MRI: Conventional‑magnetic 
resonance imaging
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calculated for extracted GLCMs. GLCMs allow the 
characterization of pattern repetitions.[26]

GLCM‑based textural features were calculated for step 
I images of all included patients. Then the patients were 
manually divided into two clinical groups of responsive and 
progressive disease according to the radiologic evaluation 
of follow‑up C‑MR images and based on RANO[22] 
and Macdonald[21] measures. Concerning the mentioned 
measures, 49  patients were classified as responding to the 
delivered treatment while 47 patients were placed in the not 
responded or progressive disease group. The same features 
were obtained from step II  (follow‑up) images of patients 
in each group and compared.

Based on the results, both groups were homogenous and no 
statistically significant differences were seen between mean 
ages, genders, or extracted step I texture features of two 
considered patient groups.

According to findings, autocorrelation decreased for 
responded patients while increased for not responded 

ones in step II images compared to step I. The differences 
in autocorrelation features between two steps for each 
group and between two groups of responsive and 
progressive disease were statistically significant. Since the 

Figure 4: A sample of registered images to define the tumoral area and crop 
the same area of both step images

Table 2: Average of gray level co‑occurrence matrix‑based texture features extracted from step I (reference) images 
of all included patients (96) compared to the average of these features extracted from step II (follow‑up) images of 

responded and not responded patients (step I: 72 h after surgery, step II: 3 months after surgery)
Textural feature Mean±SD P

Not responded patients 
(step II) n=47

P
All included patients 

(step I) n=96
Responded patients 

(step II) n=49
Autocorrelation 7.26±2.40 6.45±2.20 0.045* 9.08±2.89 0.000*
Contrast 0.19±0.10 0.14±0.05 0.002* 0.21±0.08 0.120
Correlation 0.80±0.07 0.79±0.06 0.630 0.83±0.06 0.019*
Cluster prominence 16.95±24.59 8.43±10.73 0.022* 30.96±28.60 0.003*
Cluster shade 0.59±2.37 −0.21±1.93 0.031* 1.84±3.43 0.012*
Dissimilarity 0.17±0.07 0.13±0.04 0.001* 0.19±0.06 0.053
Energy 0.39±0.14 0.45±0.14 0.006* 0.33±0.13 0.026*
Entropy 1.43±0.39 1.20±0.29 0.001* 1.64±0.39 0.003*
Homogeneity 0.92±0.03 0.94+0.02 0.001* 0.91±0.03 0.041*
Maximum probability 0.56±0.14 0.61±0.14 0.031* 0.51±0.14 0.042*
Sum of squares: Variance 7.36±2.39 6.52±2.20 0.040* 9.193±2.90 0.000*
Sum average 5.16±0.89 4.88±0.92 0.086 5.75±0.93 0.001*
Sum variance 17.51±6.66 16.39±6.67 0.342 21.53±7.30 0.002*
Sum entropy 1.29±0.33 1.10±0.26 0.000* 1.48±0.34 0.003*
Difference variance 0.19±0.10 0.14±0.05 0.002* 0.21±0.08 0.120
Difference entropy 0.45±0.12 0.38±0.09 0.001* 0.49±0.11 0.027*
Information measure of correlation 1 −0.49±0.08 −0.50±0.08 0.302 −0.50±0.07 0.421
Information measure of correlation 2 0.76±0.08 0.73±0.08 0.059 0.80±0.07 0.005*
Inverse difference (ID) 0.999±0.0003 0.999±0.0002 0.001* 0.999±0.00 0.053
IDN 1.00±0.00 1.00±0.00 0.002* 1.00±0.00 0.120
Mean 0.10±0.07 0.10±0.08 0.950 0.10±0.06 0.830
SD 15.65±12.70 16.57±13.85 0.696 14.27±10.90 0.505
Entropy M 0.004±0.001 0.003±0.001 0.007* 0.004±0.001 0.018*
RMS 15.65±12.70 16.577±13.85 0.696 14.27±10.90 0.505
Kurtosis 47,192.38±11,582.17 49,682.10±12,453.64 0.247 44,657.40±12,641.48 0.235
Skewness 209.16±29.11 216.30±30.22 0.176 202.52±31.65 0.230
*Statistically significant differences. P values belong to comparing step 1 features of all included patients with step II of responded and not 
responded ones. IDN – Inverse difference normalized; SD – Standard deviation; ID – Inverse difference; RMS – Root mean square
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autocorrelation of GLCMs measures the magnitude of the 
fineness and coarseness of textural patterns,[27,28] this result 
is expected and in line with the findings of Karthikeyan 
and Rengarajan[29] who obtained the higher values of 
autocorrelation for abnormal images.

According to th findings, the contrast feature as a measure 
of local variations of gray levels or intensity variations 
between the reference pixel and its neighbor[30,31] reduced 
statistically significant for responded patients while 
increased for not responded ones. The step II contrast 
features showed statistically significant differences 
between responded and not responded patients. Large 
contrast reflects large intensity differences in GLCMs.[32] 
Hence, local variations will decrease along with patient 
well‑being and filling of the surgery cavity with normal 
brain tissue. This finding is consistent with the results of 
other studies.[9,29,33]

Furthermore, correlation as a measure of gray level 
linear dependency between neighboring pixels[3,32,33] was 
assessed. Despite a slight decrease in correlation features 
for responded patients, a statistically significant increase 
in correlation features was observed for not responded 

patients. Also, the correlation feature showed statistically 
significant differences between step II MR images of 
responded and not responded patients. This is while 
Karthikeyan and Rengarajan[29] observed a slightly higher 
correlation for normal tissues compared to abnormal 
tissues for glaucoma diagnosis. Furthermore, Yang et al.[33] 
reported higher values of correlation features for normal 
parotid tissue ultrasound images compared to parotid tissue 
exposed to radiation for head‑and‑neck cancer patients. 
Moreover, the results of Parkhe et  al.[9] revealed a higher 
correlation extracted from MR images for Grade  II glioma 
compared to grade IV.

Cluster shade is a measure of the skewness of the 
matrix, which is believed to gauge the perceptual 
concepts of uniformity. Cluster prominence is a measure 
of asymmetry.[3] Cluster prominence and cluster shade 
decreased for responded patients to treatment while these 
features raised for not responded groups. The differences in 
these features between the two steps and also two groups 
of responded and not responded patients were statistically 
significant. These findings agreed with the results of 
Karthikeyan and Rengarajan,[29] who observed the higher 

Table 3: Average of step II (second follow‑up) gray level co‑occurrence matrix‑based texture features for responded 
patients compared to not responded ones (second follow‑up: 3 months after surgery)

GLCM feature Mean±SD P
Responded patients (step II) n=49 Not responded patients (step II) n=47

Autocorrelation 6.45±2.20 9.08±2.89 0.000*
Contrast 0.14±0.05 0.21±0.08 0.000*
Correlation 0.79±0.06 0.83±0.06 0.012*
Cluster prominence 8.43±10.73 30.96±28.60 0.000*
Cluster shade −0.21±1.93 1.84±3.43 0.000*
Dissimilarity 0.13±0.04 0.19±0.06 0.000*
Energy 0.45±0.14 0.33±0.13 0.000*
Entropy 1.20±0.29 1.64±0.39 0.000*
Homogeneity 0.94±0.02 0.91±0.03 0.000*
Maximum probability 0.61±0.14 0.51±0.14 0.000*
Sum of squares: Variance 6.52±2.20 9.193±2.90 0.000*
Sum average 4.88±0.92 5.75±0.93 0.000*
Sum variance 16.39±6.67 21.53±7.30 0.001*
Sum entropy 1.10±0.26 1.48±0.34 0.000*
Difference variance 0.14±0.05 0.21±0.08 0.000*
Difference entropy 0.38±0.09 0.49±0.11 0.000*
Information measure of correlation 1 −0.50±0.08 ‑0.50±0.07 0.823
Information measure of correlation 2 0.73±0.08 0.80±0.07 0.000*
Inverse difference (ID) 0.9995±0.0002 0.9992±0.0002 0.000*
IDN 1.00±0.00 1.00±0.00 0.000*
Mean 0.10±0.08 0.10±0.06 0.816
SD 16.57±13.85 14.27±10.90 0.367
Entropy M 0.00±0.00 0.00±0.00 0.000*
RMS 16.577±13.85 14.27±10.90 0.367
Kurtosis 49,682.10±12,453.64 44,657.40±12,641.48 0.053
Skewness 216.30±30.22 202.52±31.65 0.032*
*Shows the statistical significance differences. GLCM – Gray level co‑occurrence matrix; IDN – Inverse difference normalized; SD – Standard 
deviation; RMS – Root mean square; ID – Inverse difference 
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values of the cluster shade and cluster prominence features 
for abnormal tissues. When the cluster prominence value 
is high, the image is less symmetric. In addition, when 
the cluster prominence value is low, there is a peak in the 
GLCM matrix around the mean values.[3]

Dissimilarity as a measure of distance between pairs of 
objects  (pixels) in the region of interest[34] was calculated. 
This feature measures the gray level mean difference 
in the distribution of the image. A  larger value implies a 
greater disparity in intensity values among neighboring 
pixels.[34] Dissimilarity was reduced statistically significant 
for responded patients to treatment while increased in step 
II images of not responded patients which shows the higher 
inhomogeneity and variations in pixel values of these 
images.

Energy or angular second moment as a measure of 
uniformity provides the sum of squared elements and 
ranges from 0 to 1 for an image.[35] This feature increased 
for responded patients to treatment while reduced for not 
responded ones. The differences in energy features between 
the two considered steps and groups were statistically 
significant. This result is consistent with other researchers’ 
findings.[28,29,32] The reduction of energy illustrates lower 
uniformity of not responded patients’ images and the 
GLCMs of the less homogeneous images will have a large 
number of small entries.[35]

In addition, entropy as a measure of randomness of a 
gray level distribution[35] decreased for responded patients 
while raised for not responded ones. Again, the entropy 
differences between the two considered steps and groups 

were statistically significant. This finding is in line with 
other studies.[9,29] So that, the study by Marwah et al. 2015[36] 
reported energy increment and entropy decrement with 
responding to treatment as the tissue becomes smoother 
and more homogenous after treatment. Entropy is large 
when the image is not texturally uniform and many GLCM 
elements have very small values. As entropy measures the 
complexity of an image, complex textures tend to have 
higher entropy. Entropy is strongly but inversely correlated 
to the energy.[35]

The homogeneity feature differences between the two 
steps and step II images of two considered groups were 
statistically significant, with higher values for responded 
patients. This finding coincides with other studies.[9,13,28]

Furthermore, the maximum probability feature which 
measures the maximum likelihood of producing the pixels of 
interest,[34] increased for responded patients while decreased 
for the progressive disease group. The variations between 
the two steps and step II images of the two considered 
groups were statistically significant. This finding coincides 
with the results of Karthikeyan and Rengarajan.[29]

The sum of squares or variance feature as a measure 
of inhomogeneity or dispersion reduced significantly 
with responding to the treatment which agrees with the 
literature.[36] The differences in step II extracted variances 
were statistically significant with a higher value for not 
responded patients. Since the variance feature indicates 
how spread out the distribution of gray levels is, this 
feature is expected to be higher for images with more 
spread out gray levels.[36]
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Figure 5: The mean percentage differences of extracted GLCM‑based texture features and direct statistics between reference and follow‑up images (step 
I and II, T1 axial + GD sequences) for responded and not responded patients. GLCM – Gray level co‑occurrence matrix
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The sum average feature measures the mean of the gray 
levels sum distribution of an image.[34] This feature is 
calculated by adding all the pixel values divided by the 
total number of pixels in an image.[1] Furthermore, sum 
variance and difference variance are the combinations 
of all variances. The sum average, sum variance, and 
difference variance features decreased along with patient 
well‑being while showing the reverse trend for not 
responded patients. The differences in these features were 
statistically significant between responsive and progressive 
disease groups. These findings are consistent with the 
results of Marwah et  al.[36] who showed a decrease in 
variance feature with the patient well‑being and increasing 
image homogeneity. The sum entropy feature which is 
related to the sum variance feature was statistically different 
between two follow‑up steps and two considered groups 
of patients, with higher values for not responded ones. 
This finding is also reported by the study of Karthikeyan 
and Rengarajan.[29] The same trend was observed for the 
difference entropy feature.

The informational measure of correlation 1 is a function 
of the joint probability density distribution P  (x, y) of 
the two variables x and y. In addition, the measure of 
dependency between two random variables  (x and y) as 
a function of the amount of information in one random 
variable compared to the other, is called the informational 
coefficient of correlation 2.[8] According to the findings, 
the information measure of correlation 2 feature showed 
statistically significant differences between step II images 
of responsive and progressive disease groups with higher 
values for the latter group, which is also reported by Parkh 
et  al.[9] This is while information measure of correlation 1 
showed no significant differences between two steps or two 
groups.

Inverse difference and inverse difference normalized 
showed statistically significant differences between step 
II images of responded and not responded patients. Our 
results are in accordance with the study of Chaddad and 
Tanougast[13] who reported the statistically significant 
differences in difference entropy, information measure of 
correlation, and inverse difference texture features derived 
from active tumor parts for responsive or progressive 
disease groups. They concluded that these features can 
be used for the prediction of overall survival for GBM 
patients.

Among six direct calculated statistics, only entropy M and 
skewness showed statistical differences between Step II 
images of two considered groups, with higher entropy for 
not responded group and higher skewness for responded 
patients.

Our results are in accordance with Mehrabian et al.[37] who 
evaluated the treatment response of two patients with brain 
metastases and observed more heterogeneous images for 
the patient with recurrent tumors after surgery. findings 

of the Fujima et  al.[38] showed higher contrast and lower 
homogeneity for squamous cell carcinoma patients 
compared to malignant lymphoma patients. Furthermore, 
findings of other studies[1,27] revealed significantly higher 
entropy, skewness, kurtosis, contrast, and informational 
measure of correlation1 for high‑grade gliomas compared 
to low‑grade tumors and lower values of correlation and 
homogeneity for low‑grade gliomas patients.

Moreover, Patel et  al.[39] reported higher kurtosis, entropy, 
contrast, and lower correlation values for true progression 
of brain tumors compared to pseudo‑progression on 
T2‑weighted MR images. Furthermore, Assefa et  al.[40] 
reported that the sum average and variance texture features 
offer the best results in discriminating brain tissue from 
tumors in both the T1‑weighted and T2‑FLAIR image 
sets. They have also stated the performance of energy 
and maximum probability features for regional texture 
identification.

Based on the results, the percentage differences of 
most of the GLCM‑based texture features and direct 
statistics calculated using Eq. 3, varied significantly 
between responsive and progressive disease groups of 
patients. As shown in Figure  5, among studied features, 
cluster prominence and cluster shade showed the highest 
percentage differences between the two step images for both 
responsive and progressive disease groups. Also, almost all 
GLCM‑based texture features and direct statistics showed 
the reverse trend of variations between the two steps images 
for responded and not responded patients to treatment. In 
summary, step II features include autocorrelation, contrast, 
correlation, cluster prominence, cluster shade, dissimilarity, 
entropy, variance, sum average, sum variance, sum entropy, 
difference variance, difference entropy, information 
measure of correlation 2, mean, and entropy M decreased 
compared to step I features for responded patients while 
increased for patients whose tumor relapsed. Furthermore, 
energy, homogeneity, maximum probability, standard 
deviation, RMS, kurtosis, and skewness features increased 
for responded patients in step II images compared to step 
I ones. The reverse trend was observed for patients with 
tumor relapse in follow‑up images. Only exception was 
information measure of correlation 1, which showed same 
percentage of variations for both considered groups of 
patients. Although the statistically significant differences 
between inverse difference and inverse difference 
normalized features between step II images of responsive 
and progressive disease groups, the percentages differences 
of these features between step I and II for each group was 
very low (close to zero) [Figure 5].

It should be pointed out that, additional perfusion sequences 
or MRS technique may be required for accurate diagnosis 
and assessment of the tumor response to a delivered 
treatment. Due to the limitations of our MRI system and the 
lack of such facilities in our clinic, only C‑MRI sequences 
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were used in our study which is a limitation of our work. 
In addition, since performing any further examinations for 
the patients was forbidden because of the ethics and clinical 
situation of the patients, we only used the available MR 
images which belonged to two standard follow‑up steps. 
For future works, to improve the accuracy of assessing the 
response to treatment, if the clinical situation of included 
patients and ethics committee permit, more imaging steps 
with smaller time intervals is proposed to have more time 
points and to improve the prediction efficiency of the 
proposed method. This may result in estimating the response 
to treatment more accurately, the differentiation between 
high‑  and low‑grade  GBMs, bleeding and recurrence of 
the tumor, and the necrotic areas. Another limitation of our 
study is selecting slices with the maximum tumoral area 
manually by clinical expert. This process may be associated 
with some inevitable errors. It is recommended to prepare 
a code or use any available software to do this procedure 
automatically for future studies.

Conclusions
20 GLCM‑based texture features and six direct statistics as 
a promising and efficient technique for image analysis[28] 
have been extracted and evaluated to determine quantitative 
measures applicable for evaluating the GBM patients’ 
response to treatment besides the subjective analysis of 
MRI images by radiologists.

Despite no significant differences between step I extracted 
texture features for two considered groups, almost all 
step II extracted GLCM‑based texture features in addition 
to entropy M and skewness statistics showed statistically 
significant differences between the two considered 
groups of responsive and progressive disease. The step II 
GLCM‑based texture features with statistically significant 
differences between manual classified responsive and 
progressive disease groups include contrast, correlation, 
cluster prominence, cluster shade, dissimilarity, entropy, 
energy, homogeneity, maximum probability, variance, sum 
average, sum variance, sum entropy, difference variance, 
difference entropy, information measure of correlation 
2, inverse difference, and inverse difference normalized 
features. Almost all GLCM‑based texture features and 
direct statistics showed the reverse trend of variations 
between the two steps images for responded and not 
responded patients to treatment.

It can be concluded that GLCM‑based texture features 
extracted from MR images of GBM patients can be used as 
distinctive features between two groups of responsive and 
progressive diseases. As almost all GLCM‑based texture 
features extracted from follow‑up MR images of GBM 
patients are significantly different between responsive and 
progressive disease groups of patients, these features and 
their percentage differences between the two steps of follow 
up can be used as training data for automatic classification 
algorithms for expeditious prediction or interpretation of 

the response to treatment quantitatively besides qualitative 
evaluations.
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Table S1: Gray level co‑occurrence matrix‑based texture features
Statistics Reference Statistics Reference
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MCC was not calculated due to computational instability. IDM was also not calculated due to its similarity to the homogeneity feature. 
Correlation and homogeneity were calculated based on the MATLAB method (graycomatrix syntax) and the formula presented by Soh and 
Tsatsoulis[2] which gave the same results. MP – Maximum probability; CS–Cluster shade; IDM – Inverse difference moment; IDN – Inverse 
difference normalized; CC – Correlation coefficient; DE – Difference entropy; DV – Difference variance; SE – Sum entropy; SV – Sum 
variance; MCC – Maximal CC; ID – Inverse Difference



Table S2: Summary of Macdonald and response assessment in neuro‑oncology measures to evaluate the glioblastoma 
multiform patient’s treatment response

Macdonald RANO
Response* The disappearance of all enhancing measurable 

and nonmeasurable lesions (sustained 
for≥4 weeks)
No new lesions
Clinical stability or improvement

Disappearance of all enhancing measurable and nonmeasurable 
lesions (sustained for≥4 weeks)
Stable or improved nonenhancing lesions based on T2/FLAIR MR 
sequences
No new lesions
Clinically stable or improved

Progression 25% or more increase in enhancing lesions
Clinical deterioration

Significant increase in nonenhancing lesions (T2/FLAIR) those not caused 
by comorbid events
Any new lesion
Clear clinical deterioration (not attributable to other causes from the tumor 
or changes in corticosteroid dose)
A clear progression of nonmeasurable lesions

*The mentioned conditions are for a complete response. There are also, some conditions to detect partial response or stable disease situations based 
on Macdonald and RANO criteria.[21‑24] MR – Magnetic resonance; RANO – Response assessment in neuro‑oncology; T2/FLAIR – Weighted-
Fluid-Attenuated-Inversion Recovery 


