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Abstract: The effect of varying short-chain alkyl substitution of the indole nitrogens on the spectroscopic properties of cyanine dyes 
was examined. Molar absorptivities and fluorescence quantum yields were determined for a set of pentamethine dyes and a set of 
heptamethine dyes for which the substitution of the indole nitrogen was varied. For both sets of dyes, increasing alkyl chain length 
resulted in no significant change in quantum yield or molar absorptivity. These results may be useful in designing new cyanine dyes for 
analytical applications and predicting their spectroscopic properties.
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Introduction
Cyanine dyes are a class of conjugated, fluores-
cent molecules with polymethine chromophores 
composed of an odd number of carbon atoms. 
These dyes exhibit unusually long-wavelength 
absorbance and fluorescence relative to the size of 
their chromophores, typically absorbing light in 
the visible to near infrared (NIR) region.1 These 
compounds were originally utilized as sensitiz-
ing additives to photographic emulsions, but their 
unique structural and photophysical characteris-
tics have since proven useful for a wide variety of 
other applications requiring photosensitive mate-
rials, such as optical recording media and solar 
cells.2–4 Additionally, cyanine dyes can be used 
as fluorescent labels of both proteins and DNA, 
thereby greatly enhancing the sensitivity of fluores-
cence detection for these types of biomolecules.5–7 
NIR-absorbing cyanine dyes are particularly well-
suited for use as fluorescent labels of proteins and 
nucleic acids, as there is no interfering autofluores-
cence from biomolecules at these long wavelengths, 
and have been applied to both in vitro analytical 
studies and in vivo biomedical imaging.5–9 Due to 
the tremendous utility and versatility of this class 
of compounds, significant research efforts are being 
directed at developing new cyanine dyes function-
alized for specific applications and optimizing the 
properties of these dyes.

In the process of developing new dyes, it is 
important to determine how varying the heteroar-
omatic ring nitrogen substituents influences spec-
troscopic behavior. Cyanine dye structures are 
commonly modified at these positions to enhance 
binding interactions, make the dyes pH sensitive, or 
improve their solubility in various solvents. Under-
standing how these modifications may influence the 
absorption characteristics and quantum efficiency is 
important for designing new compounds with spe-
cific functional and spectroscopic characteristics. 
Cyanine dyes in the excited singlet state can decay 
back to the ground state through four major path-
ways: fluorescence, intersystem crossing, internal 
conversion, and photoisomerization. Of the radia-
tionless decay processes, it has been suggested 
that photoisomerization is the most significant, 
followed by internal conversion.10,11 The extent of 

photoisomerization has been shown to be depen-
dent on dye rigidity,12 which may be influenced by 
both backbone structure and side chain substitution. 
By introducing rigidifying structures or rotation-
hindering bulky substituents, photoisomerization 
would be expected to decrease with a correspond-
ing increase in quantum yield.13,14

The purpose of this study was to investigate the 
effect of varying alkyl group length substitution of 
the indole ring nitrogen on the molar absorptivities 
and quantum yields of cyanine dyes. Molar absorp-
tivities (ε) of each dye were calculated as per the Beer-
Lambert law, and fluorescence quantum yields (φ) 
were determined by a relative method. Two classes 
of cyanine dyes were studied: pentamethine cyanine 
dyes and ring-stabilized heptamethine cyanine dyes. 
These two different dye “backbones”, which differ in 
terms of the substitution and length of the polymethine 
chain as well as the heterocyclic moieties at either 
end of the polymethine chain, were chosen as models 
to ensure that the observed results are widely appli-
cable to a range of cyanine dyes, rather than peculiar 
to one subgroup of dyes. The pentamethine cyanine 
dyes studied all had a 4,5:4′,5′-Dibenzo-3,3,3′,3′-
tetramethylindadicarbocyanine backbone, the structure 
of which is shown in Figure 1.

The heptamethine cyanine dyes studied all 
had a 2-[2-[2-Chloro-3-[(1,3-dihydro-3,3-dimethyl-
1-propyl-2H-indol-2-ylidene)ethylidene]-1-cyclohexen- 
1-yl]ethenyl]-3,3-dimethyllindolium backbone, the 
structure of which is shown in Figure 2.
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Figure 1. Structure of pentamethine cyanine backbone and substituents 
in dyes studied.
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Experimental
Instrumentation
Absorbance spectra were measured using a Perkin-
Elmer Lambda 20 UV-Visible Spectrophotom-
eter (Perkin-Elmer Incorporated, Waltham, MA) 
interfaced to a PC, with a spectral bandwidth of 
2  nm. Fluorescence spectra for the pentamethine 
cyanine dyes were obtained using a Shimadzu 
RF-1501 Spectrofluorophotometer (Shimadzu Sci-
entific Instruments, Columbia, MD) interfaced to 
a PC, with the spectral bandwidths for both excita-
tion and emission set to 10 nm and the sensitivity 
set to “high”. Fluorescence spectra for the hep-
tamethine cyanine dyes were obtained using a ISS 
K2 Multifrequency Phase Fluorometer (ISS Inc., 
Champaign, IL) interfaced to a PC, with the spec-
tral bandwidths set to 10 nm. The excitation source 
used for the ISS K2 Fluorometer was an external 
690 nm class IIIB laser (100 mW, S/N 901290, 
Lasermax Inc., Rochester, NY). Disposable 
absorbance cuvettes and quartz fluorescence 
cuvettes with pathlengths of 1.00  cm were used 
for absorbance and fluorescence measurements,  

respectively. All calculations were carried out 
using Microsoft Excel (Microsoft Corporation, 
Redmond, WA).

Chemicals and reagents
Pentamethine dyes 666 ($98.0%) and 829 ($99.5%) 
were obtained from Organica Feinchemie GmbH 
(Wolfen, Germany). IR-676 iodide (97%) was 
obtained from Spectrum Info Limited (Kiev, 
Ukraine). Rhodamine 800 chloride (R800) (Fluores-
cence Reference Standard, Sigma-Aldrich, St. Louis, 
MO) was also obtained for use as a reference stan-
dard in the determination of the quantum yield of the 
pentamethine dyes. Heptamethine dyes IR-780 iodide 
(99%) and IR-786 perchlorate (98%) were obtained 
from Aldrich Chemical Co. (Milwaukee, WI) and 
Sigma-Aldrich, respectively. Indocyanine green 
(ICG) (lot GG01, 82.0% purity, TCI America, 
Portland, OR) was obtained for use as a standard 
in the determination of the quantum yield of the 
heptamethine dyes. The purchased dyes were used 
without further purification.

Pentamethine dye MHI-85 and heptamethine dye 
MHI-71 were synthesized in our lab following near 
infrared dye syntheses described in the literature.15

Dye synthesis
MHI-85 was synthesized as illustrated in Equation 1. 
The pentacarbocyanine dye MHI-85 was obtained by 
the condensation reaction between benz[e]indolium 
salt and malonaldehyde bis(phenylimine) monohy-
drochloride under basic conditions.

The purified product consisted of dark purple-blue 
crystals, mp 244–246 °C, yield 85%; 1HNMR 
(300 MHz, DMSO-d6): δ = 8.46 (t, J = 12.0 Hz, 2H), 
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Figure 2. Structure of heptamethine cyanine backbone and substituents 
in dyes studied.
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8.25 (d, J = 8.4 Hz, 2H), 8.08 (d, J = 3.6 Hz, 2H), 
8.05 (d, J = 3.6 Hz, 2H), 7.78 (d, J = 8.4 Hz, 2H), 
7.68 (t, J = 7.5 Hz, 2H), 7.51 (t, J = 7.5 Hz, 2H), 6.67 
(t, J = 12.0 Hz, 1H), 6.43 (d, J = 13.8 Hz, 2H), 4.25 
(s, 4H), 2.60–2.50 (m, 4H), 1.97 (s, 12H), 1.85–1.75 
(m, 8H). MS (ESI+): calcd. for C41H45N2S2O6

+ 
[M–Na]+ 725.2719; found 725.2688.

MHI-71 was synthesized as illustrated in 
Equation 2. The heptacarbocyanine dye MHI-71 
containing cyclohexene in the middle was synthe-
sized by condensing the salt of Fischer base with 
Vilsmeier-Haack reagent under basic conditions to 
produce the dye.

The purified product consisted of iridescent 
golden-green crystals, mp 219–221 °C, yield 80%; 
1HNMR (300 MHz, CDCl3): δ = 8.37 (d, J = 13.0 Hz, 
2H), 7.45–7.37 (m, 4H), 7.30–7.20 (m, 4H), 6.24 
(d, J  =  13.0, 2H), 4.22 (t, J  =  6.0  Hz, 4H), 2.75 
(t, J  =  6.0  Hz, 4H), 2.08–1.98 (m, 2H), 1.90–1.80 
(m, 4H), 1.74 (s, 12H), 1.56–1.46 (m, 4H), 1.04 
(t, J = 6 Hz, 6H). MS (ESI+): calcd. for C38H48N2Cl+ 
[M–I]+ 567.3521; found 567.3506.

Stock solutions
Stock solutions of the dyes were prepared by weighing 
the solid on a 5-digit analytical balance directly into a 
brown glass vial and adding methanol (MeOH) (LC-MS 
Chromasolv Grade, Sigma-Aldrich, St. Louis, MO) via 
a class A volumetric pipette (Kimble/Kontes, Vineland, 
NJ.). The contents of the vial were vortexed for 20 sec-
onds, then sonicated for 5 minutes to ensure complete 
dissolution. The stock solutions were protected from 
light and stored in the freezer when not in use.

Method of determining molar  
absorptivity
Stock solutions were used to prepare five to six sam-
ples in methanol with concentrations ranging from 
0.25–10 µM. Samples were prepared in 5.00 (±0.02) 

and 10.00 (±0.02)  mL volumetric flasks using a 
5–50 µL Micropipette 821 and a 200–1000 µL Pipet-
man (P1000) micropipette (Gilson, Inc., Middleton, 
WI.). The absorbance spectrum of each sample was 
measured using the Perkin Elmer Lambda 20 Spec-
trophotometer, and the absorbance at the wavelength 
of maximum absorbance (λMAX

AB) was determined. 
The absorbance values (A) of each sample at λMAX

AB 
were plotted as a function of dye concentration (C), 
and the linear regression equation was computed.

Method of determining quantum yield
Standards were chosen with wavelengths of maximum 
emission within 10 nm of those of the unknowns to 
prevent errors resulting from wavelength dependent 
variation in fluorimeter response. Samples of the dyes 
and their respective standards were prepared from 
stock solutions such that their absorbance at λMAX

AB 
was less than 0.1 (to prevent the inner filter effect 
in fluorescence measurements). The absorbance and 
fluorescence spectra of each sample were obtained 
concurrently to minimize experimental error from 
photobleaching and potential solubility issues, and for 
all scans, the standard was run both prior to and fol-
lowing the unknowns (to ensure no change in instru-
mental response over the course of the runs). For both 
the pentamethine and heptamethine dyes, duplicate 
absorbance scans were obtained and the absorbance 
values at both the λMAX

AB and λEXC were averaged. 
The emission spectra of the pentamethine dyes were 
measured in triplicate using the RF-1501 fluorimeter 
with the excitation wavelength set to 620  nm. The 
emission spectra of the heptamethine dyes were mea-
sured in triplicate using the ISS-K2 fluorimeter with a 
690 nm excitation wavelength. For both sets of dyes, 
the area under each fluorescence curve was calculated 
and corrected for the Rayleigh peak area (if neces-
sary). The average fluorescence peak areas were then 
calculated for each sample.
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Table 1. Summary of wavelengths of maximum absorbance 
(λMAX) and averages, standard deviations, percent relative 
standard deviations, and number of replicate determina-
tions (No.) of calculated molar absorptivities (ε) at λMAX for 
the pentamethine cyanine dyes and the standard (R800).

Dye λMAX 
(nm)

Avg. 
ε (λMAX) 
(M-1 cm-1)

Std. Dev.  
ε (λMAX) 
(M-1 cm-1)

% RSD  
ε (λMAX)

No.

IR-676 675 2.08E+05 3.5E+03 1.66 2
666 680 2.2E+05 1.2E+04 5.37 2
829 680 2.0E+05 1.5E+04 7.41 2
MHI-85 680 1.88E+05 4.3E+03 2.31 4
R800 679 7.1E+04 4.3E+03 6.14 3

Results and Discussion
Molar absorptivities of each dye (in methanol) were 
computed from the slope of the linear regression plots 
of absorbance versus concentration. Absorbance val-
ues greater than or equal to 2.0 were excluded from 
these data sets. The molar absorptivities (ε) were then 
calculated at λMAX

AB from the least squares slopes of 
the respective data sets, as per Beer’s law.

Provided in Table  1 is a summary of the found 
λMAX

AB values and average calculated molar absorp-
tivities (ε) for the pentamethine cyanine dyes and 
R800 as a reference sample. Also included in Table 1 
are the standard deviations and percent relative stan-
dard deviations of the calculated molar absorptivities. 
The similarities in the λMAX

AB values of the cyanine 
dyes indicate the similarity in substitution. For dyes 
666, 829, and IR-676, the substituents are all electron-
donating alkyl groups. MHI-85 exhibits virtually no 
shift in absorbance maximum relative to those found 
for the alkyl-substituted dyes 666 and 829, indicating 
that the sulfonate moiety is far enough removed from 
the chromophore that its electron-withdrawing effects 
have insignificant influence. The molar absorptivities 
of the dyes at λMAX

AB do not vary greatly amongst 
themselves and do not follow any apparent trend 
based on substitution. Butyl-substituted dye 666 
exhibited the greatest molar absorptivity, followed 
by methyl-substituted IR-676, followed by isopentyl-
substituted dye 829. Butylsulfonato-substituted 
MHI-85 had the lowest observed molar absorptivity. 
The differences between dyes 666, 829, and IR-676 
are not statistically significant, as the molar absorp-
tivities of these dyes fall within the outer limits of each 
others ranges of standard deviation. However, the dif-

Table 2. Summary of wavelengths of maximum absorbance 
(λMAX) and averages, standard deviations, percent relative 
standard deviations, and number of replicate determinations 
(No.) of calculated molar absorptivities (ε) at λMAX for the 
heptamethine cyanine dyes and the standard (ICG).

Dye λMAX 
(nm)

Avg. 
ε (λMAX) 
(M-1 cm-1)

Std. Dev. 
ε (λMAX) 
(M-1 cm-1)

% RSD 
ε (λMAX)

No.

IR-786 774 2.6E+05 2.2E+04 8.45 2
IR-780 779 2.74E+05 2.4E+03 0.88 2
MHI-71 779 1.64E+05 6.6E+03 4.01 2
ICG 783 1.25E+05 1.2E+03 0.98 2

ferences in molar absorptivity between MHI-85 and 
both dyes 666 and IR-676 are statistically significant, 
if relatively small. The lower molar absorptivity of 
butylsulfonato-substituted MHI-85 relative to the other 
dyes may be due to substituent chain length, effects 
of the sulfonate moiety, or the presence of minor 
impurities. The molar absorptivity values showed 
good precision, with reasonably low percent relative 
standard deviations (1.7%–7.4%) for all of the dyes.

 Provided in Table 2 is a summary of the found 
λMAX

AB values and average calculated ε values at the 
λMAX

AB for the heptamethine cyanine dyes and ICG 
as a reference sample. Also included in Table 2 are 
the standard deviations and percent relative standard 
deviations of the calculated molar absorptivities. 
The similarities in the λMAX

AB values amongst the cya-
nine dyes indicate the similarity in substitution; all are 
substituted with electron-donating alkyl groups. As 
with the pentamethine dyes, the molar absorptivities 
of the heptamethine dyes at λMAX

AB do not vary greatly 
amongst themselves and do not follow any appar-
ent trend based on substitution. Propyl-substituted 
IR-780 exhibited the greatest molar absorptivity, 
followed by methyl-substituted IR-786, followed by 
butyl-substituted MHI-71. Only the differences in 
molar absorptivity between MHI-71 and IR-786 and 
between MHI-71 and IR-780 are statistically signifi-
cant (the ranges of molar absorptivity specified by 
the standard deviations are mutually exclusive). The 
molar absorptivity values showed good precision, 
with reasonably low percent relative standard devia-
tions (0.88%–8.45%) for all of the dyes.

 Provided in Figures  3 and 4 are representa-
tive comparisons of the absorbance and emission 
spectra of the pentamethine and heptamethine dyes, 
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Table 3. Average wavelengths of maximum absorbance 
(λMAX

AB) and emission (λMAX
EM) and Stokes’ shifts of pen-

tamethine cyanine dyes.

Dye λMAX
AB (nm) λMAX

EM (nm) Stokes’  
shift (cm-1)

IR-676 675 698 488
666 680 703 481
829 680 702 461
MHI-85 680 703 481

Table 4. Average wavelengths of maximum absorbance 
(λMAX

AB) and emission (λMAX
EM) and Stokes’ shifts of hep-

tamethine cyanine dyes.

Dye λMAX
AB (nm) λMAX

EM (nm) Stokes’  
shift (cm-1)

IR-786 774 796 357
IR-780 779 799 321
MHI-71 779 799 321

500

λ (nm)
800700600

λMAX
EM =

799 nm
λMAX

AB =
779 nm

Figure 4. Comparison of relative absorption and emission spectra of 
MHI-71 in methanol, with labeled wavelengths of maximum absorbance 
(λMAX

AB) and emission (λMAX
EM).

published quantum yield of the standard (φS), as per 
the following equation. In this equation, the indices 
S and U refer to the standards and the unknowns, 
respectively.

φU = φS * FU/FS * AS/AU

Methanol was used as the solvent for both the 
standards and the unknowns; therefore no correc-
tion for solvent refractive index was necessary 
in this equation. This calculation assumes negli-
gible variation in instrument response within the 
range of emission wavelengths exhibited by the 
unknowns with respect to the standard emission 
wavelengths.

Provided in Table  5 are the average quantum 
yields of the pentamethine dyes calculated rela-
tive to R800 as determined from multiple studies, 
along with their standard deviations and percent 
relative standard deviations. Reproducibility of 
results following duplicate determinations of quan-
tum yield was good for dyes MHI-85 and IR-676, 
with percent relative standard deviations of 5.6 and 
5.1 percent, respectively; accordingly no further 
determinations were made. However, reproduc-
ibility was poor for dyes 666 and 829, accordingly 
the quantum yield of dye 666 was determined two 
additional times, and the quantum yield of dye 829 

respectively. For both sets of dyes, the fluorescence 
and absorbance spectra are reasonably good mir-
ror images of one another (with the exception of 
the Soret peak visible at lower wavelengths in the 
absorbance spectrum), and the Stokes’ shifts provided 
in Tables 3 and 4 are relatively small, ranging from 
20–23  nm (321–348  cm−1). This indicates minor 
structural changes between the ground and excited 
singlet states of these dyes.

The fluorescence quantum yields of each of the 
cyanine dyes were calculated relative to the stan-
dard from their respective average fluorescence peak 
areas (F), average absorbances at λEXC (A), and the 

500

λ (nm)

λMAX
EM =

703 nm

800750700650600550

λMAX
AB =

680 nm

Figure 3. Comparison of relative absorption and emission spectra of 
MHI-85 in methanol, with labeled wavelengths of maximum absorbance 
(λMAX

AB) and emission (λMAX
EM).
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was determined one additional time in an attempt 
to improve reproducibility. Following these further 
studies, a significant improvement in reproduc-
ibility was observed for dye 666 but not dye 829. 
Nonetheless, even taking into account the high per-
cent relative standard deviations, the average quan-
tum yields of the pentamethine dyes did not vary 
significantly with increasing alkyl N-substitution. 
Additionally, it appears that the addition of solu-
bility-enhancing anionic sulfonate groups to these 
alkyl N-substituents has no significant effect on the 
quantum yield.

Provided in Table  6 are the average quantum 
yields of the heptamethine dyes calculated relative to 
ICG as determined from duplicate studies, along with 
their standard deviations and percent relative stan-
dard deviations. Reproducibility of results following 
duplicate determinations of quantum yield was good 
for all of the dyes, with IR-786, IR-780, and MHI-71 
having percent relative standard deviations of 2.8, 4.5, 
and 6.8 percent, respectively; accordingly no further 
determinations of quantum yield were made. Overall, 
the quantum yields of the heptamethine dyes were 
much lower than those of the pentamethine dyes, 
as expected,16 and as with the pentamethine dyes, 
the average quantum yields of the heptamethine 
dyes did not vary significantly with increasing alkyl 
N-substitution.

Conclusions
Based on these results, it can be generalized that 
increasing the chain length of short-chain alkyl 
substituents on the heterocyclic indole nitrogens has 
little to no effect on the quantum yields and molar 
absorptivities of cyanine dyes, and the addition of sul-
fonate groups to the ends of these alkyl N-substituents 
also does not change the quantum yield. The lack of 
effect on quantum yield may be attributable to the fact 
that the N-substituents are not directly conjugated to 
the chromophore and therefore have little to no effect 
on internal conversion-type energy loss, and that addi-
tionally, these short chain substituents do not provide 
adequate steric hindrance to interfere sufficiently 
with photoisomerization to cis-cyanine. The implica-
tions of these results are significant to the design and 
synthesis of new cyanine dyes. As previously men-
tioned, cyanine dyes are frequently modified at these 
heterocyclic nitrogen positions to enhance binding 
interactions, make the dyes pH sensitive, or improve 
solubility. Accordingly, provided the functional group 
is not directly attached to the chromophore, but instead 
“bridged” by a short alkyl substituent, introducing this 
group should have little effect on the quantum yield 
of the dye relative to a structurally similar dye lack-
ing this functionality. For example, if one wished to 
modify a dye with desirable spectroscopic properties 
to be more water soluble or to bind more strongly with 
DNA or protein by adding a charged or polar func-
tionality, this modification could be carried out with-
out concern for loss or change of the desired spectral 
characteristics. Additionally, these results suggest that 
quantum yields of new cyanine dyes can be roughly 
predicted prior to their synthesis and characterization 
based on quantum yields of structurally similar preex-
isting dyes, provided that such data exists.
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Table 5. Average quantum yields (φ) calculated for 
pentamethine dyes, standard deviations, percent relative 
standard deviations, and number of replicate determina-
tions of each quantum yield (No.).

Dye Average φ Std. Dev. φ % RSD φ No.

IR-676 0.164 0.0084 5.1 2
666 0.19 0.0260 13.9 4
829 0.17 0.0405 23.7 3
MHI-85 0.175 0.0098 5.6 2

Table 6. Average quantum yields (φ) calculated for hep-
tamethine dyes, standard deviations, percent relative 
standard deviations, and number of replicate determina-
tions of each quantum yield (No.).

Dye Average φ Std. Dev. φ % RSD φ No.

IR-786 0.076 0.0022 2.8 2
IR-780 0.076 0.0035 4.5 2
MHI-71 0.077 0.0053 6.8 2
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