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Linking in silico MS/MS spectra 
with chemistry data to improve 
identification of unknowns
Andrew D. McEachran   1,2, Ilya Balabin3, Tommy Cathey4, Thomas R. Transue4,  
Hussein Al-Ghoul5, Chris Grulke2, Jon R. Sobus6 & Antony J. Williams2

Confident identification of unknown chemicals in high resolution mass spectrometry (HRMS) screening 
studies requires cohesive workflows and complementary data, tools, and software. Chemistry 
databases, screening libraries, and chemical metadata have become fixtures in identification 
workflows. To increase confidence in compound identifications, the use of structural fragmentation 
data collected via tandem mass spectrometry (MS/MS or MS2) is vital. However, the availability of 
empirically collected MS/MS data for identification of unknowns is limited. Researchers have therefore 
turned to in silico generation of MS/MS data for use in HRMS-based screening studies. This paper 
describes the generation en masse of predicted MS/MS spectra for the entirety of the US EPA’s DSSTox 
database using competitive fragmentation modelling and a freely available open source tool, CFM-ID. 
The generated dataset comprises predicted MS/MS spectra for ~700,000 structures, and mappings 
between predicted spectra, structures, associated substances, and chemical metadata. Together, these 
resources facilitate improved compound identifications in HRMS screening studies. These data are 
accessible via an SQL database, a comma-separated export file (.csv), and EPA’s CompTox Chemicals 
Dashboard.

Background & Summary
The rapid identification of small molecules in metabolomics, exposomics, and environmental monitoring studies 
increasingly involves the use of high resolution mass spectrometry (HRMS) and non-targeted analysis (NTA) 
techniques1–3. NTA experiments generally incorporate complementary software (open and commercial tools) 
and chemistry databases to enable effective and accurate compound identification4–6. Different instrumentation 
and NTA approaches require different tools for effective annotation. For example, compound identification strat-
egies based on MS1 data (yielding exact mass and molecular formula) typically rely on chemical metadata (e.g. 
the number of data sources or literature references linked to a chemical)6, whereas those based on MS/MS data 
(yielding MS1 data and fragment ions) are enhanced by matching of empirical fragmentation spectra with library 
spectra7,8. Recent studies have shown that melding of these approaches leads to improved identification accuracy 
over spectral matching alone7,9. Thus, coupling robust metadata with spectral matching capabilities must now be 
the focus of research efforts to maximize yield from NTA identification techniques.

When considering the number of known compounds in public databases, the availability of library MS/MS 
spectra is quite limited2,10. Open spectral libraries such as MassBank (https://massbank.eu/MassBank/)11, MoNA 
(http://mona.fiehnlab.ucdavis.edu/), METLIN12, and mzCloud (https://www.mzcloud.org/) are rich with empiri-
cal spectra, but do not yet fully cover the broad chemical space that may be monitored in NTA studies. Instrument 
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vendors further provide empirical spectral data for users to purchase (with matching algorithms executed within 
vendor software), but access and coverage remains limited13. To address these gaps, researchers have developed in 
silico fragmenters and MS/MS prediction models, including MetFrag7, CSI Finger-ID14, and CFM-ID8, among a 
number of others available commercially (e.g. ACD/MS Fragmenter15, Mass Frontier16). Use of predicted MS/MS 
spectra in identification workflows has proven effective5, but requires the incorporation of command line utilities 
and/or on-the-fly processing of data for single chemicals. Prediction of MS/MS spectra en masse and mapping 
pre-computed spectra to structures and metadata within chemistry databases can enhance identification schemes 
and enable integration into various software systems and workflows.

The US EPA’s DSSTox database is a comprehensive chemistry resource, containing more than 760,000 dis-
tinct chemical substances, associated chemical structures, and metadata17, and serves as the underpinning for 
EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard)18. Among its many functionalities, 
the Dashboard enables searching of masses and formulae generated from HRMS experiments. The data and 
algorithms associated with Dashboard searching have been shown to outperform the much larger ChemSpider 
database (ca. 67 million chemicals as of July 2018) using data source ranking for the identification of unknowns6. 
As an example, consider a search for the formula C15H16O2 which produces a total of 263 results. Rank ordering 
the results based on data source or literature reference counts brings the most likely chemical (Bisphenol A) to the 
top of the search results (Fig. 1).

Additional metadata are now being optimized in a combined ranking scheme to further improve identifica-
tions. To improve Dashboard capabilities that support NTA research, we are generating, storing, and mapping 
predicted MS/MS spectra for all structures in the database.

Herein we describe: (1) the generation and storage of predicted MS/MS spectra for all chemical structures 
contained with DSSTox; (2) the validation and mapping of spectra to structures and substances; and (3) the 
publication of the comprehensive dataset for public dissemination (including the complete SQL database and 
schema). MS/MS spectra were predicted using competitive fragmentation modelling (CFM) and the open com-
mand line tools developed by Allen et al.8,19,20 and named CFM-ID (available here: http://sourceforge.net/pro-
jects/cfm-id). All remaining data are sourced from the US EPA’s DSSTox database and available via the EPA’s 
CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard). Open and accessible data, integrated and 
provided in this dataset, enables NTA practitioners an improved means of small molecule identification when 
using MS/MS data from HRMS experiments.

Methods
Generation of predicted MS/MS Data.  To maximize use of predicted MS/MS data, both for our pro-
cesses13,21 and the mass spectral community at large, “MS-Ready” structures were used in the prediction model. 
An MS-Ready structure represents the form of a structure that would be observed via HRMS; these structures 

Fig. 1  Search results from an MS-Ready Formula search of C15H16O2 Candidate chemical structures are 
denoted by a DTXSID and preferred name and contain linked metadata such as the Number of Sources, CPDat 
Count, and PubMed Ref. Count. Rank ordering by metadata brings the most likely chemicals to the top of the 
search results list.
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are de-salted, de-solvated, and processed such that chemical mixtures are separated22. These structures are stored 
in the DSSTox database with unique chemical identifiers (DTXCIDs) and linked to unique substance identifiers 
(DTXSIDs) to enable use of the structures and associated substance-level metadata in HRMS applications.

MS/MS spectra were predicted using CFM-ID with pre-trained parameters as defined by CFM-ID litera-
ture and described by Allen et al.8,19,20. All source code was downloaded from the CFM-ID SourceForge site: 
http://sourceforge.net/projects/cfm-id. The input data were 843,113 MS-Ready chemical structures as SMILES 
strings. Additional data associated with chemical structures included DTXCIDs, molecular formulas, standard 
InChIKeys generated using the Indigo Toolkit (http://lifescience.opensource.epam.com/indigo/), and monoiso-
topic masses. The obtained chemicals were saved in a local tab separated file.

MS/MS spectra were generated for each structure in the following ionization modes: electrospray ionization 
in both positive and negative modes (ESI+ and ESI-, respectively) at three collision energies (Energy0–10 eV, 
Energy1–20 eV, and Energy2–40 eV), and electron impact ionization (EI). Spectra were predicted using standard 
parameters provided with the software and available via the CFM-ID SourceForge site with no limits placed on 
the number of MS/MS spectra calculated for a given structure.

The mass spectra calculations were performed on a large-scale Linux cluster at the US EPA National Computer 
Center (https://www.epa.gov/greeningepa/national-computer-center). A master shell script was used to gener-
ate over 4,000 Slurm (https://slurm.schedmd.com/) queueing system run scripts that calculated EI, ESI+, and 
ESI- MS/MS spectra for 200 chemicals each. A small fraction of chemicals (<700) was excluded from CFM-ID 
calculations due to missing data and/or structural issues expected to fail in processing (such as SMILES notations 
of radicals, e.g. CC(C=C)=C[Al] |^3:5|). An additional 56 chemicals failed during calculation of all three predic-
tion types. This was believed to occur due to the structural constraints of the models and ionization types as many 
of the failed chemicals were permanently charged species and metals (“Chemical Structures that failed during 
mass spectral prediction”, data available at https://doi.org/10.23645/epacomptox.7776212.v1)23. Mode-specific 
failures occurred as follows: ~1000 chemicals failed during calculation of EI spectra, ~2000 failed during calcu-
lation of ESI+ spectra, and ~18,000 failed during calculation of ESI- spectra. The substantially higher number 
of failures occurring in ESI- mode are primarily driven by permanently charged species unlikely to ionize in 
negative electrospray.

For each type of mass spectra (EI, ESI+ and ESI-), the log files were merged and a Python script was used to 
separate the contents into a final output file (metadata followed by mass spectrum data for each chemical) and an 
error file (CFM-ID error messages for failed and timed out calculations). The final output file was a .dat ASCII file 
for each ionization mode (“Predicted EI-MS Spectra of CompTox Chemicals Dashboard Structures”, “Predicted 
MS/MS Spectra in ESI-positive mode of CompTox Chemicals Dashboard Structures”, “Predicted MS/MS Spectra 
in ESI-negative mode of CompTox Chemicals Dashboard Structures”, data available at https://doi.org/10.23645/
epacomptox.7776212.v1)23.

Data storage and database structure.  The raw output of the predicted MS/MS data described above 
required parsing and manipulation in order to generate MySQL loadable data. A Java application was developed 
to parse the data and generate MySQL load statements to load the database (described below). The resulting data-
base required ~137 GB of storage and took 10 hours to load.

Mapping to chemical metadata with DSSTox and associated databases.  MS-Ready structures, 
denoted by individual DTXCIDs, are stored in a structure relationship mapping table linking MS-Ready struc-
tures to original DSSTox structures and associated chemical substances (DTXSIDs). Chemical substances are 
associated with a variety of identifiers (e.g. InChI strings and keys, synonyms, database identifiers) and data (e.g. 
physicochemical properties, toxicity data, bioactivity data). Additional details regarding the relationship between 
DTXCIDs and DTXSIDs are explained in more detail elsewhere18.

The CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/) enables users to search and 
peruse the data contained within multiple databases (see Table 2 in Williams, et al.18 for a list of all databases). 
Many of the data contained within these databases are of value for ranking candidate chemicals in search results, 
including the number of data sources associated with a chemical in PubChem (https://pubchem.ncbi.nlm.nih.
gov/), the number of associated articles in PubMed (https://www.ncbi.nlm.nih.gov/pubmed/), and the number of 
unique consumer product categories associated with a chemical in the Chemical and Products Database (CPDat; 
https://www.epa.gov/chemical-research/chemical-and-products-database-cpdat)24. As discussed above, ranking 
based on such metadata sources has already proven to be a valuable approach6.

To facilitate search and identification of unknowns using HRMS data, an export file from DSSTox was gener-
ated to include all DTXCIDs used to generated MS/MS data and valuable metadata, described below. Access to 
both substance-level metadata and predicted MS/MS data is made possible through the linked DTXCID identifier 
and database structure.

Data Records
The data described in this work is available in three primary formats: a SQL relational database, .dat ASCII files 
containing all predicted spectra, and as a complete export file in comma-separated format (.csv). Two types of 
data are presented to facilitate compound identification: predicted MS/MS spectral data and chemical metadata, 
described below and defined as data linked to a chemical structure. Access and use of the data are enabled by the 
inclusion of unique chemical identifiers (DTXCIDs) within all records to connect chemical structures to their 
associated data.
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Spectral data.  MS/MS spectra were generated for each structure in the following ionization modes: ESI+, ESI-, 
and EI. Each data record generated for a structure in ESI+ and ESI- contains MS/MS predictions for three collision 
energy levels while each record for EI contains results from a single collision energy only. Collision energy levels pre-
dicted for ESI are as follows: Energy0 (10 eV), Energy1 (20 eV), and Energy2 (40 eV). Preceding spectral predictions 
for a given structure are the following chemical structure metadata fields (see an example in Fig. 2):

•	 Date/time: indicating the date and time the prediction was computed
•	 CFM-ID version: indicating the version of the command line tools
•	 DTXCID: the unique DSSTox chemical identifier for the structure
•	 SMILES: the MS-Ready SMILES for the structure
•	 MASS: the neutral MS-Ready monoisotopic mass
•	 FORMULA: the MS-Ready molecular formula
•	 INCHI_KEY: the standard InChI Key for the structure

Immediately following the chemical structure metadata fields are predicted MS/MS fragments in order of 
collision energy level (Energy0, Energy1, Energy2), when appropriate. Provided within each collision energy level 
are all fragments generated according to the CFM model, ordered from lowest m/z to highest with a single frag-
ment per row of the table. A fragment is indicated by its m/z, relative intensity, structural annotation number, and 
annotation-specific intensities in parentheses, respectively. When multiple structural annotations are predicted 
for a single fragment, the relative intensities of each are provided sequentially and tab-separated in parenthe-
ses (see m/z 150.0105033 in Fig. 2 for an example). Fragment structural annotations are defined using SMILES 
at the end of each prediction (not pictured in the example Fig. 2). The files “spectra_EI-MS.dat” (“Predicted 
EI-MS Spectra of CompTox Chemicals Dashboard Structures”, data available at https://doi.org/10.23645/epa-
comptox.7776212.v1)23, “spectra_ESI-MSMS-neg.dat” (“Predicted MS/MS Spectra in ESI-negative mode of 
CompTox Chemicals Dashboard Structures”, data available at https://doi.org/10.23645/epacomptox.7776212.
v1)23, and “spectra_ESI-MSMS-pos.dat” (Predicted MS/MS Spectra in ESI-positive mode of CompTox Chemicals 
Dashboard Structures”, data available at https://doi.org/10.23645/epacomptox.7776212.v1)23 contain all predic-
tions consecutively within the.dat files. Entries are separated by the presence of the chemical structure metadata 
fields described above.

SQL database.  In addition to raw files containing the predicted MS/MS spectra, data was stored in a SQL 
relational database (“Database of Predicted Spectra of CompTox Chemicals Dashboard Structures”, data availa-
ble at https://doi.org/10.23645/epacomptox.7776212.v1)23. Each chemical structure processed through CFM-ID 
resulted in MS/MS data from multiple ionization modes and collision energies. This collection of data (chemical 
structure, identifier, fragments and intensities) is identified as a single job.

These relationships are reflected in the Enhanced Entity Relationship (EER) Diagram (see Fig. 3) and pro-
vided as an SQL schema in a separate file (“Database Schema File of Predicted Spectra of CompTox Chemicals 
Dashboard Structures”, data available at https://doi.org/10.23645/epacomptox.7776212.v1)23. The “chemical” 
table contains the list of all processed chemicals, denoted by a unique DTXCID. The “job” table represents the 
processing of a chemical for a selected spectrum and provides links into the “peak” and “fragment” tables. In addi-
tion, the “peak” table is linked to the “fragintensity” table which contains the fragment intensities and structural 
annotations for a given peak.

Access to the database is made available through a Python script. In addition to querying the database the 
script is also capable of ranking the matched chemicals according to their cosine dot product score25,26. Relevant 
information, including the mass of the parent ion, the DTXCID of the parent mass, the masses and intensities 
of the fragments, and the collision energy, are all provided by the querying script to perform the ranking. The 
MySQL database is accessed through the PyMySQL module in Python. A query is constructed to combine the 
fragmentation information from different tables, based on an initial search of the mass of the parent ion or the 
chemical formula. When the mass is searched, an accuracy level (typically within 10 ppm) is provided. The query 
will then search for all chemicals with masses within the defined accuracy window, and the predicted fragments 
for all three collision energies are provided. This information is then loaded into a DataFrame using the Pandas27 
module in Python, and further calculations, including relative intensities, cosine dot product, and ranking of the 
matched chemicals are performed.

Chemical metadata.  Chemical metadata linked through the DTXCID are provided for all records for which 
predicted MS/MS spectra exist. An example of chemical metadata for a subset of structures is provided in Table 1. 
Metadata are provided in the “CFM-ID_metadata_DTXCID.csv” file for the following categories (“Chemical 
Metadata from the CompTox Chemicals Dashboard Linked to Predicted Spectra”, data available at https://doi.
org/10.23645/epacomptox.7776212.v1)23:

•	 DTXCID: the unique DSSTox chemical identifier for the structure
•	 DTXSID: the unique DSSTox substance identifier
•	 Preferred Name
•	 Chemical Abstracts Service Registry Number (CASRN)
•	 MS-Ready Molecular Formula
•	 MS-Ready Monoisotopic Mass
•	 MS-Ready SMILES
•	 Data Sources: the number of data sources in which a chemical is found within EPA’s DSSTox database
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•	 PubMed Reference Count: the number of references within PubMed associated with a given DTXSID queried 
using Medical Subject Heading (MeSH) annotation

•	 PubChem Data Sources: the number of data sources within PubChem for a given DTXSID
•	 CPDat Product Occurrence Count: the number of unique consumer products in which a chemical has been 

reported24

•	 Presence in the following lists: NORMAN Merged Suspect List: SusDat28,29, STOFF-IDENT Database (https://
www.lfu.bayern.de/stoffident/#!home), ToxCast30.

Fig. 2  Chemical structure metadata information followed by predicted MS/MS data included in the .dat ASCII 
prediction files using the example of DTXCID80539702 in ESI-positive mode. Only the first ~50 lines of predictions 
are shown and structural annotations with SMILES succeeding predictions are not included in the image.
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Technical Validation
The reliability and accuracy of predicted MS/MS spectra using CFM-ID have been reviewed and validated in 
multiple publications19,20,26 and subsequent applications5,9. Therefore, to verify the accuracy and ultimate utility 
of the present work, simple and small scale comparisons were conducted between predictions generated using 
the CFM-ID web application (http://cfmid.wishartlab.com/) and our own implementation of the command line 
tools. MS/MS spectra for three randomly selected structures in all three ionization types (for a total of nine 
comparison points) were predicted using each method and saved as text files (Supplementary Files 1 and 2). 
Supplementary Files 1 and 2 present the output data copied from each source for a single collision energy for each 
ionization type. The CFM-ID web application truncates the number of predicted spectra output19 and as such 
slight differences in predicted relative intensities and total number of spectra between the web application and our 
implementation were expected. As expected, comparison indicated exact output matching for smaller structures 
with fewer fragments (e.g. DTXCID107640/OC(CC(O)=O)C(O)=O) and highly similar outputs when spectra 
were truncated in the web application output (e.g. DTXCID00224961/NC(N)=NCCCC(NC=O)C(O)=O). In 
the instances where exact replication was not observed, only the relative intensities differ and do so by ~1%. 
Predicted fragments in all cases have identical m/z values between the two sources, indicating agreement between 
our implementation and the web application output.

Chemical metadata validation results from structural curation efforts and mapping within DSSTox between 
structural identifiers. To certify appropriate mapping between predicted spectra, chemical structures, and selected 
chemical metadata, a semi-automated process is conducted to link unique chemical identifiers with curated data. 
Mappings between MS-Ready DTXCIDs and linked DTXSIDs are stored in a structure relationship mapping 
table to facilitate access to pertinent chemical metadata associated with a DTXSID. The DSSTox database struc-
ture, MS-Ready linkages, and chemistry data have been previously described and validated18.

Usage Notes
Predicted MS/MS data are often used by researchers to compare an unidentified chemical (observed via HRMS) 
to a list of potential candidate chemicals. Empirically collected MS/MS data are scored against predicted spectra 
of a list of candidate chemicals to identify the best match. Spectral match scores provide an important piece of 
confirmatory data towards ultimate compound identification. A match score can be calculated between two sets 
of peaks using a variety of mathematical formulas25,26,31, any of which can be executed with simple queries of the 
present data. The most common use case will require a user to first query the database (or exported file converted 
to a data frame, for example) based on the parent mass or molecular formula of interest (i.e. observed via HRMS 
experimentation). The resulting set of structures from the defined search parameters will contain predicted MS/

chemical

dtxcid VARCHAR(45)

smiles MEDIUMTEXT

mass DOUBLE

formula TEXT

inchikey VARCHAR(27)

Indexes

fragintensity

id VARCHAR(45)

frag_intensity DOUBLE

frag_num INT(11)

peak_id INT(11)

Indexes

fragment

id INT(11)

smiles MEDIUMTEXT

mz DOUBLE

job_id INT(11)

frag_num INT(11)

Indexes

fragtool

id INT(11)

description VARCHAR(255)

Indexes

job

id INT(11)

dtxcid VARCHAR(45)

date VARCHAR(45)

spectra_id INT(11)

fragtool_id INT(11)

Indexes

peak

id INT(11)

energy ENUM(...)

mz DOUBLE

intensity DOUBLE

peak_num VARCHAR(8)

job_id INT(11)

Indexes

spectra

id INT(11)

type VARCHAR(255)

Indexes

Fig. 3  Enhanced Entity Relationship (EER) Diagram of the MySQL database created to host predicted MS/MS 
data generated using CFM-ID.
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MS data. These data must then be parsed, and ionization mode identified (if desired) in order to match and 
ultimately score peaks. Here we provide the means to conduct these searches using code developed in Python 
and match scores computed using the cosine dot product (https://github.com/USEPA/CFM-ID_generation_of_
CompTox_Chemicals_Dashboard_Structures_Paper). The matched chemicals, along with their fragments and 
the corresponding intensities at specific collision energies, are fed into a Python script that matches predicted 
with experimental spectra. A mass accuracy window (within a few ppm) is needed to search for matches between 
the fragments of the two spectra. Fragments that fall within this accuracy window are considered a match and 
are used in the final calculation of the cosine dot product score. The calculation as implemented in our work is 
computed at all three predicted energy levels. The matched chemicals are then ranked based on individual energy 
scores or their sum, depending on the user’s preference.

Another potentially less common use case with these data involves a user interested in the predicted MS/MS 
spectra of a single structure. In this case again, a simple query of the database using structural identifiers will 
return the desired result. Ultimately, users will be able to conduct the aforementioned queries and calculations 
within a web interface via the CompTox Chemicals Dashboard. Development is in progress as of December 2018 
and the prototype (with the scoring algorithm implemented in Java) enables users to input a mass or formula 
along with observed MS/MS data and query the database for matches. Users with experience in Python and/
or with data requiring customization of the match code will find the Python code of greater value while the 
Dashboard represents the most accessible means with which to access these data.

Additional chemical metadata linked via structural identifiers presents more options for users to increase 
the certainty of identifications of unknowns. These data can be accessed directly by querying the full 
comma-separated export using candidate chemicals. Once retrieved, data source counts associated with can-
didate chemicals can be used to rank within the set: the greater the number of data sources the more likely the 
chemical would occur in a sample6,32. Preliminary research indicates that data sources contained within DSSTox 
merged with CFM-ID match scores substantially boosts the number of correct identifications from unknowns. 
Optimization of combined scoring metrics is under development for implementation via the Dashboard.

Code Availability
All code for predicting the MS/MS spectra including model parameters and settings are available via http://
sourceforge.net/projects/cfm-id. Additional scripts used to implement the prediction algorithm and query the 
compiled database are available on GitHub (https://github.com/USEPA/CFM-ID_generation_of_CompTox_
Chemicals_Dashboard_Structures_Paper).

DTXCID DTXSID
PREFERRED_
NAME CASRN

MS_READY_
MOLECULAR_
FORMULA

MS_READY_
MONO 
ISOTOPIC_
MASS MS_READY_SMILES

DATA_
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ARTICLES

PUBCHEM_
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SOURCES
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COUNT

SUS 
DAT

STOFFI 
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TOX 
CAST

DTXCID 
8068549

DTXSID 
00146058 Tetrazepam 10379-14-3 C16H17ClN2O 288.10294 CN1C2=C(C=C(Cl)C=C2)

C(=NCC1=O)C1=CCCCC1 26 85 30 5 Y Y -

DTXCID 
0077853

DTXSID 
00155362

N(4)-
Acetylsulfadiazine 127-74-2 C12 H12N4O3S 292.06301 CC(=O)NC1=CC=C(C=C1)

S(=O)(=O)NC1=NC=CC=N1 19 7 51 — Y Y —

DTXCID 
20208682

DTXSID 
00173127 N-L-Alanyl-L-alanine 1948-31-8 C6H12N2O3 160.08479 CC(N)C(=O)NC(C)C(O)=O 13 172 53 — Y — —

DTXCID 
10104684

DTXSID 
00182193

(8,8′-Bi-2H-1-
benzopyran)-2,2′-
dione, 4,4′,7,7′- 
tetramethoxy-5,5′-
dimethyl-, (+)- (9CI)

27909-08-6 C24H22O8 438.13147

COC1=CC(=O)
OC2=C1C(C)=CC 
(OC)=C2C1=C(OC)C=C(C)
C2=C1OC(=O)C=C2OC

7 — 15 — Y — —

DTXCID 
40105487

DTXSID 
00182996 Methyl naphthoate 28804-90-2 C12H10O2 186.06808 COC(=O)C1=CC= 

CC2=CC=CC=C12 12 — 49 — Y — —

DTXCID 
60122353

DTXSID 
00199862 Dioxypyramidon 519-65-3 C13H17N3O3 263.12699 CN(C)C(=O)C(=O)N(N(C)

C(C)=O)C1=CC=CC=C1 12 — 18 — Y Y —

DTXCID 
6022

DTXSID 
0020022 Acifluorfen 50594-66-6 C14H7ClF3NO5 360.99648

OC(=O)C1=C(C=CC 
(OC2=CC=C(C=C2Cl)C(F)(F)
F)=C1)[N+]([O-])=O

65 50 74 36 Y Y Y

DTXCID 
5074

DTXSID 
0020074 Gabapentin 60142-96-3 C9H17NO2 171.12593 NCC1(CC(O)=O)CCCCC1 53 3053 177 29 Y Y -

DTXCID 
9076

DTXSID 
0020076 Amitrole 61-82-5 C2H4N4 84.043596 NC1=NNC=N1 88 7089 200 28 Y — Y

DTXCID 
00209011

DTXSID 
0020107 Aspartame 22839-47-0 C14H18N2O5 294.12157 COC(=O)C(CC1=CC=CC=C1)

NC(=O)C(N)CC(O)=O 59 862 111 84 Y Y Y

DTXCID 
40232

DTXSID 
0020232 Caffeine 58-08-2 C8H10N4O2 194.08038 CN1C=NC2=C1C(=O)N(C)

C(=O)N2C 116 21207 287 2384 Y Y Y

DTXCID 
80311

DTXSID 
0020311 Monuron 150-68-5 C9H11ClN2O 198.05599 CN(C)C(=O)NC1=CC=C(Cl)

C=C1 72 24 77 47 Y Y Y

DTXCID 
20440

DTXSID 
0020440 Dichlorprop 120-36-5 C9H8Cl2O3 233.98505 CC(OC1=C(Cl)C=C(Cl)C=C1)

C(O)=O 77 89 105 73 Y Y Y

DTXCID 
80442

DTXSID 
0020442

2,4-Dichloro 
phenoxyacetic acid 94-75-7 C8H6Cl2O3 219.9694 OC(=O)COC1=C(Cl)C=C(Cl)

C=C1 115 2614 175 173 Y Y Y

DTXCID 
00446

DTXSID 
0020446 Diuron 330-54-1 C9H10Cl2N2O 232.01702 CN(C)C(=O)

NC1=CC(Cl)=C(Cl)C=C1 110 1257 132 252 Y Y Y

Table 1.  Chemical metadata for a subset of chemicals defined by DTXCID.
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