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Simple Summary: Lameness due to musculoskeletal disease is the most common diagnosis in
equine veterinary practice. Many of these orthopaedic disorders are chronic problems, for which
no clinically satisfactory treatment exists. Thus, high hopes are pinned on regenerative medicine,
which aims to replace or regenerate cells, tissues, or organs to restore or establish normal function.
Some regenerative medicine therapies have already made their way into equine clinical practice
mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders
with promising but diverse results. This review summarises the current knowledge of commonly
used regenerative medicine treatments and critically discusses their use.

Abstract: Musculoskeletal injuries and chronic degenerative diseases commonly affect both athletic
and sedentary horses and can entail the end of their athletic careers. The ensuing repair processes
frequently do not yield fully functional regeneration of the injured tissues but biomechanically
inferior scar or replacement tissue, causing high reinjury rates, degenerative disease progression and
chronic morbidity. Regenerative medicine is an emerging, rapidly evolving branch of translational
medicine that aims to replace or regenerate cells, tissues, or organs to restore or establish normal
function. It includes tissue engineering but also cell-based and cell-free stimulation of endogenous
self-repair mechanisms. Some regenerative medicine therapies have made their way into equine
clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative
joint disorders with promising results. However, the qualitative and quantitative spatiotemporal
requirements for specific bioactive factors to trigger tissue regeneration in the injury response are still
unknown, and consequently, therapeutic approaches and treatment results are diverse. To exploit the
full potential of this burgeoning field of medicine, further research will be required and is ongoing.
This review summarises the current knowledge of commonly used regenerative medicine treatments
in equine patients and critically discusses their use.

Keywords: regenerative medicine; musculoskeletal; equine; horse; stem cell; platelet-rich plasma;
autologous conditioned serum; orthopaedic

1. Introduction
1.1. Equine Musculoskeletal Disease: Clinical Need and Burden of Disease

Lameness due to musculoskeletal disease is the most common diagnosis in equine
veterinary practice [1,2]. Correspondingly, orthopaedic problems are the primary cause of
loss of use and death in athletic horses [3–9], causing more than 70% of days-lost to training
in both show jumpers and racehorses [4,5,8]. While the prevalence of lameness increases
with age, reaching 51% in horses aged 15 years and older and 77% in geriatric horses above
30 years [4,10,11], even in a cohort of 4–5-year-old horses, 24% showed moderate to severe
orthopaedic clinical findings at a standard riding horse quality test [3,4,12].

The type and anatomical location of the musculoskeletal problems differ between
athletic disciplines, competition levels and age [2,5,13,14]. Although the causes of lameness
in horses competing at low levels of dressage and show jumping are very similar to
each other and those of pleasure horses, different injury predispositions emerge in the
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various sports with increasing level of competition and athletic demands, placed upon the
horse [13,14]. Generally, articular and tendon/ligament disorders, due to their insufficient
healing capacity and the consequent tendency to develop chronic disorders, have by far
the greatest clinical relevance in most disciplines [4]. The superficial digital flexor tendon
(SDFT) is commonly injured in racing, elite eventing and show jumping and distal deep
digital flexor tendon (DDFT) in elite show jumping [14]. Dressage horses are at a higher
risk of hindlimb and racehorses of forelimb suspensory desmitis [14]. Additionally, foot
pain and degenerative joint disease (= osteoarthritis, OA) of the distal tarsal joints are
frequent clinical findings in sport horses and barrel racers [13,15], while in Thoroughbred
racehorses stress fractures, carpal and metacarpo-/metatarsophalangeal joint injuries are a
significant cause of morbidity [4,7,16,17]. In aged horses, OA and chronic laminitis are the
most common disorders [4]. The importance of musculoskeletal disease in equine practice
is emphasised by lameness being the principal reason for the euthanasia of geriatric
horses [4,5,18]. Additionally, previous musculoskeletal problems almost doubled the
incidence-rate ratio of training days-lost due to orthopaedic injury, further highlighting the
clinical demand for regenerative treatments [4,5,18].

1.2. Regenerative Medicine Overview: Development of the Field, First Successes, Challenges
Preventing Wide-Spread Implementation

Regenerative medicine (RM) is an emerging, rapidly evolving branch of translational
medicine that aims to replace or regenerate cells, tissues, or organs to restore or establish
normal function lost due to disease, damage, age, or congenital defects [19,20]. RM is a
broad field that includes tissue engineering (TE) but also cell-based and cell-free stimulation
of endogenous self-repair mechanisms in organs and tissues. In equine practice, several
regenerative therapies, such as mesenchymal stem cells (MSCs), platelet-rich plasma
(PRP), autologous conditioned serum (ACS) and autologous protein solution (APS), have
entered clinical use for various musculoskeletal indications over the last decade (Figure 1).
However, the field of RM still has to live up to high hopes and expectations placed on it,
both from a medical and financial viewpoint.
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Figure 1. Illustration of the equine musculoskeletal diseases discussed in this review and the harvest
sites for bone marrow (from the sternum), adipose tissue (from the tail head) and blood (from the
jugular vein) for mesenchymal stem cell (MSC) isolation, respectively, for platelet-rich plasma (PRP)
and autologous conditioned serum (ACS) preparation.

Although promising results were achieved in multiple experimental and preclinical
studies, case reports and even first small randomised and controlled studies, large placebo-
controlled studies are still scarce [21–23]. Furthermore, the field of RM faces several
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challenges like the lack of well-defined cells to be used as therapeutics and insufficient
understanding of their mode of action.

To exploit the full potential of tissues to heal, our understanding of how reparative pro-
cesses are mediated and may be directed towards regeneration rather than scarring repair
needs to be improved. Currently, the mechanisms of the tightly regulated process, involv-
ing the interplay of growth factors, cytokines, proteinases, and cellular mediators combined
with differences in cellular density, proliferation rate, inflammatory response, extracellular
matrix (ECM) composition and synthetic function, are still poorly understood [24–26].

Only the answers to the questions arising from these challenges will allow the field to
gain well-founded evidence-based results—putting years of preclinical and in vitro experi-
ence onto a basis which will pave the way for large scale and routine clinical applications.

The field of equine regenerative medicine involves much pioneering work with vari-
able treatment protocols using different routes of administration and/or dosages of cells
respectively bioactive factors, which may contribute to the discrepancies between promis-
ing experimental in vitro as well as in vivo results and clinical effectiveness [27]. Hence,
intensive research efforts are still ongoing and required to find ways to exploit the maximal
potential of RM. As the field is still in its infancy and rapidly evolving, this review also in-
cludes in vitro studies and basic science papers as well as case reports as indicators of new
developments and possibilities in equine RM. The detailed information of all referenced
in vivo studies conducted in horses or using equine cells is summarised in Supplementary
Materials Table S1.

1.2.1. Mesenchymal Stem Cells

One major tool of RM are mesenchymal stem cells (also known as multipotent
mesenchymal stromal cells, multipotent stromal cells, medicinal signalling cells, MSCs).
MSCs are defined as plastic adherent cells with the ability to differentiate into osteoblasts,
adipocytes and chondroblasts in vitro, which express a characteristic panel of markers,
including CD105, CD73 and CD90, while lacking expression of surface molecules spe-
cific to other cell types [28]. While bone marrow and adipose-derived stem cells are the
best-researched stem cell sources of humans and animals, perinatal sources such as cord
blood, umbilical cord tissue, amniotic membranes, or amniotic fluid are also commonly
used [29–50].

MSCs show different intrinsic properties depending on their tissue of origin as well as
donor age [29]. To further our understanding of their therapeutic potential and optimise
their clinical application, it is essential to study the properties and specificities of MSCs
derived from different sources. This is exemplified by the higher proliferation rate, longer
lifespan, and lower immunogenicity of juvenile MSCs derived from perinatal tissues
compared to cells from adult donors [33,51–54]. Additionally, juvenile MSCs have a
broader differentiation capability towards cell types of endo- or ectodermal origin [33,46].

Initially, isolated and culture-expanded MSCs were thought to regenerate tissue via
engraftment and differentiation [55]. However, since the survival and engraftment of
MSCs in the target tissue following transplantation are negligible, mounting evidence
suggests that MSCs exert their therapeutic effect predominantly by secreting bioactive
factors (the “secretome”) that modulate the immune response, reduce inflammation, inhibit
cell death, and induce and stimulate endogenous regeneration [56–63]. While already many
clinical trials exploring the use of MSCs for the treatment of a wide variety of diseases are
ongoing, their intrinsic properties and mechanism of action, as well as the role of their
microenvironment in modulating their behaviour and function are not yet fully understood
and require further study to achieve their full therapeutic potential [57,62,64–66].

1.2.2. Autologous Blood Products

In addition, autologous blood products, the effect of which is based on the secretome
of blood cells, are employed in regenerative medicine. Autologous blood products are
minimally manipulated medicinal products, comprising plasma- or serum-based blood
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derivates, obtained from the patient’s own blood. Based on their contents, different prod-
ucts with different properties are distinguished. The best-researched and hence clinically
most frequently applied products are PRP and ACS. Both PRP and ACS aim at reducing
inflammation, protecting intact and newly formed tissue, recruiting cells such as MSCs,
macrophages, and other pro-regenerative cells and at supporting neovascularisation by
supplying growth factors, cytokines, and nutrients. Autologous blood products are used
clinically to treat tendon, ligament, cartilage, and bone pathologies [64]. However, the com-
position of these products may vary considerably depending on inter- and intraindividual
factors (physiologic state of the patient, status of the immune system, day time, time of
year, etc.) and the sample processing technique (centrifugation time and force, number of
centrifugations, activation, incubation, etc.) [65–67], impeding comparison of study results.
Therefore, product and study standardisation are significant research challenges, which
need to be overcome to achieve reliable therapeutic outcomes.

PRP is derived from the liquid phase of blood through centrifugation to increase the
platelet concentration. It is defined as a volume of plasma with a platelet count greater
than whole blood [68]. As compared to ACS, it is obtained from anticoagulated blood
without incubation. The therapeutic effect of PRP is mainly caused by degranulation of
the platelets’ alpha-granules, which leads to the release of a plethora of growth factors and
cytokines, including platelet-derived growth factor (PDGF), insulin-like growth factor (IGF),
transforming growth factor-beta (TGF- β1), vascular endothelial growth factor (VEGF),
fibroblast growth factor (FGF), and platelet-derived epidermal growth factor [68,69].

The relevance of absolute platelet concentrations for the treatment effect is yet uncer-
tain. The current recommendation was extrapolated from human medicine and suggests
that a viable platelet concentrate should contain 3–5× baseline platelets [68]. However,
substantiating evidence is scarce. Similarly, the role of leukocytes (white blood cells, WBCs)
in PRP is discussed controversially. On the one hand, neutrophils release proinflammatory
cytokines, matrix metalloproteinases (MMPs) and reactive oxygen species which may
exacerbate the disease or disorder to be treated [68–71]. On the other hand, WBCs increase
the concentration of growth factors in PRP and, may hence elicit a beneficial effect [72].
Currently, there is no conclusive evidence indicating that white cells should be either
included or depleted from PRP.

ACS is a cell-free product obtained from the liquid phase of blood after coagulation
(coagulation takes place during a defined conditioning/incubation phase) and centrifuga-
tion, which is free of coagulation factors such as prothrombin and fibrinogen but contains
globulins and albumin. During coagulation/incubation with borosilicate beads, platelets
and white blood cells in the blood sample are activated to release growths factors and
cytokines [73]. The spectrum of released factors is similar to PRP, but the concentration
is different because, in contrast to PRP, platelets are not enriched. The therapeutic effect
of ACS may further be related to higher levels of IL-1Ra (Interleukin 1 Receptor Antago-
nist Protein) and IGF which are thought to be central players inhibiting the destructive
cytokine cascade in degenerative joint disease [64,74,75]. However, incubation time and
conditions may have a considerable influence on ACS cytokine and growth factor content
and concentration and should, therefore, be carefully evaluated [76].

In contrast to PRP, ACS is injected three times, with a widely used treatment interval
of one week, but the treatment intervals vary between different studies [77].

Finally, ACS has one practical advantage over PRP: ACS is cell-free and can hence
easily be frozen and stored as compared to PRP. However, recently first reports describing
possible storage conditions for PRP were released [78,79].

2. Regenerative Therapies by Disease Area
2.1. Tendon/Ligament
2.1.1. Clinical Need and Burden of Disease

Pathologic changes in tendons due to repetitive use and overstrain, with exercise
and ageing as significant contributing factors, are amongst the most frequently occurring
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musculoskeletal problems in sport and pleasure horses [80,81] and the leading cause
of injury during racing [82]. The equine superficial digital flexor tendon (SDFT) is the
structure most at risk for suffering an injury with a tendinitis incidence of up to 43% [83–85].
In racehorses, SDFT disease accounts for 89–90% of all tendon and ligament injuries, the
remainder being suspensory ligament injuries [16,86].

Due to the equine quadruped-specific anatomy characterised by the proximally lo-
cated muscles and the distally located tendons in combination with the hyper-extended
metacarpophalangeal joint, equine tendons are exposed to enormous forces during an
athletic workout. Maximal strains in the SDFT range around 16%, which is close to the
functional limit, during galloping in Thoroughbreds [84,87]. In addition to positioning
the limb during locomotion, the SDFT functions like a spring, storing energy during the
stance and releasing it during the swing phase. Only intact molecular composition and
organisation enable tendons to fulfil these requirements.

Equine tendon healing processes are traditionally classified into three distinct, tempo-
rally coordinated but overlapping phases: the acute inflammatory phase, which begins im-
mediately following injury and lasts only a few days is followed by the subacute reparative
or proliferative phase, which peaks at 3–6 weeks and the chronic remodelling phase, which
can last for 12 months after injury [81–83,88]. However, the repair of adult tendons is slow
and inefficient due to the low cellularity, vascularity and metabolic rate of the tendon and
commonly associated with persistent, non-resolving inflammation, yielding a fibrovascular
scar with significantly inferior biomechanical properties [81,88,89]. Growing evidence sup-
ports the contribution of inflammation to the development of tendinopathy [90]. Although
the posttraumatic inflammatory response is an integral component of the healing response
and is required for debridement following injury, persistent inflammation may be related
to dysregulated degradation and deposition of ECM components and contribute to the
inadequate regenerative capacity of tendons by driving fibrosis [81,88,90–93]. The result-
ing fibrovascular scar is characterised by a disorganised matrix structure and increased
production of proteoglycans, glycosaminoglycans and collagen type III [81,88,90–93]. Dif-
ferences in biomechanical characteristics due to changes in the structure and molecular
composition of the tendon matrix inevitably result in impaired tendon function. Therefore,
even after an apparent initial recovery, reinjury rates of up to 80% and chronic morbidity
are reported [6,29,83,94]. The 10-fold increased risk to sustain SDFT injuries in the 60 days
following veterinary examinations for a tendon problem further confirms the impact of
pre-existing tendon pathologies [95]. As a result, a considerable number of equine patients,
especially racing Thoroughbreds but also event, dressage and show jumping horses, are
forced to end their sporting career early due to tendon injuries [6,80,85].

A controlled exercise program alone or in combination with a variety of conservative
treatments, such as corrective shoeing and nonsteroidal anti-inflammatory drugs (NSAIDs),
is still the gold-standard therapy for equine tendon disease. However, no current treatment
can restore the functional properties of injured tendons. To improve tendon healing, new
treatment strategies, aiming at full restoration of the tendon functionality, need to be
developed, which is only possible if regeneration ad integrum can be achieved. Successful
treatment is likely to require modulation of inflammation and promotion of proresolution
processes with disease-stage specific therapeutic interventions.

2.1.2. Regenerative Therapies

Since the first report suggesting bone marrow-derived MSCs (bmMSCs) for intrale-
sional tendon injection as potential new therapy for injuries of the equine SDFT [29],
MSC therapies have been shown to significantly decrease reinjury rates from 80% [83] to
13–36% [94] and to achieve a more tendon like repair tissue with better histologic archi-
tecture and biomechanical properties of the healed tendon tissue compared to traditional
treatments [87,93,94,96].

However, the mechanisms accounting for the beneficial therapeutic effect are still
not fully understood. What is known so far is, that following MSC transplantation, de-
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creased infiltration of immune cells into the injured tissue, a reduction in proinflammatory
cytokine concentration and an increased expression of anti-inflammatory cytokines is
observed [97,98]. Additionally, MSCs were reported to inhibit the TGF-β1 signalling path-
way, a driving force in fibrosis development. Furthermore, it was shown that autologous
MSCs enhance perfusion and neovascularisation of the healing tendon tissue [99]. In sum-
mary, MSCs are thought to improve the balance between synthesis and degradation of the
ECM and to reduce fibrosis as reviewed by Usunier et al. [97].

Initially, to treat tendon lesions, MSCs were exclusively applied intralesionally. More
recently, it was shown that autologous MSCs applied intravenously, or intra-arterially,
may also elicit a beneficial effect in the treatment of tendinopathies when compared with
anti-inflammatory drugs [30,100–102].

However, there are also studies which show that the effect of a single intralesional
treatment with autologous MSCs may be limited [22,103]. Therefore, some studies have
investigated the effects of combining MSCs with PRP or other blood-products or tenogeni-
cally differentiating MSCs for tendon repair to improve clinical outcome and prolong
therapeutic effects [104–106]. Additionally, conditioned medium obtained from amni-
otic membrane progenitor cells has been investigated, based on the notion that the MSC
treatment effect is mainly based on their paracrine activity [107].

To broaden the spectrum of stem cell sources available for clinical applications and
reduce time to injection, allogeneic MSC applications moved into the focus of interest. Lack
of MHC II in MSCs was proven in multiple studies and administration of allogeneic cells in
most cases did not result in an adverse or inflammatory reaction that would compromise
their use [108]. Thus, MSCs are considered safe for allogeneic administration [109], which
has opened the way for the application of allogeneic MSCs derived from cord blood,
cord tissue or amnion to utilise the potentially higher regenerative capacities of juvenile
cells [35,106,107,110].

Over the past decades, PRP has become a common treatment for tendon injuries and
suspensory ligament desmitis. PRP contains specific growths factors, such as PDGF, IGF,
TGF- β1, VEGF and FGF, which play important roles in tendon and ligament healing [69].
Results of an in vitro study suggest that the beneficial effect of platelet-rich gel supernatants
may lie in mediating the release of anti-inflammatory cytokines, inhibiting IL-1β, and
increasing release of IL-4, IL-1Ra and PDGF [111].

Several studies have shown promising effects leading to improved neovascularisa-
tion, better organisation of the collagen network and higher strength of the regenerated
tissue, after treatment with PRP as compared to controls [21,64,112–115]. In one of the
rare prospective, randomised controlled trials Geburek et al. showed that a single intrale-
sional treatment with PRP could contribute to an earlier reduction of lameness and an
advanced organisation of repair tissue compared to saline treatment. In particular, it was
demonstrated that the fibrillar matrix is getting organised into fascicles [21].

In racehorses, a beneficial effect on rehabilitation time, numbers of horses returning
to racing and numbers of races entered after PRP treatment compared to controls was
reported [116,117].

However, in several in vitro as well as in vivo studies, in which the effect of PRP
was compared to other treatments, PRP did not always lead to the best outcome. When
comparing PRP treatment to extracorporeal shock wave therapy, both RRP and EST lead
to positive results [23]. Horses with more severe ultrasound changes responded better
to PRP, but more horses treated with shock wave therapy returned to work [23]. The
comparison of bone marrow and adipose tissue-derived MSCs to PRP revealed clear
positive effects of all treatments compared with the controls. However, bmMSCs resulted
in a better outcome than PRP and adipose-derived MSCs [38]. Similarly, in an in vitro
study comparing the gene expression patterns and DNA content of suspensory ligament
explants, it was concluded that acellular bone marrow might be preferable over PRP as
a blood-based biological for suspensory ligament tissue regeneration based on its more
stable stimulation of decorin and COMP expression [113]. While PRP may have an anabolic



Animals 2021, 11, 234 7 of 30

effect on matrix synthesis by suspensory ligament fibroblasts, the effect was even greater
with acellular bone marrow [112].

However, despite all these studies, comparison of therapeutic efficacy remains tricky
because of the different study protocols and PRP preparation techniques used [64]. Nonethe-
less, initial results are promising and warrant further investigation using standardised
study and PRP preparation protocols.

The efficacy of ACS in treating equine naturally occurring tendinopathies was also
evaluated, although it is predominantly used for the treatment of osteoarthritis [118].
The results of the study demonstrated an early significant reduction of lameness and
temporary improvement of ultrasonographic morphology of the repair tissue. Furthermore,
ACS treatment decreased proliferation and increased ECM productivity of tenocyte as
demonstrated by elevated collagen type I expression [118].

2.2. Osteoarthritis
2.2.1. Clinical Need and Burden of Disease

Osteoarthritis (OA) is the primary cause of lameness and thus of disability to perform
in horses [4,119]. Indeed, approximately 60% of equine lameness is related to OA [119,120].
In horses older than 15 years, the prevalence of OA is greater than 50%, and in horses over
30 years, it increases to 80–90% [4,11,121].

OA is a complex, multifaceted disorder, which is characterised by cartilage degenera-
tion, inflammation, (premature) cartilage ageing, chondrocyte senescence and phenotypic
transitions (dedifferentiation and hypertrophic differentiation of chondrocytes). However,
it is a disease of the entire joint, affecting all articular tissues because of their physical and
functional association [122]. OA may occur as a result of a variety of predisposing factors
such as age, mechanical injury, genetics, gender, metabolic dysfunction and obesity that
incite a cascade of pathophysiological events within articular tissues [123,124]. Irrespective
of the initiating factor(s), the pathogenesis of OA follows a common molecular pathway,
which is orchestrated by intricate crosstalk between chondrocytes, synovial macrophages
and fibroblasts, osteocytes and osteoblasts and infiltrating leukocytes as well as the ECM
of articular tissues and synovial fluid (Figure 2) [124–133]. OA manifests in cartilage
degradation, fibrillation and mineralisation, loss of type II collagen and proteoglycans, in-
creased chondrocyte synthetic activity, proliferation and apoptosis, synovial inflammation,
hyperplasia and hypertrophy, subchondral sclerosis, and osteophyte formation [123,134].

Chondrocytes in physiologic adult articular cartilage are phenotypically stable, matu-
rationally arrested, differentiated cells that maintain tissue homeostasis by synthesising a
very low level of ECM to replace damaged matrix molecules, thereby preserving the struc-
tural integrity of the cartilage matrix [135]. OA is associated with the loss of constraints
that maintain the correct chondrocyte phenotype, the physiologically tightly regulated
low turnover of the ECM of articular cartilage and the functionality of central homeostatic
mechanisms [136]. The normally quiescent chondrocytes undergo a phenotypic shift in re-
sponse to injury and become activated, characterised by cell proliferation, cluster formation
and increased production of both extracellular matrix proteins and matrix-degrading en-
zymes [137]. One of the most striking features of OA is the high phenotypic pleomorphism
and substantial heterogeneity in gene expression patterns and cellular responses displayed
by osteoarthritic chondrocytes in contrast to their physiological counterparts [135]. Many
of the biological changes in osteoarthritic chondrocytes mimic the differentiation patterns
in foetal skeletogenesis [135]. In particular, hypertrophic differentiation of chondrocytes
is normal during the development of cartilage and endochondral bone and appears to be
aberrant in OA [135,138].

The pathophysiological events are driven principally by an early innate immune
response that progressively catalyses degenerative changes. Much of the innate immune ac-
tivation and cytokine production in the OA joint is attributed to synovial proinflammatory
macrophages, the key effectors of synovial inflammation, that show significantly grow-
ing numbers with increasing grade of inflammation, but fibroblast-like synoviocytes and



Animals 2021, 11, 234 8 of 30

chondrocytes also substantially contribute to OA pathogenesis [139–145]. Cartilage ECM
degradation products released into the synovial microenvironment further stimulate the
production of catabolic and proinflammatory mediators and proteolytic enzymes, creating
a vicious cycle of cartilage breakdown and synovial inflammation [136,145,146].
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In addition to contributing to cartilage breakdown, the inflamed synovium has a
significant role in the osteoclastogenesis of subchondral bone in OA. Subchondral bone is a
source of inflammatory mediators implicated in clinical OA pain, hypertrophic differentia-
tion of chondrocytes and the degradation of the deep layer of cartilage and is involved in
the abnormal distribution of stress on the bone–cartilage interface secondary to sclerosis
and remodelling of the subchondral bone [124,147–149]. The interplay between damaged
articular tissues and infiltrating immune cells contributes to chronic inflammation, the loss
of cellular homeostasis, an imbalance between matrix synthesis and degradation and thus
disease progression [132,138,150].

Exposure to inflammatory and oxidative mediators also enhances premature stress-
induced senescence and ageing of chondrocytes resulting in an accumulation of senescent
cells in the superficial layer of the articular cartilage and the synovium in OA, which in
turn secrete a variety of inflammatory cytokines and matrix-degrading proteases known
as the senescence-associated secretory phenotype (SASP) [151]. The SASP influences cell
plasticity and propagates senescence and inflammation to surrounding cells and tissues,
contributing to the degenerative microenvironment of OA. Cellular senescence, inflamma-
tion and metabolic abnormalities driven by OA-associated risk factors are accompanied
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by epigenetic modifications, which also have an essential role in regulating chondrocyte
hypertrophy and catabolic processes.

Adult articular cartilage has very limited ability for self-repair and current treatment
strategies, such as NSAIDs and intra-articular injections with corticosteroids, are only
palliative in nature and have little impact on the progressive degeneration of articular
cartilage [152–156]. Consequently, there is a large unmet need for efficacious disease-
modifying therapies, and thus a growing interest in regenerative medicine approaches.

2.2.2. Regenerative Therapies

Currently, debridement and marrow stimulation techniques are still the main tech-
niques used to treat equine cartilage defects. These techniques are simple and cost-effective
but do not lead to regeneration of articular cartilage [157]. Additionally, autologous chon-
drocyte implantation (ACI) and matrix-induced autologous chondrocyte implantation
(MACI), which were shown to improve clinical outcome, do not result in restoration of
hyaline cartilage with equivalent biomechanical properties as the native tissue [157–160].
Furthermore, the complexity of these procedures and the high costs, are serious drawbacks
for routine applicability in equine surgery [157]. There is thus an ongoing search for novel
techniques that would sustainably restore the form and function of articular cartilage.

MSCs are considered a promising cell type for cartilage repair [55]. Preclinical and
clinical studies in rats, goats and humans have demonstrated the potential of MSCs to
improve joint function and patient’s osteoarthritis index (WOMAC, Western Ontario and
McMaster Universities Osteoarthritis Index), to reduce pain and to decrease the size of car-
tilage lesions following intra-articular injection [161–163]. Furthermore, they may support
hyaline regeneration by modulating joint homeostasis [63,164]. However, several studies
in horses showed that despite the improvement of clinical symptoms and histologic ap-
pearance of the cartilage repair tissue [164–167], MSC therapies in the long-term still do not
achieve regeneration of hyaline cartilage, but yield inferior fibrocartilaginous repair tissue
at the defect site [157]. This may in part be due to the limited survival and engraftment of
MSCs and the harsh biomechanical and inflammatory environment of the osteoarthritic
equine joint [157].

To further improve the effect of MSC therapies proinflammatory or chondrogenic
priming strategies for MSC prior to injection were tested, the latter of which was proven
to be safe although differentiation of equine bmMSCs may increase the expression of
immunogenic proteins [31,168,169]. Additionally, the intra-articular administration of
allogeneic and even xenogeneic MSCS for the treatment of OA has been tested in multiple
clinical studies in horses with equivocal results [156,170,171]. Although some studies show
an immune reaction to allogeneic and xenogeneic stem cells [172], the immune response
in vivo seems to be mild, and allogeneic MSCs application has been reported to be safe for
intra-articular use in equine patients [173–176].

To eventually reach the goal of hyaline cartilage regeneration, further well-designed,
prospective, randomised controlled and standardised in vitro as well as in vivo trials will be
required to compare novel technologies to current ‘gold standard’ clinical approaches [157].

Due to its reported anabolic and anticatabolic effects on articular chondrocytes, PRP
became a promising treatment option for OA [177,178]. Despite multiple caveats regarding
the intra-articular administration of PRP, which are mainly based on its proinflammatory
potential due to its leukocyte content, complement activation capability and the fact that
PRP coagulates following injection, it is nowadays increasingly being used and studied
in the context of OA [179–194]. Most clinical studies performed in horses reported a
beneficial effect after an initial transient exacerbation of joint inflammation which seems
to have no long-term deleterious effects on joint homeostasis [182,195]. This was also
confirmed by PRP injections into healthy equine joints [196,197], but the safety of intra-
articular PRP administration in general and different PRP preparations in particular is still
controversially discussed. For example, it was shown that thrombin activation prior to
application could cause increased joint effusion and periarticular signs of inflammation
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indicating that thrombin activation may not be recommended for PRP for intra-articular
application [196]. In vitro results further indicate that the anti-inflammatory and anabolic
effects of the platelet products depend on the concentration and the cellular and molecular
profile of the PRP-derived product used as well [178,181].

In vivo results are also not uniformly positive but show a beneficial trend in most
equine studies. One study demonstrated significant improvement in lameness grade, range
of motion and gait kinetics after PRP injection into OA joints [198]. In another study, in
which platelet lysate was used to treat OA of the distal interphalangeal joint nine out of 10
horses returned to full athletic use. As expected, no significant radiographic improvements
and hence no full joint regeneration was observed, and horses gradually returned to their
initial degree of lameness [199]. In contrast, PRP treatment did not lead to statistically
significant gait improvement in horses with moderate to severe forelimb OA, [200].

In summary, the effects of platelet products vary greatly based on the research model
and cellular content of the platelet product [181].

Similarly, the results of several studies evaluating the efficacy of ACS for treating OA
have been equivocal [75], which may be due to the considerable interindividual variability
of cytokine- and growth factor content of ACS and the fast clearance from the synovial
fluid after intra-articular injection [74,75,201]. On the one hand, ACS has been shown to
significantly alleviate clinical symptoms of OA in horses and improve histologic findings
compared with placebo controls [202]. On the other hand, in a clinical trial including 19
horses, 11 responded to treatment, whereas eight did not [74].

The therapeutic benefit of ACS may be related to its high levels of IL-1Ra [74,75,202].
Interleukin 1 beta (IL-1β) is a major driver in the development and progression of OA.
Therefore, antagonising IL-1β seems to be an obvious strategy to treat OA and slow down
disease progression [203]. Nonetheless, the concomitant elevation of other factors suggests
that these cytokines may play an essential role in clinical improvements as well [73].

However, in ACS similar to PRP not only anti-inflammatory (IL-1Ra, TGF-β, IL-10)
but also proinflammatory cytokines (IL-1β, IL-6, TNF-α, and OSM), in particular TNF-α,
may be increased and concentrations of contained cytokines and growth factors may vary
greatly [73,77]. For clinicians, it is particularly important to consider that surgical stress
may influence the cytokine content of ACS [73,204].

Nonetheless, the results of in vitro and in vivo trials using ACS for the treatment of
OA are promising and indicate a potential disease-modifying and anti-inflammatory effect.
Treatment with ACS caused upregulation of IL-10 expression in synovium and of type II
collagen and aggrecan expression in cartilage explants. In contrast, PGE2 concentrations
were significantly reduced following treatment with ACS [205]. In a recent in vivo study,
a long-time beneficial effect of ACS applied to osteoarthritic horses at two-day intervals was
shown, based on synovial fluid IL-1Ra, IL-1 β, C12C, CP II, and CS 846 concentrations [77].

In this context, it is essential to emphasise, that, in contrast to PRP, ACS is obtained
from the liquid phase of the blood after coagulation and that hence the caveats associated
with the fibrin content of PRP and the coagulation post-injection do not apply for ACS.

2.3. Meniscus
2.3.1. Clinical Need and Burden of Disease

The lateral and medial menisci are C shaped wedges of fibrocartilage located between
the femur and the tibia in the stifle joint [206,207]. Both contain a thicker convex portion at
the peripheral edge and a thinner concave part towards the central edge, a concave femoral
surface, and a flat tibial surface. The menisci have ligamentous attachments to the femur,
tibia, joint capsule, and one another [206,208]. There are several crucial functions of the
menisci such as stabilisation of the joint, increasing joint congruity, assisting with joint
lubrication, shock absorption, load transmission and stress reduction [206,207].

Lameness originating from the stifle joint is relatively common in horses, and meniscal
injury is one of the primary sources of pain in this joint. In two studies, the incidence of
meniscal injury was as high as 34% [209] and 68% [210] of horses with stifle injury that
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underwent arthroscopy. Meniscal injury in horses is frequently diagnosed with concurrent
pathologies such as soft tissue damage, osteoarthritis, and cartilage defects and less often
with subchondral bone cysts [208–213]. The most common meniscal injury is tearing of
the cranial horn of the medial meniscus and its associated cranial meniscotibial ligament.
Although those tears are frequently diagnosed with other lesions, they are commonly
recognised as the main cause of lameness [209,210,212–215]. Initiation of the tear takes
place usually at the cranial meniscotibial ligament and extends longitudinally further into
the cranial horn. Due to this characteristic appearance, a grading system was created
with a higher grade involving greater separation of tissues and further extension into the
cranial horn [206–208,212–214]. Meniscal injury in horses, unlike in other species such as
humans and dogs, rarely involves injury of the cruciate and collateral ligaments and the
pathophysiology behind it is still mostly unknown [212,213]. Few studies were conducted
in recent years for better understanding of meniscal tear pathogenesis. It was shown that
the cranial meniscotibial ligament appears to be comprised of two units, which become
more visually distinct as the stifle is extended. During hyperextension of the stifle joint
in horses, the abaxial component of the ligament faces very high tensile forces that may
place this region at greater risk of injury [215]. Additionally, since the cranial horn is firmly
attached to the tibia, during extension, significant translocation and deformation occur at
this region [216].

Diagnosis of soft tissue injuries in the stifle joint can be challenging due to the size
and location of the joint, and the unspecific clinical signs. As a result, diagnosis is usually
based on a combination of imaging modalities such as radiography, ultrasonography
and magnetic resonance imaging (MRI) [212,216–218]. The gold-standard treatment for
diagnosed meniscal tears is endoscopy for partial meniscectomy and debridement of
debris [209,210,212,213]. The configuration of the joint in horses and the inaccessibility
of the menisci make it almost impossible to apply other repair techniques as used in
human medicine such as suturing or replacements [212]. Conservative treatment including
rest, pain and anti-inflammatory drugs and intra-articular medications is also available,
although outcome assessment is lacking in current data [212].

The prognosis for return to athletic use depends on the severity of the disease (grade
of the tear) and the presence of concurrent pathologies but is overall considered guarded at
best. In the few case series that assessed outcome in stifles’ soft tissue injuries, return to
activity was noted in approximately 40% of cases [209,210,212,213]. Due to the relatively
low success rates of current therapies, regenerative approaches have gained more interest
in recent years and achieved some encouraging results [178,219–222].

2.3.2. Regenerative Therapies

An in vivo study reporting regeneration of meniscal tissue following local delivery
of adult MSCs to injured joints in a caprine model of OA [219], raised high hopes for the
regeneration of injured meniscus tissue, which were further encouraged by several in vitro
studies for equine meniscal cells and explants [178,220–222].

However, to date, progress is very limited, and no tissue engineering approaches are
available for equine patients suffering from meniscus injuries. The complex structure of
the meniscus’ ECM, the heterogeneous cell shapes and properties and the rigorous biome-
chanical loading menisci are exposed to in vivo, constitute major challenges for meniscus
tissue engineering. Ideally, a meniscus implant should resemble the size, shape, vascularity,
and biomechanical properties of a natural meniscus to comply with the load-distributing
demands in the knee. Available meniscus implants (exclusively for application in hu-
mans) use allograft menisci, autologous tissues such as perichondrium or tendon, natural
scaffold materials such as fibrin, hyaluronan and collagen, or synthetic materials such
as polycaprolactone-urethane, Teflon, or polyurethane [223,224]. Natural materials have
also been combined with cell seeding [225]. Besides the obvious lack of vascularisation,
current implants do not sufficiently reflect the microstructure and anisotropic tensile prop-
erties of native menisci. Their common limitations include inferior load-bearing properties
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and non-physiologic distribution of loads in the knee, leading to controversial clinical
results [225–228]. The different biomechanical properties of these implants compared
to native tissue highlight the need for cellular ingrowth and formation of ECM to gain
sufficient biomechanical properties [227–229]. The 3D environment is an essential feature
of engineered meniscus constructs to facilitate a stable fibrochondrogenic phenotype and
increased fibrochondrogenesis. An attempt to address these challenges for the equine field
was made by Kremer et al., who cocultured meniscal cells and MSCs in collagen type I
hydrogel on a small intestinal matrix [221]. Unfortunately, the developed construct does
not yet meet the biomechanical resilience to replace native meniscus tissue adequately and
lacks vascular supply.

In another study, equine meniscus sections were reapposed with fibrin glue or fibrin
glue plus equine bmMSCs and implanted subcutaneously into nude mice [230]. After
harvesting, constructs with bmMSCs showed significantly increased vascularisation, sub-
jectively decreased thickness of the developed repair tissue and increased bonding of the
meniscus sections as compared to fibrin alone [230].

However, despite promising in vitro and in vivo results, equine meniscus regeneration
is not yet ready for clinical implementation, and several challenges, including implantation
of a tissue-engineered meniscus construct into an equine knee, still need to be overcome.

The treatment of confined meniscus defects might be comparatively more straightfor-
ward. Investigations into the in vivo regenerative capacity of a collagen scaffold seeded
with MSCs which was implanted into a standardised equine meniscus defect showed
fibrocartilaginous regeneration 12 months after treatment as compared to the controls
which were only partially or not repaired at all [231].

2.4. Bone
2.4.1. Clinical Need and Burden of Disease

Bone physiology, pathology, and repair play an important role in equine medicine,
mainly due to the challenges of fracture repair. Although other applications, such as the
treatment of bone cysts [232,233], have gained some interest in recent years, most of the
equine bone research is focused on fracture repair [234–243].

Fractures in horses are difficult to treat and often lead to euthanasia either due to
the primary injury or complications that follow. Furthermore, equine fractures and their
treatments involve significant expenses and hold great economic interest, especially in
racehorses [239,242,244–247]. The incidence of fractures in racehorses can be as high as
1–2% per race start, and it might involve either the front or the hind limbs [246–248].
Fractures in racehorses are the most common severe musculoskeletal injury, accounting
for up to 74% of fatal injuries during racing [17–19]. Many studies were conducted to try
and recognise risk factors for horses’ fatalities during racing, in the attempt to develop
prevention strategies and to improve animal welfare and riders’ safety [16,243,246,249–252].

Due to their heavy weight and the requirement for rapid return to full weight-bearing
on all four limbs to prevent the development of support limb laminitis, fracture repair
and management is more challenging in the horse than most other species. Complica-
tions of osteosynthesis are common in equine patients and include infection, instability,
contralateral limb laminitis, angular limb deformities and cast sores [234]. Additionally,
refracture during recovery from surgery is a major concern [234]. Therefore, case selection
for osteosynthesis should be done carefully and consider many criteria such as horse
characteristics (weight, age, temperament), fracture configuration, available equipment,
and costs [253].

Numerous studies were conducted to improve treatment options and strategies for
fractures and to reduce complications [234,242,244,245,254–263]. However, despite ad-
vances in surgical technique, implant design, antimicrobial delivery, and perioperative
care [234,254–256,260–269], the difficulties facing equine fracture patients are still manifold.
As a result, considerable interest has been shown in recent years regarding new biological
approaches for bone healing.
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2.4.2. Regenerative Therapies

Due to the urgent clinical need, a variety of regenerative approaches have been de-
veloped to accelerate osteogenesis. Bone healing is a complicated, tightly orchestrated
process with three overlapping phases, each characterised by different cellular and molec-
ular features and extracellular matrix components: an inflammatory phase, a reparative
phase (also named the callus formation phase) and a remodelling phase. Immediately
following trauma, a hematoma forms at the injury site and an inflammatory response is
elicited, initiating the influx of immune and mesenchymal progenitor cells and the release
of bioactive factors essential for angiogenesis and bone repair. During the remodelling
phase, first a fibrocartilaginous and then a bony callus is formed providing more stability
and vascularisation. In the final phase of fracture healing, excess callus is resorbed, and the
normal bone architecture restored [235–237,262,270–272]. New therapeutic approaches are
based on and utilise some of the cells, growth factors, cytokines and signalling molecules
involved in bone regeneration [235–237,239,273–276]. For example, bone morphogenetic
protein-2 (BMP2), which plays essential roles in cell differentiation and osteoinduction, has
been used successfully to enhance bone healing [235–237,241,272,273].

Recruitment of MSCs from the bone marrow, and other progenitor cells originating
from the periosteum or endosteum, is crucial for bone healing. At the fracture bed, those
cells can differentiate to chondroblasts or osteoblasts, which will give rise to either chon-
drocytes or osteocytes, the main cells in cartilage and bone, respectively. Due to their
substantial contribution to bone healing, it is not surprising that most regenerative therapy
strategies for bone healing are based on stem cells, with or without the support of different
growth factors or scaffolds. MSCs can be isolated from different sources and used in their
progenitor form or after differentiation [235–237,275]. It is still unclear if the source and
differentiation pattern of the cells have a significant effect on bone healing, mostly since
the field is still lacking in clinical studies.

Nevertheless, research in the field reveals different results regarding stem cell ca-
pacities in bone healing and the importance of their source and differentiation. MSCs
isolated from bone marrow were shown to have better osteogenic properties than other
sources [41]. The same osteogenic capacity was noted in equine induced pluripotent stem
cells (iPSCs) [277]. In another study, equine bmMSCs injected with fibrin glue in a murine
model, were able to support bone formation much better than MSCs originated from mus-
cle or bmMSCs injected without the scaffold. All cells in this work underwent osteogenic
differentiation prior to injection [278]. Less encouraging results were shown in a study
using ostectomy of the 4th metacarpal bone as a fracture model. In this study, injection of
osteoprogenitor cells with or without fibrin glue did not differ from the control in bone
healing [275]. It is interesting to note that the cell source in this study was the periosteum.
However, since no other cell sources were used, a comparison between the therapeutic
potential of cells from different origins is not possible.

To date, autologous bone grafting is still considering the gold standard when dealing
with equine fractures. Although providing the three key criteria for bone regeneration (os-
teogenesis, osteoinduction and osteoconduction), donor site morbidity is a major limitation
of bone grafting [270,279]. Thus, other grafting techniques are being tested as carriers for
cells and factors or/and as osteoconductive materials. The most common ones in use are
fibrin glue, gelatin, collagen and calcium/tricalcium phosphate ceramics [279]. In a study
by Perrier et al., the use of calcium phosphate cement with BMP2 in a fracture model in
horses showed superior results in bone healing compared to the control group or even the
autologous cancellous bone graft group [241]. Similar promising results could be seen in a
study by Seo et al., which examined the use of gelatin/β-tricalcium phosphate sponges
with different concentrations of bmMSCs and BMP2 [274]. The combination of the sponges
with the cells and BMP demonstrated good bone healing compared to sponges alone or
sponges with cells but without BMP. Best results were evident when the BMP concentration
was high, regardless of the cell amount [280]. With the increasing availability of 3D printers
that enable easier handling and mixing of material in different architectural designs, bone
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replacements are becoming more and more innovative in recent years [238,240]. These
advances hold promise for the future possibility to design replacements based on the
fracture configuration with a wide variety of materials.

As platelets have an essential role in fracture healing by contributing to the hematoma
formation, and later on by releasing growth factors from their alpha-granules, the potential
of PRP to promote bone regeneration seems evident [270]. In a meta-analysis of PRP in
the animal long bone model by Gianakos et al., which included 29 studies, 89% reported
improved bone healing with PRP shown in histology and 100% in radiographs [281].
Administration of PRP in a donkey suffering from delayed healing of a tibia fracture also
reportedly promoted healing within a few weeks following injection [282]. Although
clinical research in the field of PRP (and regenerative therapies in general) for bone repair
is limited, promising results could be seen from in vitro and experimental in vivo trials,
which lay the base for further research in the future.

2.5. Laminitis
2.5.1. Clinical Need and Burden of Disease

Laminitis is a disease characterised by inflammation or disruption of the lamellae
located inside the hoof [283–288]. The epidermal and dermal lamellae connect the hoof
wall and the distal phalanx (aka pedal bone) and thus have a crucial role in maintaining
the normal suspensory apparatus of the hoof. While the epidermal lamellae are non-
sensitive and avascular, the dermal lamellae have a vast vascular network in a thick
matrix of connective tissue [288]. Damage to the supporting lamellae will disrupt the
delicate balance of the supporting mechanism, resulting in separation of the pedal bone
from the hoof wall. In severe cases, this separation can lead to penetration of the bone
through the sole of the hoof or complete detachment of the hoof from the underlying
bone [283,285,287,288].

Laminitis can affect more than one limb at a time and is a highly painful disease,
posing a significant threat to all Equidae. Since weight-bearing on all four limbs is essential
for horses, the degree of pain and damage caused by laminitis may require euthanasia in
many cases.

The prevalence of the disease can be high and ranges between 1.5% and 34%. The
high range of incidence is related to the difference in breeds, location, management and
more [286,289–291]. Laminitis can occur due to any number of systemic or local insults and
appear as an acute or chronic form [283,284,287,292–294]. The most common and known
aetiologies for laminitis include endocrinopathies, sepsis/endotoxemia and overloading
(supporting limb laminitis due to injury of the contralateral limb) [283–285,287,292–299].

The prognosis for laminitis depends on the initiating cause and is generally favourable
to poor [290,291,300]. Current treatment options are mainly limited to pain management,
cryotherapy, hoof support and, depending on the aetiology, treating the underlying dis-
ease [287,289–291,301,302]. Since no curative treatment is available, high hopes are pinned
on new regenerative treatment strategies.

2.5.2. Regenerative Therapies

In both acute and chronic forms of laminitis, an inflammatory response occurs at
the lamellae leading to endothelial cell swelling, leukocyte infiltration, oedema and the
production of proinflammatory cytokines such as IL-1 β and IL-6 [283,303].

Based on MSCs’ regulatory and immunomodulatory capacities [304,305], it was pro-
posed to use MSCs for laminitis treatment in the attempt to regulate the severity of the
inflammatory response in the hoof [306]. In a study by Angelone et al., nine horses with
chronic laminitis were injected three times with MSCs suspended in PRP through the
palmar digital veins [306]. All horses were treated previously with conventional lamini-
tis treatments without much success. Both allogeneic and autologous MSCs were used
without any complications. In the long term, a significant improvement could be noted
in vascularity, structure, and function of the hoof [306]. It should be noted that the distri-
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bution of MSCs injected to the distal limb might be improved by using different injection
methods, such as intra-arterial rather than intravenous injection and thus may improve the
therapeutic efficacy [307].

As PRP is a product which contains high levels of growth factors and anti-inflammatory
factors, it can aid in regulating inflammation, decreasing pain and assist with angiogenesis.
Due to those abilities, it was proposed as a therapeutic option for chronic laminitis [308,309].
Although the literature reporting treatment of laminitis with PRP is limited to case reports,
the results are encouraging. Chronic laminitis patients reportedly showed improvement
in comfort levels and hoof conformation following injection of PRP through the coronary
band and into the hoof [308,309].

Regenerative therapies in the field of laminitis are gaining more interest in recent
years, and although the numbers are still small, more studies attempting to improve the
welfare of laminitic horses can be expected.

3. Future Perspectives
3.1. Regulatory

The regulatory framework of regenerative medicine is complex, and many veteri-
narians are not aware of the implications. Nonetheless, it is important to know that cell
products are considered animal drugs and as such their production and application is
regulated by the European Medicines Agency (EMA) and the United States Food and Drug
Administration (FDA) as well as national regulatory authorities.

The production of MSC based animal drugs is tightly regulated. For other cell-based
therapeutics like autologous blood products regulations are less strict because they are
widely considered minimally manipulated medicinal products comprising blood cells
and/or their products obtained from the patient’s own blood.

Some regulatory aspects may, however, differ between different countries. In Ger-
many, for example, treating veterinarians are allowed to produce cell-based therapeutics
like MSCs in their own practice and administer them to their patients under their responsi-
bility [310]. This does also apply for PRP and ACS [310].

In the UK, equine stem cell centres are authorised by the Medicines Directorate (VMD)
for the production, processing, and storage of equine stem cells for the autologous treatment
of non-food-producing horses.

However, most of the applied regenerative therapies are still at an experimental state
and patients are treated within the scope of clinical trials. Yet, it should be mentioned
that only recently the first stem cell-based veterinary product using peripheral blood-
derived MSCs which were preconditioned with TGF-β1 towards the chondrogenic lineage
received market authorisation for the treatment of mild to moderate lameness due to joint
inflammation in horses [168,311].

3.2. Novel Regenerative Therapies

The success of current MSC therapies is affected by several factors. Age and dis-
ease state of the patient can negatively influence the proliferation and differentiation
potential, morphology, and senescence of autologous MSCs and impact the therapeutic
outcome [312–315]. Allogeneic MSC therapy, on the other hand, faces potential problems
with both cell-mediated and humoral immune responses to MHC-mismatched allogeneic
MSCs [172–174,316–319], which can result in adverse clinical responses and synovial in-
flammation following repeated intra-articular injection of allogeneic MSCs [172]. As MSCs
show poor survival and engraftment at the site of injury following transplantation, they ex-
ert their therapeutic effect predominantly by secreting bioactive factors, collectively termed
the “secretome” (Figure 3) [56,57,320–322]. The secretome is composed of soluble and
vesicular (extracellular vesicles, EVs) proteins, lipids, RNA (mRNA and noncoding RNAs)
and DNA and influences diverse biological functions, including the immune response,
endogenous cell homing and cell differentiation [56,57,320–322]. The secretome mirrors the
ability of the parental cells to condition and program the surrounding microenvironment,
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influencing a variety of endogenous responses, in injured tissues [323,324]. Secretome and
EVs have shown an equivalent therapeutic potential to their parent cells in treating various
conditions, including OA, graft versus host disease, myocardial ischemia/reperfusion
injuries and skin wounds [325–327]. The MSC secretome or EVs thus have the potential to
be developed into a stand-alone therapeutic product or a coadministered agent to enhance
the effectiveness of cell therapy by modulating the microenvironment into a regeneration
conducive milieu [328]. Indeed, recently cell-free secretome therapies have shown great
potential in vitro and in pioneering clinical applications [329–331].
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Considering the mounting economic and safety concerns over the use of exogenous
cellular material [332], using paracrine factors to establish a repair-conducive microenvi-
ronment and recruit endogenous cells is a promising novel regenerative strategy. It would
eliminate the need to administer exogenously manipulated cells and avoid the cost, com-
plexity, and risk of in vitro cell expansion and reimplantation as well as the regulatory
problems associated with the use of living cells [333].
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Another strategy to overcome the donor-age and -health-specific therapeutic lim-
itations of stem cells is offered by iPSC technology. The reprogramming process does
not just restore pluripotency, but resets an aged, somatic cell to a more youthful state,
elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress
and thus offers a significant therapeutic potential, although the extent to which iPSCs
truly mime embryonic stem cells is controversial. However, iPSCs have been shown to
harbour an epigenetic memory characteristic of their tissue of origin which may impact
their differentiation potential [334].

Lastly, models of tissue injury and naturally occurring regeneration have shown the
importance of the immune response for tissue repair, highlighting the necessity to modu-
late inflammatory processes to facilitate regeneration [335,336]. Traditional regenerative
medicine focused on transplanting exogenously prepared cells or tissue while neglecting
to consider the inflammatory and degenerative microenvironment [337,338]. Novel ap-
proaches try to work with, not against biology and aim to create a proregenerative milieu
to induce endogenous regeneration [337,338]. To this end the genetic elements, regulatory
pathways and specific cell populations that limit or allow intrinsic regeneration need to be
identified to be able to use mammalian tissue development and regeneration as a blueprint
to guide the development of novel regenerative therapies [335,336].
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