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1  | INTRODUC TION

Over the years there has been the emergence of a variety of spon-
taneous glycine (Gly) receptor mutations in c57 black 6 mice. One of 
these, the B6.Cg-Glrbspa/J (Gly receptor mutation) transgenic mouse 
(spa mouse), displays early onset hypertonia (spasticity).1,2 Spa mice 
have a homozygous insertion of LINE-1 in the beta subunit of the Gly 
receptor gene resulting in a splicing error of this subunit.3 This auto-
somal recessive mutation affects glycine receptors in both the brain 
and spinal cord.2,4 Mice that have mutations in both sets of genes are 

termed “spa” mice, short for spastic. Since the recognition and origi-
nal description of this mouse in 1961, most work has focused on the 
glycine receptor abnormality with little attention paid to the growth 
and developmental or onset of symptoms of spa mice.1-4

Characterization of growth and survival of these mice is crit-
ical as animals displaying early onset hypertonia are important 
for research investigating mechanisms and treatments of pe-
diatric conditions associated with hypertonia, such as cerebral 
palsy. Currently, most animal models of cerebral palsy are based 
on reproducing risk factors for developing this condition, with 
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Abstract
Characterization of growth and survival of mice displaying early onset hypertonic 
symptoms is critical as these animals are important for research investigating mech-
anisms and treatments of pediatric conditions associated with hypertonia, such as 
cerebral palsy. Currently, most animal models of cerebral palsy reproduce risk factors 
for developing this condition, with most failing to develop the physical symptoms or 
failing to survive in the postnatal period. The B6.Cg-Glrbspa/J (Gly receptor mutation) 
transgenic mouse (spa mouse), displays symptoms of early onset hypertonia, though 
little has been reported on growth and survival, with no reports of growth and sur-
vival since genotyping became available. We found that the majority of spa mice dis-
play symptoms by P14-P16. Of mice surviving to weaning, only ~9% were spa mice. 
By weaning age, spa mice had significantly lower weights than their heterozygote 
and wild-type littermates. Of mice that died after weaning and prior to use in experi-
ments or being culled, 48% were spa mice. The poor growth and decreased survival 
of spa mice across multiple developmental and adult ages resembled the varied sur-
vival rates observed in humans with mild or severe cerebral palsy. The understanding 
of the expected survival of these mice is helpful for planning breeding and animal 
numbers for experiments. Due to the symptoms and timing of symptom onset, spa 
mice will be valuable in uncovering mechanisms and long-term effects of early onset 
hypertonia in order to move toward interventions for these conditions.

K E Y W O R D S

animal models, cerebral palsy, mice, reproduction, survival rate

www.wileyonlinelibrary.com/journal/ame2
https://orcid.org/0000-0002-7932-9225
https://orcid.org/0000-0003-0128-7042
mailto:
https://orcid.org/0000-0003-3040-9424
http://creativecommons.org/licenses/by/4.0/
mailto:sieck.gary@mayo.edu


320  |     BRANDENBURG Et Al.

most animal models failing to develop the physical symptoms.5 
For conditions of early onset hypertonia, such as cerebral palsy, 
surprisingly little is known about the mechanisms underlying the 
development of hypertonia.5 With the NIH encouraging pursuit 
of animal models for the study of cerebral palsy, a greater under-
standing of these mice and their survival is important.6 To study 
the mechanisms underlying early onset hypertonia, animals which 
consistently display the appropriate symptoms are crucial. Very 
few animals display a hypertonic phenotype that emerges in the 
developmental period with husbandry of these animals often 
being complex and survival poor.5 Therefore, longitudinal report-
ing of the growth and survival of spa mice is important for planning 
studies involving these animals while also respecting the 3Rs (re-
placement, reduction, and refinement) of animal research.

2  | MATERIAL S AND METHODS

2.1 | Animals and breeding

The mouse colony was bred, maintained, and underwent experi-
mental procedures under the Institutional Animal Care and Use 
Committee at Mayo Clinic (Protocols #A23215-15, A00003598-18, 
A00003622-18) which is in compliance the American Veterinary 
Medical Association, US National Research Council's Guide for the 
Care and Use of Laboratory Animals, and US Public Health Service 
Policy on Care and Use of Laboratory Animals.7-9 B6.Cg-Glrbspa/J 
mice (C57 background) were obtained from Jackson Laboratories 
(Jax stock #000066; Bar Harbor, ME, USA) in 2015. Due to mice that 
are homozygous for the mutation (spa mice) having impaired ability 
of sperm to fertilize an egg10 and concern for spa mouse females 
ability to rear pups due to physical symptoms, a heterozygote × het-
erozygote breeding scheme was used with matings starting when 
animals reached ~3 months of age and continuing until ~6 months 
of age (usually allowing for 3-5 litters). At 2 time points, c57 mice 
were purchased from Jackson Laboratories for mating with a het-
erozygote mouse from the colony (2 pairs) with 1 or 2 litters per pair. 
The heterozygote mice offspring from these matings were then used 
for breeding. The mouse colony was tracked using the SoftMouse 
(Toronto, Ontario, CA) online digital platform.

2.2 | Animal genotyping

Genotyping was performed from a 2- to 5-mm tail snip obtained 
at the time of weaning of pups or after euthanasia of fetuses and 
pups of preweaning age. Genotypes were determined by PCR using 
the following primers. Wild-type forward, 5′-GCAACTTGAGAGC-
TGTATGT-3′, and wild-type reverse, 5′-ACTTGGCTGGGCTTACATAT-3′; 
wild-type allele, 348 bp; spa forward, 5′-TTCCTAAGTTCCGGT-
CTGTG-3′, and spa reverse, 5′-CAATTATCAAGGCTGATGGC-3′; spa al-
lele, 358 bp.11,12 Mice who had only wild-type alleles were identified 
as “wild type.” Mice that had both a wild-type allele and spa allele 

were identified as “heterozygotes.” Mice that had only spa alleles 
were identified as “spa.”

2.3 | Housing and husbandry

Mice were housed in identical conditions, following recommended 
housing and care guidelines,7 in a pathogen-free facility and in an 
area separate from other mice colonies. Mice were exposed to 
12:12 hours light:dark cycle year round. The room was kept at ~21-
23°C. Cages were cleaned and changed weekly by veterinary techni-
cians. Mouse chow (PicoLab® Rodent Diet 5053, LabDiet, St. Louis, 
MO) and tap water (via water bottles) were freely accessible. For 
mated pairs, breeder chow (PicoLab® Rodent Diet 5058, LabDiet, 
St. Louis, MO) was provided. Weaning of pups was performed be-
tween 21 and 28 days of age. Litters were not culled, regardless 
of size, due to lack of spa phenotype at birth. At weaning, if a pup 
displayed more severe spastic symptoms (ie, spasms that required 
manually placing animal in an upright position or disturbance by 
another mouse elicited symptoms), Boost Diet Gel® (Portland, ME) 
was made available on the cage floor and the animal was housed 
individually. Social housing (up to 5 mice of same sex and litter) was 
utilized for all other mice. All mice were housed in Jag 75 (Allentown, 
Inc, Allentown NJ) cages with 484 cm2 of floor area. For cages with 
spa mice with severe phenotypes, a paper mat and preconfigured 
nesting material was placed in the cage. For all other mice, including 
breeder pairs, standard shavings with paper material used for nest-
ing were provided.13

2.4 | Animal weights

Animals used for experimental purposes were weighed prior to ex-
perimental procedures. Age groups were selected based on gen-
eralized grouping including preweaning mice (P14-P16), weaning 
to 3 months of age (immature adult), 3-6 months of age (early ma-
ture adult), and >6 months of age (late mature adult to old).14 All 
animals were weighed using Entris Top Loading Scale (Sartorius Lab 
Instruments, Goettingen, Germany).

2.5 | Animal survival

Mice in the colony were not bred for survival studies, but rather for 
specific experiments, which were performed at ages targeting key 
developmental times15 or at mature adult stages (~3 to 8 months 
old).16,17 Mice not needed for experiments or breeding were eutha-
nized following confirmation of genotype (~6 to 8 weeks of age) in 
accordance with American Veterinary Medical Association guide-
lines.8 Genotypes were determined by PCR,11,12 with mice desig-
nated as wild type, heterozygote, or spa depending on the expression 
of wild-type and/or spa alleles. Animals were weighed with Entris 
Top Loading Scale (Sartorius Lab Instruments, Goettingen, Germany) 
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prior to experimental procedures. Ages of animals were selected 
based on developmental time points of interest for planned experi-
ments including preweaning mice (P14-P16), weaning to 3 months 
of age (immature adult), 3-6 months of age (early mature adult), and 
>6 months of age (late mature adult to old).14,15

2.6 | Data analysis and statistics

All statistical analyses were performed using Prism 7.0 (Graphpad, 
La Jolla, CA). With respect to continuous variables, differences be-
tween groups were examined using unpaired t-tests when data were 
normally distributed according to D’Agostino and Pearson normality 
tests. Two-way ANOVA was used when comparing 2 factors, with 
Bonferroni post hoc tests where appropriate. Chi-squared tests were 
used for evaluating relationships between variables. Statistical sig-
nificance was established at the P < .05 level. All experimental data 
are presented as mean ± 95% confidence intervals, unless otherwise 
specified.

3  | RESULTS

3.1 | Animal survival

To assess the influence of genotype on mouse attrition prior to 
weaning, litter numbers were recorded for 105 litters. The mean lit-
ter size across 105 litters was 6 (range 1-12) pups. With regard to the 
fetal mice (embryonic day (E) 15-E18), a total of 47 mice from 6 lit-
ters were euthanized for experimental purposes. Genotyping of the 
fetal mice (E15-E18) revealed a roughly Mendelian distribution of 
genotypes as expected from a heterozygote by heterozygote breed-
ing scheme, 10 (21.3%) mice were spa, 25 (53.2%) mice were het-
erozygotes, and 12 (25.5%) mice were wild type (Figure 1A). Of the 
P14-P16 mice, 8 (9.8%) were spa, 52 (63.4%) were heterozygotes, 22 
(26.8%) were wild type (Figure 1B). Approximately 67% of spa mice 

had the hypertonic phenotype by P14-P16. All spa mice displayed a 
hypertonic phenotype by weaning which persisted. No spa mice had 
spontaneous resolution of hypertonic symptoms. Of mice that sur-
vived weaning, 71 (9.4%) were spa, 417 were heterozygotes (56.7%), 
and 249 (33.9%) were wild type (Figure 1C). Overall, these results 
show a remarkable attrition in spa mice compared to both wild-type 
and heterozygote mice during postnatal maturation. Between birth 
and P14-16 only ~40% of spa pups survive, with minimal additional 
attrition by weaning. The reduced survival of spa mice compared 
to both wild-type and heterozygote mice was considered statisti-
cally significant (Chi-square, P = .0048 at P14-16 and P < .0001 at 
weaning).

For the 735 mice that survived weaning, 40 (5.4%) mice died of 
causes unrelated to experiments or being culled for the colony. Of 
these 40 mice, 19 were spa (47.5%), 17 were heterozygotes (42.5%), 
and 4 were wild type (10.0%). The increased likelihood of death of 
spa mice compared to heterozygote and wild-type mice was consid-
ered statistically significant (Chi-square, P < .0001).

3.2 | Body weight gain

Body weights were obtained when mice were used for experimen-
tal purposes or routinely at ages from P14 through approximately 
1 year of age. At all ages, spa mice had lower weights when com-
pared to heterozygote and wild-type mice, with this difference 
being statistically significant at all time points from weaning on-
ward (Table 1, Figure 2). There was no significant difference in body 
weight between heterozygote mice and wild-type mice at any time 
point (Table 1, Figure 2). When comparing body weights of spa mice 
across ages, the only significant increase in body weight compared 
to the previous weight occurred between weaning and 3 months of 
age (P < .0001, Table 1).

As expected, at every time point assessed, female mice had sig-
nificantly lower body weights than male mice (data not shown). At 
each age, there were no differences in body weights between female 

F I G U R E  1   Proportion of mice based on genotypes. Proportion of mice with wild-type (white), heterozygote (gray), and spa (black) 
genotypes in the (A) fetal, (B) ~ 2 weeks postnatal, and (C) postweaning. Based on Mendelian inheritance pattern, it would be expected that 
~25% of mice would be wild type and 25% spa with 50% heterozygotes. This similar pattern is seen in the fetal mice with 21% being spa 
mice. However, by P14/P16, the percentage of spa mice decreased to 10% with relative expansion of heterozygote mice percentage. In the 
postweaning period, percentage of spa mice had a slight decrease to about 9% with a relative expansion of both heterozygotes (57%) and 
wild-type (34%) mice percentages
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heterozygote and wild-type mice nor between male heterozygote 
and wild-type mice (Table 2). From 3 months of age and older, fe-
male spa mice weighed significantly less than both heterozygote and 
wild-type female mice (Table 2). In contrast to females, male spa mice 
weighed significantly less than both male heterozygote and wild-
type mice for all postweaning ages assessed (Table 2).

4  | DISCUSSION

Little has been reported on growth and survival of spa mice since they 
were originally described in 1961,2 which was prior to availability of 
genotyping.18 Subsequently, the specific genetic abnormality for spa 
mice was identified in 1994.18 Despite the phenotypic reevaluation 
of spa mice in conjunction with genotyping in 1997,4 the growth and 
survival of spa mice was not reevaluated. Furthermore, despite the 
cerebral palsy-like phenotype of spa mice which prompted their use 
in sentinel work on botulinum toxin in hypertonic muscles,19 use of 
these mice for exploring the developmental changes in the central 
nervous system and motor units in conditions of early onset hyper-
tonia remain virtually unexplored.

In spa mice, we identified that: (a) there is a remarkable attrition 
prior to weaning and before the phenotypic onset; (b) the major-
ity of spa mice have a spa phenotype detectable at P14-P16, prior 
to previously described onset at ~P21; and (iii) the developmental 
body weight gain of spa mice is impaired compared to wild-type 
and heterozygote littermates. These observations have important 

TA B L E  1   Mice weight for age and genotype

Age Genotype Body weight (g)
P value vs wild 
type

P value heterozygote 
vs Spa

P value of same genotype 
vs previous age

P14-P16 Wild type 8.6 (±0.6) — — —

Heterozygote 9.3 (±0.5) P > .999 — —

Spa 6.9 (±1.2) P > .999 P = .495 —

Weaning Wild type 13.5 (±0.6) — — P = .012

Heterozygote 14.0 (±0.9) P > .999 — P = .0001

Spa 9.1 (±2.9) P = .034 P = .015 P > .999

Postweaning to 
<3 mo

Wild type 24.2 (±1.1) — — P < .0001

Heterozygote 24.9 (±2.4) P > .999 — P < .0001

Spa 18.9 (±1.7) P < .0001 P < .0001 P < .0001

3 mo to <6 mo Wild type 27.4 (±1.9) — — P = .007

Heterozygote 28.0 (±2.5) P > .999 — P = .203

Spa 20.3 (±1.6) P < .0001 P < .0001 P > .999

≥6 mo Wild type 33.4 (±2.2) — — P < .0001

Heterozygote 34.7 (±2.3) P = .872 — P < .0001

Spa 21.9 (±4.1) P < .0001 P < .0001 P > .999

Note: Mean (CI) weight of mice by genotype across ages. There was no significant difference in body weights of all mice at postnatal day 14-16 (P14-
P16). However, at all ages from weaning onward, spa mice weighed significantly less than wild-type and heterozygote mice. There was no significant 
difference in body weights between wild-type and heterozygote mice at each age. When comparing body weights across ages within genotypes, 
weight gain occurred as age increased. For wild-type mice, body weight increased significantly at all ages. For heterozygote mice, body weight 
increased significantly at all ages, except between the ages of postweaning to <3 mo and 3 mo to <6 mo. For spa mice, the only significant increase in 
body weight occurred between weaning and postweaning to <3 mo of age. Two-way ANOVA with post hoc Bonferroni testing.

F I G U R E  2   Body weights of mice based on age and genotype. 
Spa mice (black) had a significantly lower body weight at all 
time points postweaning as compared to wild-type (white) and 
heterozygote (gray) mice (mean ± CI, Two-way ANOVA with 
post hoc Bonferroni testing, *P < .0001, **P = .034 (spa vs wild 
type), ***P = .015 (spa vs heterozygote)). There was no significant 
difference between body weights of heterozygote and wild-type 
mice at each time point
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implications for experimental design considerations in spa studies, 
including humane endpoints for body weight reduction.20

Spa mice have the highest attrition between birth and P16. This 
may be related to maternal difference in rearing of the mutant pups, 
though maternal-pup interactions were not evaluated as part of this 
study.21 In mice with a genetic mutation resulting in a lack of ge-
phyrin (a protein required for Gly receptor clustering) death occurs 
by P1 due to failure to suckle with these pups showing a rapid de-
velopment of hyperextension limb posturing prior to death.22 It is 
also possible that spa mice pups have difficulty with suckling, as spa 
mice have an alteration in Gly signaling. In our study, all homozy-
gous spa mice exhibited the spastic phenotype by P28, with a ma-
jority displaying a detectable phenotype by ~P14-16. Although we 
did not evaluate ventilation in these mice, hypertonic activation of 
the diaphragm or upper airway muscles may result in an apnea. The 
frequency and duration of apneic events in spa mice younger than 
P14 and older than P14 will be a key indicator of whether respiratory 
dysfunction is the cause of spa deaths prior to weaning. It may be the 
case that a fraction of spa mutants are symptomatic before wean-
ing and die before overt signs are readily observable. Additional loss 
of spa mice occurred postweaning with the number of incidental 
deaths compared to heterozygote or wild-type mice being dispro-
portionately greater in spa mice. This survival difference in the post-
weaning period has not been explicitly evaluated.4 Death of spa mice 
has notable implications for estimating colony breeding and number 
of spa mice needed for experiments, particularly if older spa mice are 
needed. While death of spa mice is high, this corresponds with death 
in inhuman conditions of early onset hypertonia, like cerebral palsy, 
where mortality rates before age 2 years is up to 10% and mortality 
by maturity up to 60%, depending on the severity of symptoms.23,24

Spa mice show a significant impairment in body weight gain 
across all ages postweaning. This observation was consistent in both 
female and male mice, though the pattern of body weight gain dif-
fered between males and females. This impaired body weight gain 
makes spa mice distinctly smaller than their heterozygote and wild-
type sex-matched littermates, different than previously reported.4 
It is not clear if this difference is due to the spa mice physical symp-
toms alone, impaired feeding, or if there is some maternal stress in 
rearing of spa pups that contributes to their lower body weight.25 

Interestingly, the impaired growth of spa mice mirrors the lower 
growth rates observed clinically in conditions of early onset hyper-
tonia, like cerebral palsy. Specifically, in children with cerebral palsy, 
the differences in weight and height as compared to age-matched 
peers are more pronounced with age, with children with cerebral 
palsy being lighter and shorter than their age-matched peers.26

We know that by adulthood, spa mice have reduced motor 
neuron numbers in a variety of motor pools16,17 and a reduced re-
sponse of muscle to neuromuscular transmission (ie, neuromuscular 
transmission failure).27,28 Current efforts within the laboratory are 
aimed at determining the developmental time course of motor neu-
ron loss and muscle weakness in relation to symptom onset (P14-
28) and weaning (P28). Other groups have established that both 
motor neurons and the associated spinal interneuronal network ex-
hibit reduced glycinergic inhibition in 2- to 6-week-old mice.11,29-31 
Importantly, the pathology of spa mice may be a contingent on the 
transition from the depolarizing to hyperpolarizing effect of chloride 
channel activation in response to glycine and/or GABA that occurs 
prior to P14 in rodents.32 The present work, establishing the gross 
phenotype, weight, and survival throughout development of the spa 
mice, will enable us to rationalize the experimental design and time-
line to assess the motor system- and molecular-level pathology. This 
critical work is needed for furthering the understanding of potential 
mechanisms underlying human conditions of early onset hypertonia. 
Thus, understanding growth and survival of spa mice is important for 
investigators and animal care facilities working with these or simi-
lar genetically modified mice. Provision of appropriate husbandry of 
these animals and the accurate estimation of survival for adequate 
experimental animal numbers is essential for rigorous, robust, and 
repeatable experiments.
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TA B L E  2   Mice body weights across postweaning ages for males and females

Age Sex
Wild-type
Body weight (g)

Heterozygote
Body weight (g)

Spa
Body weight (g)

P value wild 
type vs Spa

P value  
heterozygote vs Spa
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mice weighed significantly less than wild-type and heterozygote mice of the same sex. Wild-type and heterozygote mice of the same sex and age had 
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