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Emanuel Sávio Cavalcanti Sarinho e, Sarvesh Chelvanambi f, Masanori Aikawa f,g 

a Department of Medicine, Cardiology and Nuclear Imaging Division, Clinical Hospital, Federal University of Pernambuco, Recife, Pernambuco, Brazil 
b Recife Medical School, Federal University of Pernambuco, Recife, Pernambuco, Brazil 
c Department of Medicine, Angiology Division, Federal University of Pernambuco, Recife, Pernambuco, Brazil 
d Department of Surgery, Experimental Surgery Unit, Federal University of Pernambuco, Recife, Pernambuco, Brazil 
e Department of Medicine, Allergy and Clinical Immunology Division, Clinical Hospital, Federal University of Pernambuco, Recife, Pernambuco, Brazil 
f Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 
g Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA   

A R T I C L E  I N F O   

Keywords: 
SARS-CoV-2 
Toll-like receptors-4 
COVID-19 
Cardio metabolic diseases 
Obesity 
Diabetes 
Hypertension 
Atherosclerosis 

A B S T R A C T   

The severe form of COVID-19 is marked by an abnormal and exacerbated immunological host response favoring 
to a poor outcome in a significant number of patients, especially those with obesity, diabetes, hypertension, and 
atherosclerosis. The chronic inflammatory process found in these cardiometabolic comorbidities is marked by the 
overexpression of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumoral necrosis factor-alpha 
(TNF-α), which are products of the Toll-Like receptors 4 (TLR4) pathway. The SARS-CoV-2 initially infects 
cells in the upper respiratory tract and, in some patients, spread very quickly, needing respiratory support and 
systemically, causing collateral damage in tissues. We hypothesize that this happens because the SARS-CoV-2 
spike protein interacts strongly with TLR4, causing an intensely exacerbated immune response in the host’s 
lungs, culminating with the cytokine storm, accumulating secretions and hindering blood oxygenation, along 
with the immune system attacks the body, leading to multiple organ failure.   

1. Introduction 

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
virus targets the airway, alveolar and vascular endothelium as well as 
macrophages in the lung, binding to the angiotensin-converting enzyme 
2 (ACE2) expressed in those cells [1–4]. The severe form of COVID-19 
(COronaVIrusDisease 2019) pathophysiology, however, is marked not 
only by the viral infection but also by the aggressive inflammatory 
response from the host able to cause severe systemic damage [5]. 

Comorbidities such as hypertension, diabetes, obesity, and athero-
sclerosis are related to the severe form of the disease, being more 
prevalent among hospitalized individuals with a higher average-case 
lethality [6–12]. The disease severity is characterized by the over-
activation of the immune system causing a cytokine storm responsible 
for cytokine release syndrome (CRS) [13,14]. The inflammatory 

response starts with a local release of cytokines, such as interleukin-6 
(IL-6) and tumoral necrosis factor-alpha (TNF-α), that may spread sys-
temically, leading to acute respiratory distress syndrome (ARDS) and 
multiple organ failure, the final result being death, at least in the most 
severe cases of COVID-19 [15,16]. 

Despite what is already elucidated regarding the host cell infection 
and the spike protein binding to the ACE2 [17], other factors may 
contribute to the infectivity and pathogenesis of SARS-CoV-2 that 
deserve further investigations [18]. The spike (S) protein’s strong 
interaction with human Toll-like receptors (TLRs), especially TLR-4, 
which is overexpressed in chronic inflammatory conditions, will be 
described below and may be the link between the unbalanced immune 
response in severe COVID-19 and cardiometabolic comorbidities. 
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Pernambuco, 50670-901, Brazil. 

E-mail address: sbrandaonuclearufpe@gmail.com (S.C.S. Brandão).  

Contents lists available at ScienceDirect 

Cytokine and Growth Factor Reviews 

journal homepage: www.elsevier.com/locate/cytogfr 

https://doi.org/10.1016/j.cytogfr.2020.09.002 
Received 23 August 2020; Received in revised form 9 September 2020; Accepted 14 September 2020   

mailto:sbrandaonuclearufpe@gmail.com
www.sciencedirect.com/science/journal/13596101
https://www.elsevier.com/locate/cytogfr
https://doi.org/10.1016/j.cytogfr.2020.09.002
https://doi.org/10.1016/j.cytogfr.2020.09.002
https://doi.org/10.1016/j.cytogfr.2020.09.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cytogfr.2020.09.002&domain=pdf


Cytokine and Growth Factor Reviews 58 (2021) 102–110

103

2. Pathophysiology, immunity, and inflammation in COVID-19 

The infection process starts with the receptor-binding domain, a 
portion from the S protein, expressed on the surface of viral particles, 
binding to the ACE2 [19]. It triggers endocytosis of the SARS-CoV-2 
which is then exposed to endosomal proteases [20]. The recruitment 
of macrophages and monocytes, the release of cytokines, and priming 
adaptive B and T cell immune response is usually sufficient to success-
fully limit the disease progression and resolve the infection [21,22]. A 
dysfunctional immune response, however, may occur causing severe 
lung injury and systemic manifestations [23]. 

In severe COVID-19 cases, a disharmonic and dysfunctional immune 
response triggers a widespread lung and systemic inflammation by a 
cytokine storm [24]. The viral infection and replication induce the death 
of virus-infected cells and tissues during its cycle [25]. The process is 
marked by local inflammation and the systemic release of inflammatory 

cytokines [26,27]. In support of this, scientific evidence shows that 
increased levels of inflammatory cytokines are predictive of poor 
prognosis in COVID-19 patients. Patients that required intensive care 
showed even higher blood levels of cytokines, such as IL-2; IL-7; IL-10; 
granulocyte colony-stimulating factor (G-CSF); interferon-γ-inducible 
protein-10 (IP-10); monocyte chemoattractant protein-1 (MCP1); 
macrophage inflammatory proteins-1α (MIP-1α) and, TNF-α [28]. 

In addition, the IL-6 levels in these patients also increase over time 
and are relatively more elevated in non-survivors when compared to 
survivors [29,30]. In fact, this elevated cytokine levels could damage 
various end organs and prolonging the disease, promoting myocardial 
damage and circulatory failure as was observed in some patients [31]. 
This is responsible for a significant deterioration in the clinical status, 
and it is more likely to occur in older people (>60 years old) and those 
with comorbidities [32–34]. To date, since the exact immunopatholog-
ical mechanism of the severe COVID-19 still not completely elucidated 

Fig. 1. Predicted sites of interaction between SARSCoV-2 Spike protein and human TLR4. Adapted from Choudhury et al. 2020 (ref. 37) and licensed by John Wiley 
and Sons. 

Fig. 2. This figure depicts the Toll-like receptor 
4 (TLR4) signaling cascade. Here we illustrate 
our hypothesis that SARS-CoV-2 S protein acts 
activating the TLR4 signaling path. 
CD14: cluster of differentiation 14; MD2: 
myeloid differential protein-2; MyD88: myeloid 
differentiating primary response gene 88; NF- 
kB: nuclear factor kappa-light-chain-enhancer 
of activated B cells; S: Spike protein; SARS- 
CoV-2: Severe Acute Respiratory Syndrome 
Coronavirus 2; TIR: Toll Interleukin-1 Receptor; 
TIRAP: TIR-domain-containing adaptor protein; 
TRIF: TIR-domain containing adapter inducing 
interferon ß; TRAM: TRIF-related adaptor 
molecule. Created with biorender.   
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[35], several immunosuppressive therapies, with different targets, are 
being tested, still with inconsistent efficacy, there is no consensus yet 
regarding an optimal therapy [36]. 

3. Toll-like receptors 

The interaction between human TLRs and SARS-CoV-2 antigens may 
be a step to understand this host-pathogen interaction. An in-silico study 
demonstrated this interaction and raised the hypothesis that the TLR 
pathway may have a role in the inflammatory consequences of COVID- 
19. By a molecular docking study, the authors demonstrated a signifi-
cant binding between the viral S protein and human innate immune 
receptors TLR1, TLR4, and TLR6, with the highest binding energy re-
ported with TLR4 [37]. Specifically, the interaction between 
SARS-CoV-2 Spike protein and human TLR4 was predicted to comprise 
both hydrogen bond interactions as well as hydrophobic interactions 
(Fig. 1). While these interactions need to be confirmed with subsequent 
crystal structure studies, inhibitors targeting this motif of TLR4 might be 
a promising strategy to limit TLR4 activation induced by SARS-CoV-2. It 
is noteworthy that the main cytokines involved in severe COVID-19 
cases (IL-6 and TNF-α) are downstream of the TLR4 signaling pathway 
[38]. 

TLRs are prototypical pattern recognition receptors (PRRs), which 
recognize different microbiological substances known as either 
pathogen-associated molecular patterns (PAMPs) or microbe-associated 
molecular patterns (MAMPs) as well as endogenous substances called 
damage-associated molecular patterns (DAMPs) molecules responsible 
for triggering innate immune responses and propagate inflammation 
[39]. The TLR4 is known for recognizing a broad variety of substances 
such as lipopolysaccharide (LPS) from gram-negative bacteria, viruses, 
fungus, and mycoplasma [40]. On the other hand, DAMPs are endoge-
nous substances acting as TLR4 agonists, which appear following injury 
and inflammation, including oxidized phospholipid (oxPL), oxidized 
low-density lipoprotein (oxLDL), high-mobility group protein 1 
(HMGB1), heat shock proteins (HSPs), extracellular matrix (ECM), 
cathelicidin (LL37), hyaluronic acid, substance P, and others [41]. 

While facing microbiological pathogen invasions, the TLR4 activa-
tion process helps to kill the microbes by destroying pathogen sub-
stances, however, when endogenous substances activate TLRs, the 
radicals may harm the host’s tissues [42]. The activation process de-
pends on two accessory proteins, cluster of differentiation 14 (CD14) 
and myeloid differential protein-2 (MD-2) [43,44], it initiates two in-
ternal cell signal pathways: the myeloid differentiating primary 
response gene 88 (MyD88)-dependent and the MyD88-independent 
pathway [45]. After activation, a cell internal cascade is activated 
leading to the release of several interleukins, interferons, and other 
signaling substances (Fig. 2). These signals attract macrophages, natural 
killer cells, mast cells, etc., which in turn may release reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) [46]. 

Furthermore, viruses interact with the TLR4 complex by viral gly-
coproteins, which are exposed on the viral surface and mediate the 
fusion with host cell membranes through the hydrophobic fusion pep-
tide [47]. Influenza-A Virus (IAV) infection activates the TLR4 complex 
by host DAMPs, including HMGB1 and oxPL, that usually are accumu-
lated in response to infection and activates TLR4 through MD-2 binding 
[48]. 

Considering that host DAMPs might play a central role in acute lung 
injury and are detected in the lungs of patients with severe IAV or SARS- 
CoV infections [49,50], an important relation regarding the current 
SARS-CoV-2 situation underlies this interaction. To date, the roles of 
TLRs in human diseases are still not fully understood, however, TLR4 
has shown itself as an important feature in inflammatory diseases 
initiation and progression [51]. 

3.1. Pulmonary injury and TLR4 

SARS-CoV-2 infects the pulmonary system and the majority of pa-
tients with moderate-to-severe COVID-19 suffer from ARDS. TLR4 re-
ceptors play an important role in the development of inflammatory and 
pulmonary vascular disease. A previous study used TLR4-deficient mice 
to provide strong evidence for TLR4 signaling as a mediator for pul-
monary injury [52]. In this study, TLR4 deletion protected the mice 
against various sources of acute lung injury including avian influenza. 
Furthermore, increased TLR4 expression by respiratory syncytial virus 
primes the pulmonary epithelium for endotoxin mediated damage [53]. 

Logically, the severity of pulmonary disease following viral infection 
is significantly exacerbated by increased TLR4 signaling including swine 
influenza infection [54] and can be protected via amelioration of TLR4 
signaling [55–57]. The TLR4-NF-kB pathway is central towards pro-
moting infection-induced lung injury. SARS-CoV-2 infection in severe 
COVID-19 patients is accompanied by bacterial pneumonia. In this re-
gard, evaluating the role played by TLR4 signaling in the lungs is critical 
to improving the outcomes in COVID-19 patients. In the LPS-induced 
acute lung injury murine model of sepsis, inhibition of TLR4 signaling 
using monoclonal antibodies [58], pharmacological intervention 
[59–61] as well as miRNA-based treatments [62] could be beneficial for 
these patients. 

An important element in SARS-CoV-2 related pulmonary disease in 
vascular injury is the response to hypoxia as a result of ARDS. In this 
regard, TLR4 modulates a wide range of inflammatory responses in the 
lungs to worsen pulmonary function and impair proper resolution 
following infection. TLR4 expression was elevated in pulmonary smooth 
muscle cells of rats exposed to cigarette smoke which is integral to 
worsened inflammation in these rats when exposed to LPS induced acute 
lung injury [63]. 

In fact, LPS exposure increases TLR4 surface expression in a Rab26 
mediated fashion in human pulmonary endothelial cells which in turn 
increases vascular leakiness [64]. This process is accompanied by 
increased pyroptosis of these endothelial cells since LPS activation of 
TLR4 induces NLRP3-mediated inflammasome activation [64]. In line 
with this, suppression of TLR4 signaling in pulmonary endothelial cells 
using small molecular weight inhibitors are capable of alleviating the 
effects of LPS induced acute lung injury. On the other hand, alveolar 
macrophages are activated by TLR4 signaling and play an important role 
in the clearance of pathogens within the lung compartment. Appropriate 
resolution of inflammation, however, is modulated by calcium signaling 
via TRPV4 [65] and TRPV6 [66]. Further evaluation of strategies to 
promote successful and appropriate resolution of the inflammatory 
response in severe COVID-19 patients via suppression of TLR4 signaling 
could be beneficial for improving prognosis in these patients. 

3.2. Atherosclerosis and TLR4 

Several pathways link the destabilization of atherosclerotic plaques 
in acute coronary syndrome with the effect of viral infections such as 
COVID-19 [67]. As reported in SARS and MERS (past outbreaks of res-
piratory diseases caused by other coronaviruses), acute myocardial 
infarction has been reported in two out of five deaths [68,69]. The same 
is observed in COVID-19 cases [70]. 

The viral illness, through systemic inflammatory responses and 
changes of immune cell polarization towards more unstable phenotypes, 
is responsible for the increased risk of acute cardiovascular events or 
exacerbations of chronic conditions [71]. Furthermore, the IL-6, re-
ported as a mortality predictor in severe COVID-19 cases, is an impor-
tant biomarker of cardiovascular morbidity and mortality linked to 
atherosclerosis [72]. 

The presence of inflammatory cells can be observed in all stages of 
atherosclerosis [73]. Accumulating evidence suggests that TLR4 par-
ticipates in the pathogenesis of atherosclerosis in multiple ways [74]. 
Different cell types in atherosclerotic vessel walls express TLR4 and its 
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pro-atherogenic ligands activate these cell types [75]. The activated 
TLR4 on macrophages can trigger a cascade of signaling events, 
inducing inflammatory cytokines, and proteases. OxLDL, a TLR4 
agonist, is responsible for early endothelial dysfunction and its link to 
TLR4 contributes to the initiation of atherosclerosis [76–79]. The acti-
vation of this receptor may also promote the instability of atheroscle-
rotic plaques and enhance their susceptibility for physical disruption 
and acute thrombosis [80]. 

3.3. Diabetes and TLR4 

Type 2 Diabetes Mellitus (T2DM) is a well-known risk factor for 
COVID-19 severe form [81]. It was found to be an independent predictor 
of admission to intensive care unit, invasive ventilation, or death in 
COVID-19 [82]. Not enough, the SARS-CoV-2 is related to damage of 
pancreatic islet cell and the occurrence of acute insulin dependent dia-
betes mellitus mediated by ACE2-viral binding [83,84]. 

Recent studies proposed that T2DM is the consequence of the stim-
ulation of TLRs [85]. The activation of TLR4 expressed in several cell 
types, such as β-cells and resident macrophages in the pancreatic islets, 
can induce both insulin resistance, pancreatic cell dysfunction, and 
alteration of glucose homeostasis [86]. In fact, patients with T2DM 
present a higher expression of TLR4 mRNA and a link between TLR4 
polymorphisms and T2DM was established. [87–90]. 

In support of this, even mild COVID-19 can present high amounts of 
IL-6, IL-1β, TNF-α, MCP-1, and IP-10, products of the TLR4 pathway, 
that can further lead to lowering of insulin sensitivity [91]. Moreover, 
obesity, commonly associated with T2DM is likely to further aggravate 
the cytokine response in a process to be described below, thereby 
worsening insulin resistance [92]. 

3.4. Obesity and TLR4 

Obesity, especially visceral obesity, is known to increase the clinical 
risk of metabolic and cardiovascular disease [93]. In countries that had 
an early outbreak of COVID-19 including Italy [94,95] and the United 
States [96], multiple reports have emerged that implicate obesity as a 
comorbidity that leads to severe case of COVID-19. 

It is important to highlight two mechanisms that occur in obese pa-
tients: the enhanced production of pro-inflammatory adipokines (cyto-
kines produced by the fat tissue) and the free fatty acid activation of 
TLR4 signaling [97,98]. It results in a pro-inflammatory state with 
increased levels of IL-6 and TNF-α [99–102]. Moreover, obese in-
dividuals present an increased expression of TLR4 and its adaptor pro-
teins [103]. Furthermore, obese and diabetic patients have a higher 
expression of ACE2 in adipocytes, and, regarding the SARS-CoV-2 
infectivity process by binding to ACE2 to enter in the intracellular 
space [104,105], the adipose tissue becomes a potential target for viral 
reservoir, diminishing the viral clearance [106]. 

Taking the aforementioned into consideration, it is possible to 
leverage the following hypothesis: if SARS-CoV-2 targets adipocytes, 
especially in obese patients, with additional increased expression of 
TLR4, we suggest that an already inflamed and immuno-unbalanced 
adipose tissue becomes a favorable environment for SARS-CoV-2-TLR4 
binding escalating pro-inflammatory cytokine production. 

3.5. Hypertension and TLR4 

The angiotensin II role in blood pressure regulation acts through 
central and peripheral mechanisms [107]. Since the ACE2 receptor is the 
medium through which SARS-CoV-2 infects mammalian cells, early 
concerns were raised about treating patients with pre-existing hyper-
tension on ACE inhibitors or angiotensin II receptor blockers infected 
with the virus. Continuing treatment with ACE inhibitors or angiotensin 
II receptor blockers, however, does not worsen outcomes in COVID-19 
patients [108]. In fact, the treatment of these patients with ACE 

inhibitors and angiotensin II receptor blockers might actually be bene-
ficial in reducing all-cause mortality in COVID-19 patients [109]. 

In hypertension, dysregulation of the renin-angiotensin system is 
related to elevated expression of pro-inflammatory cytokines and ROS 
resulting in kidney damage, endothelial dysfunction, increased sympa-
thetic activity, eventually culminating in organ function decline [110]. 
Furthermore, TLR4 may participate in hypertension pathogenesis [111]. 
In an animal study, it was demonstrated the greater expression of TLR4 
mRNA in spontaneously hypertensive rats and that angiotensin II 
pro-inflammatory response was directly linked to TLR4 upregulation 
and stimulation. [112]. 

Nevertheless, while angiotensin II induces TLR4 with functional 
consequences, a review of the literature made by Biancardi et al. does 
not support angiotensin II as a direct TLR4 agonist. The review suggests 
that molecular mechanisms involved in angiotensin II-TLR4 activation 
may indicate a potential interaction between angiotensin type 1 receptor 
and TLR4 signaling downstream effectors molecules [113]. 

3.6. Aging and TLR4 

Elder age is a risk factor for COVID-19 severe form [114,115]. Re-
searchers demonstrated mixed results on correlations between aging and 
TLR4 signaling malfunction; the cytokine production after TLR4 stim-
ulation with LPS increases [116], decreases [117,118]; and remain un-
changed [119] with aging. Furthermore, it is known that the immune 
system changes with age, which is called “immunosenescence” [120, 
121]. 

It is well established that immune responses in older adults are less 
efficient, making them more susceptible to emerging infections, as 
COVID-19 [122]. Additionally, aging is also related to the development 
of chronic conditions [123], some of them are risk factors of COVID-19. 

One novel role for TLR4 is to regulate autophagy within the heart in a 
process mediated by the Histone Deacetylase - HDAC1 [124]. Further-
more, TLR4 signaling plays an important role in promoting inflamma-
tion following ischemia/reperfusion injury in the aging heart [125]. 
These studies suggest that evaluating the role of TLR4 signaling within 
the heart of old COVID-19 patients may provide prognostic capacities to 
predict cardiovascular disease outcomes in these patients. Furthermore, 
targeting this signaling axis may be beneficial to aging patients via 
protecting successful resolution of inflammation to reduce progression 
to cardiometabolic diseases in COVID-19 patients. In the USA, 17 % of 
the older adults have cardiovascular disease, 26.8 % have diabetes and 
63 % have hypertension [126]. All of those are considered risk factors 
for COVID-19 severe form [127]. 

4. Therapeutic perspectives targeting TLR4 pathway 

The TLR4 signaling pathway and its connection to inflammatory 
diseases provide interesting opportunities for therapeutic targeting and 
clinical applications [128]. There is an intriguing variety of chemical 
compounds able to interact with the TLR4 pathway. Synthetic, natural 
compounds such as statins, ACE inhibitors, opioids, and steroids [129] 
were evaluated in conditions where the immune system is inappropri-
ately overactive, such as sepsis and septic shock, lupus, rheumatoid 
arthritis, and atherosclerosis [130–134]. 

The most relevant synthetic compounds are Eritoran (E5564), TAK- 
242, and FP7, a drug with good bioavailability, high-water solubility, 
lack of toxicity, and selective TLR4 antagonist action [135–142]. In 
addition, Eritoran (Eisai co.) is soon to be introduced in the 
REMAP-COVID study, a sub-platform of the clinical trial REMAP-CAP, 
that evaluates specific treatments to COVID-19 [143]. Plant-based ex-
tracts are another source of natural immune modulators, several are 
used in Traditional Chinese and Ayurveda medicine for centuries and 
seem to interact with the TLR4 complex [144,145] 

When facing viral infections, the use of TLR4 antagonists has 
consistently resulted in reduced cytokine and chemokine production 
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and diminished disease symptoms in small animal models infected with 
viruses such as IAV, Ebola virus (EBOV), dengue virus, and respiratory 
syncytial virus [146,147]. Therapeutically, however, the viral-mediated 
TLR4 activation remains largely unexplored. 

There is a variety of TLR4 drugs capable of accessing the vast range 
of conditions linked to the TLR4 signaling pathway [148]. Table 1 
summarizes the main TLR4 antagonists and their applications. Compu-
tational techniques may provide new paths and facilitate the discovery 

Table 1 
Main published literature highlighting drugs with capability of Toll-like receptors-4 (TLR4) suppression.  

Study Drug/Compound Resumé Conclusion 

Yang et al., 
2009 

Valsartan Evaluate the protection granted by valsartan against myocardial 
ischemia/reperfusion (I/R) injury by suppressing TLR4 activation. 
The study uses a rat model of myocardial I/R injury, pretreated 
with valsartan for 2 weeks. 

Valsartan could suppress the overexperssion of TLR4/NF-jB. The 
elevated expression of TLR4/NF-jB was related to the incresed 
production of TNF-α and IL-6. 

Földes et al., 
2008 

Fluvastatin Evaluate the role of TLRs in peripheral leukocytes in human 
chronic heart failure. TLR4 and TLR2 expression were assessed in 
28 patients with chronic heart failure and 13 healthy subjects of 
similar age and gender. 

The upregulation of monocyte TLR4 may contribute to the 
pathophysiology of chronic heart failure. Fluvastatin may prevent an 
excessive innate immune response in vitro by inhibition of monocyte 
Toll-like receptor signaling. 

Methe et al., 
2005 

Simvastatin and 
Atorvastatin 

Evaluate the TLR4 expression and downstream signaling in CD14+
monocytes after incubation with simvastatin and atorvastatin 
quantified via flow-cytometry, quantitative RT-PCR, kinase assay, 
and enzyme-linked immunosorbent assay. The aim was to 
understand if part of the pleitropic effects of statins was mediated 
through innate immunity. 

Statins influence TLR4 expression and signaling via inhibition of 
protein geranylgeranylation and farnesylation. These observations 
imply interactions with innate immunity as one pleiotropic 
mechanism. 

Fang 
et al.,2014 

Atorvastatin Investigate the effects of atorvastatin on TLR4 protein, mRNA 
expression, and its downstream factor NF-κB activation in rabbit 
atherosclerotic plaques. 

Atorvastatin could exert an anti-atherosclerotic activity besides 
inhibiting cholesterol biosynthesis. 

Mullarkey 
et al., 2003 

E5564 A second-generation LPS antagonist that blocked LPS mediated 
activation of NF-kB in TLR 4/MD-2-transfected cells in vitro and in 
vivo. 

E5564 is a highly active antagonist of LPS in vitro, on human and 
animal systems. It resulted in survival enhancement after challenge 
with endotoxin or bacterial infection. 

Opal et al., 
2013 

Eritoran Randomized, double-blind, placebo-controlled, multinational 
phase 3 trial aiming to determine if it would significantly reduce 
sepsis-induced mortality. 

Among patients with severe sepsis, the use of Eritoran, compared with 
placebo, did not result in reduced 28-day mortality. 

Younan et al., 
2017 

Eritoran Analyze Eritoran protection against the lethality caused by the 
Ebola virus and the closely related Marburg virus (MARV) in mice. 

Results suggested that Eritoran treatment may alleviate the severity of 
the “cytokine storm” and may alter the kinetics of cytokine responses. 

Rice et al., 
2010 

TAK-242 Randomized, double-blind, placebo-controlled trial aiming to 
evaluate if TAK-242 suppresses cytokine levels and improves 28- 
day all-cause mortality rates in patients with severe sepsis. 

TAK-242 failed to suppress cytokine levels in patients with sepsis and 
shock or respiratory failure. 

Perrin-Cocon 
et al., 2017 

FP7 Evaluate the activity of FP7, in vitro, on human monocytes and 
monocyte-derived dendritic cells (DCs) and in vivo during 
influenza virus infection in mice. 

FP7 can antagonize TLR4 activation in vitro and protect mice from 
severe influenza infection, most likely by reducing TLR4-dependent 
cytokine storm mediated by damage-associated molecular patterns 
(DAMPs). 

Youn et al., 
2006 

Curcumin This study reports biochemical evidence that phytochemicals 
(curcumin and sesquiterpene lactone) inhibit both ligand-induced 
and ligand-independent dimerization of TLR4. 

Results suggest that anti-inflammatory, chemopreventive and other 
beneficial effects of certain dietary phytochemicals may be at least in 
part mediated through the modulation of inflammatory responses 
resulting from TLR activation induced by endogenous molecules or 
chronic infection.  

Fig. 3. Toll-like receptor 4 (TLR4) activation in the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. This illustration shows the postulated 
mechanism underlying the immune response following the immune system manifestation facing the viral infection. People with obesity, diabetes, hypertension, and 
cardiovascular diseases have a higher probability to develop severe COVID-19. Once infected (STEP 1) by SARS-CoV-2, the virus replicates by the ACE2 pathway 
(STEP 2). The spike protein from SARS-CoV-2 then binds to TLR4 triggering (STEP 3) a transmembrane stimulus in different cells in the body, culminating with a 
sharp release of TNF-α, and IL-6 (cytokine storm). 
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and development of safe and effective compounds [149]. Nonetheless, 
during a global pandemic, since there is still no evidence supporting the 
use of TLR4 antagonists in COVID-19, these findings highlight the 
importance of controlling conditions related to a poor outcome while an 
effective therapy is yet to come. 

5. Conclusion 

In the actual context of the COVID-19 pandemic, there is an urge for 
effective therapy aiming at the cytokine storm responsible for many 
poor outcomes. In this comprehensive review, we aimed to highlight the 
vast scientific evidence regarding the COVID-19 severe form, TLR4, and 
cardiometabolic diseases (Fig. 3). In confirming this hypothesis, this 
immunopathological intersection sets the ground for targeted treatment. 
Specific antagonists of the TLR4, such as Eritoran and FP7, are not direct 
antiviral agents, however, are compounds known to alleviate the sys-
temic dysregulated inflammatory response under viral infections and 
may be a tool to disrupt the cascade triggered by the COVID-19 spike- 
protein/TLR4 binding. Furthermore, it ensures the importance of con-
trolling preexisting conditions, maintaining regular treatment and 
follow up. 
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